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1. Introduction

Let H be a real Hilbert space and let T : H = H be a set-valued mapping. Two common problems that arise in several
branches of applied mathematics are to

Findx € H suchthat 0e T(x) (1.1)
and, more generally
Findx e H suchthat Oe m T;i(x), (1.2)
iel

where | is some index set. Specifically, these problems correspond to finding a zero of an operator and, more generally,
a common zero of multiple operators.
Suppose that the operators under consideration are monotone, meaning that

(x1 —X0,y1—Y0) 20 forallxo,x; € H, yo € T(x0), y1 € T(x1).
For A > 0, the mappings J,r := (I +AT)~! are the resolvents of T, which were shown to be at most single-valued in [27].
One proposed method for solving problem (1.1) is the proximal point algorithm, considered originally in [26] and more
thoroughly explored by [32], given by, for k=0,1,2,...,

Xk+1 = Jar (Xg). (1.3)

Our goal is to examine how appropriate regularity assumptions on the operators T (or Ty, ..., Tm, respectively) affect the
speed of convergence of variants of the proximal point algorithm. In order to do so, the remainder of this paper is organized
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as follows. In Section 2, we provide notation and basic facts about monotone operators, metric regularity and subregularity,
and the geometry of convex sets. Then, in Section 3, we show how assumptions of metric subregularity can be used to
demonstrate linear convergence of both the proximal point algorithm for problem (1.1) and a randomized proximal point
algorithm for problem (1.2).

2. Background and notation

A single-valued operator U is firmly non-expansive if

Ju@ — U(y)||2 +d - —a- U)(y)||2 <llx—ylI> Vx,yeH. (21)

It was shown in [13,32] that an operator T is maximal monotone, meaning the graph of T is not strictly contained
in the graph of another monotone operator, if and only if its resolvents are firmly non-expansive. The domain of T is
{x e H: T(x)+# @)} and the inverse operator, T~!, is defined by T~'(y) = {x: y € T(x)}. It is known that (see [33], for ex-
ample) T is maximal monotone if and only if T~! is maximal monotone, in which case both T and T~! are closed and
convex-valued.

We are interested in how certain regularity conditions affect local rates of convergence. One prominent condition is the
idea of metric regularity of set-valued mappings. We say the set-valued mapping @ is metrically regular at x for b € @ (x) if
there exists y > 0 such that

d(x, 71 (b)) < yd(b, ®(x)) forall (x,b) near (%, b). (2.2)

Further, the modulus of regularity is the infimum of all constants y such that inequality (2.2) holds.
A slightly weaker condition is that of metric subregularity. We say the set-valued mapping @ is metrically subregular! at
x for b € @(x) if there exists y > 0 such that

d(x, 71 (b)) < yd(b, ®(x)) forall x nearX. (2.3)

Further, the modulus of subregularity is the infimum of all constants y such that inequality (2.3) holds. Note that for metric
subregularity, the reference vector b is fixed in inequality (2.3) but not in inequality (2.2). It is clear from the definitions
that metric regularity implies metric subregularity; hence, the modulus of subregularity is no larger than the modulus
of regularity, using the convention that the modulus of (sub)regularity is infinite if the mapping fails to be metrically
(sub)regular.

The property of metric regularity is connected with other ideas in variational analysis. The simplest connection, as shown
in [11, Ex. 1.1], is that metric regularity generalizes the Banach open mapping principle, essentially saying that a bounded
and linear mapping is metrically regular if and only if it is surjective; in such a case, the modulus of regularity is simply
sup,ep{d(0, A~1(y))} where B is the unit ball. If the mapping @ has a closed-convex graph, the Robinson-Ursescu Theorem
says that @ is metrically regular at x for y if and only if y is in the interior of the range of &. Metric regularity is also
known to be equivalent to several others in variational analysis, namely the Aubin property of @~! and the openness at
linear rate of &. Additionally, metric regularity has been shown to be a generalization of the Eckart-Young result from
matrix analysis on the distance to singularity of a matrix. Further, a result originating with Lyusternik and Graves [14,25]
and extended by others (for example, [10,11,16]) shows that metric regularity is determined by the first-order behavior of a
mapping and is preserved by sufficiently small first-order perturbations. Additional information about metric regularity and
its relationship to other concepts in variational analysis can be found in [11,12,16], among others.

A central tool frequently appearing in variational analysis is that of the normal cone of a closed, convex set S. Specifically,
the normal cone of S at X € S can be defined as

Ns(X) :={x* e H: (x*,s —X) <0Vse S} (2.4)

and Ns(x) =@ if x ¢ S. Let d(x, S) denote the distance from x to S, given by d(x, S) :=infscs ||x —s||. Further, let Ps(x) be the
projection operator onto S, i.e., the set of such minimizers. If S is closed, convex and non-empty, then Ps is single-valued
everywhere. Further, the projection operator is firmly non-expansive [9, Thm. 5.5] and can be characterized by

z=Ps(x) < zeSandx—ze Ns(2). (2.5)
A method of characterizing regularity of closed sets Si,..., Sy is by considering regularity properties of a related set-
valued mapping. Given a Hilbert space, H, consider the product space H™ with the induced inner product defined by
m

(%1.%2, . Xm), (V1. Y20 - Ym)) = ) (X0, Vi)

i=1

1 The definitions of metric subregularity (and strong subregularity, as discussed later) in [11] contain, in the right-hand side, the term db, d(x)NV)
where V is a neighborhood of b. However, as noted in [17], it can be easily verified that this condition is equivalent with our definition that removes V
(though possibly with a different modulus y).



D. Leventhal / J. Math. Anal. Appl. 360 (2009) 681-688 683

and consider the set-valued mapping given by ®(x) =[S; —X, ..., Sm —x]”. Note that 0 € & (x) if and only if x (M) Si. Using
metric regularity as a starting point, suppose @ (x) is metrically regular at x for 0. From the definition, metric regularity of @
at x for 0 is equivalent to the strong metric inequality, examined in [19] and [20], among others, defined by the existence of
B,8 >0 such that, fori=1,...,m,

d(x, ﬂ(S,- - zi)> < B max d(x+z;,S;) forallxex+ B, z; €5B. (2.6)
; 1<i<m

Characterizing this in terms of normal cones, it was shown in [20, Thm. 1, Prop. 10, Cor. 2] that this is equivalent to the
existence of a constant k > 0 such that

2

zi€8B, yieNs,(&+z) (i=1...m) = > |yil><k (2.7)
i

Xi:}’i

By using the formula in [33, Thm. 9.43] for expressing the modulus of regularity in terms of coderivatives, it was shown
in [23] that the modulus of regularity of @ at x for 0 equals

giﬂ}{inf{k: inequality (2.7) holds}},

with this value being infinite being equivalent to a lack of metric regularity of @.
Consider a relaxed variant of the strong metric inequality, known simply as the metric inequality as studied in [16,20,28]
among others, defined to hold at x if there exists 8 > 0 such that

d(x,OS,) gﬁlggxmd(x, S;) forallx eX+ SB. (2.8)
If inequality (2.8) is valid for § = co, we obtain the property of linear regularity and if it holds for all § > 0, it is equivalent
to the property of bounded linear regularity, as studied in [3-7] and others, often in an algorithmic context. It is easy to
show that the existence of a § > 0 such that inequality (2.8) holds is equivalent to the previously defined mapping @ being
metrically subregular at x for 0.

Our focus for the remainder of this paper will involve metric subregularity. Unfortunately, several of the stability prop-
erties and some of the geometric intuition that accompanies metric regularity—especially that relating to normal cones of
sets—fail to have a natural equivalent for metric subregularity; some examples of this phenomenon are given in [12]. How-
ever, since metric regularity implies metric subregularity, the intuition provided by metric regularity can be applied to the
following results when that property does, in fact, hold. Additionally, if the monotone operators under consideration are
actually subdifferentials of convex functions, characterization of both metric regularity and subregularity in terms of the
underlying function was shown in [2], providing additional intuition.

3. Metric regularity and linear convergence

We now return to problem (1.1), the problem of finding a zero of a maximal monotone operator. Variants of proximal
point algorithms for solving this and related problems have been considered by a wide variety of authors, including [1,24,
29,32,34] and others.

Many authors consider an algorithmic framework much more general than the one considered in this paper. Some of the
better-studied variants allow for a varying proximal parameter A, allow approximate computation of the proximal iteration,
allow over- or under-relaxation in the proximal step or incorporate an additional projective framework. These ideas have
often proven worthwhile both for designing a computationally practical and efficient algorithm as well as for improving
the convergence analysis. However, in this paper, we will only consider algorithms in their “classical” form, assuming exact
computation of the resolvent with a fixed proximal parameter. Our particular interest is in exploring how naturally occurring
constants—for example, the modulus of subregularity of the mappings themselves and of the mapping associated with the
solution sets—govern the local rate of convergence and, further, how randomization as an analytical tool can emphasize this
connection. To begin, consider the basic proximal point algorithm given by (1.3), where xx;1 = Ja7 (Xx). Under an assumption
of metric subregularity, we obtain the following initial result.

Theorem 3.1. Suppose T is maximal monotone and metrically subregular at X € T~1(0) for 0 with subregularity modulus y. Let y > y
and suppose X is sufficiently near X. Then the iterates given by algorithm (1.3) are linearly convergent to T~1(0), the zero-set of T,
satisfying
1 2 372 1 2
d(xk+1, T71(0))" < md(xk, T71(0))".
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Proof. Let X € T~1(0) and note that J;7 (%) = X. Since the resolvent of a maximal monotone operator is firmly non-expansive,
it follows from inequality (2.1) that, for any x,

11ar @ = Lr®|" <lx =212 = |0 = i@ — (- L@

which can be equivalently written as

| Jr 0 <lx=&I2 = |x= Jr @] (31)

However, by definition of J,r,

X— Jar(®) € AT (Jar ().

In particular,

X = Lir @] = amin{liz|: ze T(Jar®)} =2d(0, T(Jir (®)). (3.2)

Now, note that since the resolvents and projection operators are firmly non-expansive, if Xy has the property of being
sufficiently close to X such that inequality (2.3) holds with constant y, then xj and Pr-1((x;) do as well for each j > 0.
Therefore, it follows that

d(Xkq1, T_](O))2 < |Xug — PT”(O)(Xk)HZ
<Xk = Pr-100) (%) I” = % — Lo |? - (inequality (3.1))
<d(x, T10)* = 22d(0, T(J,r(xp)))?  (inequality (3.2))

)LZ
<d(x, T71(0)) -5 d(Jrr ), T71(0))*  (inequality (2.3))

_2
2 ; 2
(Xk’ (0)) =2 (xk-‘v-] s B (0)) .

This implies that

A2 71 2
1+ - (X1, T71O)° <d(x, T10)7,
from which the result follows. 0O

Further observe that by considering a sequence {A} such that Ay — oo instead of a fixed A in the above algorithm, we
obtain superlinear convergence.

Our primary interest in Theorem 3.1 is as a tool in proving the following result, Theorem 3.2. However, we note that
Theorem 3.1 is similar to some previously known results. For example, in the paper by Rockafellar in [32], local linear
convergence was shown under a framework that permitted error in evaluating the resolvent. In particular, [32, Thm. 2]
showed that if x is the unique point satisfying 0 € T (x) and if there exist y, 8 > 0 such that

Iwl <3, xeT'w) = x=x|<ylwl,

then the algorithm satisfies ||x,1 — X||? A2+y2 lx, — x||? in the special case of exact resolvent evaluation, similar to Theo-

rem 3.1, though this assumption is stronger that metric subregularity. A result by Solodov and Svaiter in [34] uses a similar
regularity assumption to show linear convergence in norm for a hybrid proximal-projection algorithm, with a different
convergence rate.

From another perspective, Artacho, Dontchev and Geoffroy in [1] considered a highly generalized proximal iteration for
metrically regular mappings, without the requirement that the mappings be monotone. By appealing to an appropriate fixed
point result, they demonstrate the existence of a local linearly convergent sequence generated by the algorithm under con-
ditions involving the Lipschitz constants of certain functions associated with the algorithm (these Lipschitz constants are,
essentially, a generalized form of the proximal parameter A). The authors then proceed to consider mappings, @, that are
strongly subregular, essentially defined as metric subregularity at X for b where & is an isolated point of ®~1(b) (see [12]
for additional information). In particular, they show that if the mapping T is strongly subregular at x for 0 (though not nec-
essarily monotone), then the (generalized) proximal point algorithm is linearly convergent in norm, again under conditions
involving the Lipschitz constants of certain associated functions. Additionally, under the assumptions of Theorem 3.1 with
the condition of strong subregularity in place of metric subregularity, it can be verified that the conclusions of the theorem
still hold with linear convergence in norm (to the unique zero, X) in place of weak linear convergence.

We wish to generalize Theorem 3.1 to that of problem (1.2), finding a common zero among a group of maximal mono-
tone operators, Tq,..., Tp. Variants of proximal point algorithms for this problem have been considered by a variety of
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authors, including [8,15,18,21], among others. In what follows, consider the following randomized variant of a proximal
point algorithm: for k=0,1,2,...,

1
Xk+1 = Jat,(x¢)  with probability — i=1,...,m. (3.3)
Then we obtain the following result.

Theorem 3.2. Suppose the following assumptions hold:

1. The maximal monotone operators {T;: i =1, ..., m}, are metrically subregular at x € ﬂj Tj’l (0) for 0 with respective moduli y;.

2. The mapping @ (x) = [Tl’l (0) —x, ..., T;1(0) — x]T is metrically subregular at  for 0 with modulus .
3.y>max{y;:i=1,...,m}and k > k.

Then for xq sufficiently close to X, the sequence of iterates generated by algorithm (3.3) is linearly convergent in expectation to the
common zero set, () | Tj_l (0), satisfying

2 1 - 1.2 2
E|:d(Xk+], ﬂ T]_] (O)) 'Xk] < (1 — W[l — (}"2)_/’_7)72) ] )d(xk, mT]_l (O)) .
J i

Proof. If xq is sufficiently close to x such that inequality (2.3) holds with constant y for each mapping T;, it follows from

the firm non-expansivity of the resolvents and the projection operator that each iterate x; and the projection of each iterate

onto the common zero set, Pm_r](o) (x), are sufficiently close to x as well. Additionally, this implies the first conclusion of
it

the theorem.
Suppose that at iteration k, the resolvent J,r; is chosen by the algorithm. Then it follows that

2
d(m,. ), T;1(0>) = [ 13 &0 = Py 1210, (S 0) I?
J
< | Jam () — ij 70 (%) ”2 (definition of projection)

2
< d(xk, ﬂTj_l(O)> — ||X = Jari (x0) ”2 (inequality (2.3))
J
2 2
= d(Xk, m Tj_l (O)> - || [xk - PTi_l(O) (xk)] + [PTi_l(O) (Xk) — .I)LT,‘ (Xk)] H
J

2
< d(xk, N T;1<0)> —d(xe, T ©)” = [ P10, (x0) = Jar, k0|
J

- 2(Xk - PTi_l (0) (Xk), PTi_l (0) (Xk) — j)\T,' (Xk)>-

Note that

—2(x — Pr=10)®k), P19y i) — Jar; () = 2{x — Pr=10) Xk, Jari (%) — PTi—uo)(],\Ti *1)))
+ 2(x — PT',—1(O) (%K) PTl_—l(O)(]AT,- (x)) — Prfl(o) *x0)
< 2(x — P10y ). Jori (i) — PTi—l(o)(JAT,« *K)))
<2x — PT;1(0) @O || Jor (1) — PTi—l(O)(]ATi )|
=2d(x, T, 1) d(Jar, (%), T, 1(0)).

The first inequality comes from the fact that x; — PT.’l(O) (x) € NT_4<O)(PT_71(0) (%)) and Pr-1qy(Jar; (xk)) € Ti’l(O); therefore,

inequality (2.4) can be applied from the definition olf the normal cone. The second inequality is an application of the Cauchy-
Schwartz inequality. The last equality follows from the definition of the projection operator. From this, we then obtain
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2 2
d(m,(xk),ﬂTf(O)) <d(xkﬂT;1<0>> —d(x. T () = d(Jar, (0. T (0))°
J J
+2d(xe, T, (0) d(Jar, (%), T (0))

2
= d(xk, 75! (0)) — (@4 T71() — d(Jsr, (). T ()
J

Noting that d(xy, Tl._1 (0)) —d(Jar; (xp), Ti_l(O)) >0, it follows from an application of Theorem 3.1 that

=2

2 2 142
d(m,.(xk),ﬂTf(O)) <d<xkﬂT;1(0)> —[F(kzi—)ﬂ) ]d(xk,r,fl(O))z.
j j

Taking the expected value, we obtain

2 2 1 52
E[d<xk+1»mTj_](O)) lx:«]—d(XkﬂTf(O)) <—a[l‘<x21*y2
j J

_ 1.2 2
1 y? . -1
<z~ (57 | d("'“OTf o).

where the last inequality follows from the metric subregularity of the mapping & (x) = [T1_1 0) —x,..., T,;l(O) -xT. O

It is worth noting that this type of convergence result implies that d(xy, [ i Tj‘1 (0)) — 0 almost surely (cf. [22]).

The second assumption in the statement of Theorem 3.2 is a regularity condition on the zero sets of the individual
maximal monotone operators. As discussed in Section 2, it is essentially equivalent to a local version of bounded linear
regularity, a regularity condition which has been studied frequently in the context of projection algorithms for solving
convex feasibility problems (see, for example, [3-7]). More generally, bounded linear regularity was also examined in [18] for
demonstrating linear convergence of a projection-based algorithm for finding fixed points of firmly non-expansive mappings.

Regularity conditions on the mapping @ itself have been previously studied in the context of projection algorithms
(equivalently, in the case where the maximal monotone mappings are normal cone mappings). For example, the assumption
regarding the metric subregularity of &(x) was examined in [22] in the context of a randomized projection algorithm.
Further, if @ is in fact metrically regular, then linear convergence of an averaged projections algorithm for certain classes of
non-convex sets was demonstrated in [23].

One particularly simple way of de-randomizing algorithm (3.3) is by considering averaged resolvents or, in the terminol-

ogy of [21], the barycentric proximal method. Specifically, given maximal monotone operators T;, i =1, ..., m with respective
resolvents J,r;, i=1,...,m, consider the algorithm described such that, for k=0,1,2,...,
1 m
Xep1 = Z Jar; (xk) (3.4)
i=1

and the associated fixed-point problem
_l m
Findx € H suchthat x=— (x). 3.5
- Zl L) (3.5)

The following proposition, found in [21], provides the necessary connection.

Proposition 3.3. (See [21].) If x € [); Ti_l(O), then X is a solution to problem (3.5). Further, if (; T,._](O) # (), the fixed points of
problem (3.5) are common fixed points of all the T;’s.

Considering the example where each operator T; is the normal cone mapping for some closed, convex set, it follows
that algorithm (3.4) is simply the averaged projections algorithm studied by [3,22,23,30,31], among others. More generally, we
can use the result of Theorem 3.2 to generalize a result on averaged projections found in [22, Thm. 5.8] to the barycentric
proximal method.
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Theorem 3.4. Suppose the assumptions of Theorem 3.2 hold. Then the conclusions of Theorem 3.2 hold for algorithm (3.4) as well.

Proof. Let x; be the current iterate, x,Bfl be the new iterate in the barycentric proximal method, algorithm (3.4), and let
Xk+1 be the new iterate in the randomized proximal point method, algorithm (3.3). First, note that since each set T_1 0) is
convex, the distance function d(-, ﬂj i L)) is as well, and

d(Jir, (0. () T;1(0) < d(xk, N T;1<o>) fori=1,....m,
j i
from which it follows that

<X1<+1’ ﬂ N (0)> (Xk, ﬂ Tj’1 (0)).
Jj

=2
leto=1-— #[1 - (,\z};};z )2 12 and observe that the function d(-, N; Tj’1 (0))2 is also convex. Noting that

Xk+1 Z ]ATJ xK) = [X]I<2£1 | Xk]’

it follows that

2
(ka,HT (0)) :d(E[x,ff:] |xk],mrjf1(0)>
o (o) 1]
<od (xk, ALE (0)> :
i

from an application of Jensen’s inequality. O
In particular, the barycentric proximal method converges at least as quickly as the randomized proximal point method.
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