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1. Introduction

In this paper, we study the pointwise estimates of the solution u(x,t) to the Cauchy problem for the dissipative wave
equation in multi-dimensions

{afu—Aquratu:f(u), xeR" t>0, (1)

(u, 9u)(x,0) = (ug, u1)(x), xeR",

where n >3, f(u) = 0?*t!) and 6 is a positive integer. Eq. (1.1) is often called the semilinear dissipative wave equation
or semilinear telegraph equation.

Let us first review some of the works in this field. There are many results on (1.1) corresponding to different forms of
the nonlinear term. For f(u) = —|u|u, Kawashima, Nakao and Ono [8] studied the decay properties of solutions to (1.1)
by using the energy method combined with LP-L9 estimates. Ono [19] derived sharp decay rates in the subcritical case
of solutions in unbounded domains in R" without the smallness condition on the initial data. Besides, by employing the
weighted L? energy method, Nishihara and Zhao [18] obtained that the behavior of solutions to (1.1) as t — oo is expected
to be the same as that for the corresponding heat equation, and Nishihara [17] studied the global asymptotic behaviors in
three and four dimensions. When n > 1, Ikehata, Nishihara and Zhao [6] obtained the decay properties of solutions to the
Cauchy problem (1.1). This work extended the initial data class in [18] to a wider class. In [11], the pointwise estimates of
solutions to (1.1) are obtained by Liu.

As referred to above, it is worth to mentioning a recent result due to Liu in [11]. She considered the global existence and
the pointwise estimates of the solution to (1.1) for f(u) = —|u|?u. In her paper, the existence of the solution was obtained
by using the energy method. However, if f(u) = |u|?u or f(u) = £|u|?*t!, the usual energy method does not work well in
proving the existence of the solution. The reason is that we cannot control the lower order term in making energy estimates
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(see [11]). In this paper, to overcome this difficulty, we employ a different approach which is showed later. Furthermore, for
f(u) = 0?1, we obtain the pointwise estimates of the solution by using the Green function. In addition, for f(u) = |u|u
or f(u) ==[u|?t!, there are also some other methods in obtaining the global existence of the solution to (1.1). In [16], with
the explicit formula of the fundamental solution to (1.1), Nishihara showed the global existence of the weak solution and
its decay estimates in the three-dimensional space. Nakao and Ono in [14] proved the global existence and decay of weak
solutions for (1.1) under the assumption that |juq| + ||[Vug]|| is small by using the potential well method. They also obtained
the classical solution of (1.1) when n =3 and 6 = 2. By the way, the constant 6 in this paper satisfying 1+6 >2>1+ %.
and 1+ % was proposed in [14] by them.

In particular, for the case f(u) = |u|?u, the semilinear Cauchy problem (1.1) has been investigated by many authors.
Ikehata, Miyaoka and Nakatake [5] have obtained the global existence of the weak solution to (1.1) and its decay for % <
0 < ﬁ —1(n=1,2,3 and [a]* = max{a, 0}). Furthermore, Hosono and Ogawa [3] obtained the LP-L9 type estimate
of the difference between the solution to (1.1) and the solutions of corresponding heat and wave equations in the two-
dimensional space. They employed the Fourier transform and observed the detailed asymptotic behavior of the fundamental
solution to (1.1). Meanwhile, when 2 <n < 5, the same type estimate has been studied by Narazaki in [15].

There also have been a lot of investigations for those cases. For their results, please refer to [4,7,10,20,21,23,25].

The main purpose of this paper is to study the existence of the global classical solution of (1.1) and its pointwise
estimates in the multi-dimensional space. First, no matter what kind of f(u) = 0 u?*") is, we obtain the solution by using
a unified method. We use the Green function to express the solution to (1.1) and obtain the pointwise estimates of the
Green function, the same as in [13]. Compared with the methods in [3,15,16], the method in this paper is more useful
to show a clear structure of the solution. Besides, we bypass the difficulty in energy estimating and obtain the global
solution directly without proving the existence of the local solution (also see [9]). Then, we give the pointwise estimates
of the solution to (1.1) by using the method of the Green function. Finally, as a corollary of the pointwise estimates, the
optimal LP (1 < p < o0) convergence rate can be obtained easily.

The following is the main theorem in this paper.

Theorem 1.1. Let s and 6 be integers such that s > n, 8 > 2/n, let § be a positive constant, let (ug, u1) € (WS NHS1) x (WSTNH?),
and let f = f(v) be a function of class CS. Assume that

08 F (] < CrslvPTK v <8, 0<k<s, k<6 +1,
K F()| < Crsy VIS, ifO+1<k<s,

and
05 f(v1) — 3y f(v2)| < Crslvi — val,  [val. val <8

when s > 0. If |luglls+1 + llu1lls + lluolls.1 + llu1lls,1 is sufficiently small, then (1.1) admits a unique, global, classical solution u(x, t).
Moreover, if s > 2n, for any multi-index o, || < s —n/2, there exists some constant r > n/2 such that

DY uo()| + | DFur ()| < C(1+ [x?) ™,
then for |a| < n, the solution to Eq. (1.1) has the following estimates
|DZu(x, t)| < (1 + )~ H*D/2B (x|, ¢),

where B, (|x],t) = (1 + [x>/(1 +t))™".

Notations. In what follows, we denote generic positive constants by C. W™P(R™"), m € Z,, p € [1, oo], denotes the usual
Sobolev space with its norm

m
1f lwmo@n =D 3 F] -
[k|=0
In particular, we use W™2(R") = H™R"), |- | = - ;2. |- lmp =1l - lwmp and || - [lm =l - || .

The rest of paper is organized as follows. In the next section, we show the estimates of the Green function. Then
the global existence of solutions is proved in Section 3. Furthermore, the pointwise estimates of solutions for nonlinear
equations are obtained in Section 4.
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2. Pointwise estimates of Green function

Now we study the Green function for (1.1), i.e. we consider the solution to the following initial value problem:

(32 — Ax+3)G(x,t)=0, xeR" t>0,

G(x,0)=0, xeR", (21)
G (x,0) =68(x), xeR",

By Fourier transform with respect to the variable x, we deduce that

(02 +3)GE O +E2GE D=0, £eR, >0,

G(.0)=0, EcR", (2.2)
%G, 0 =1, £ R

The symbol of the operator for Eq. (2.1) is

?+r4+ g2 =0. (2.3)

Here, 7 and & = (&1, ..., &) correspond to % and (Dy,, ..., Dyx,) respectively, where Dy, = (1/+/—1)(3/0xj), j=1,...,n.
It is easy to see that

1
r:ki(S)zi(—li,/1—4|§|2). (2.4)

By a direct calculation, we have

GGe.0 = (1 - 4P) 2 (O — 1), (25)

In the following, we are going to obtain some properties of the Green function G(x, t).
For convenience we decompose G(£,t) = G (&, t) + G (&, t), where

N 1
GEE =225 =ED ao®) = (1-461%)2.
Let

_ 1 lEl<e, _ )1 [§I>R,

be the smooth cut-off functions, where ¢ and R are any fixed positive numbers satisfying 2¢ < R — 1.
Set

X26)=1-x1(6) = x3(8),

and
G 0= xi®GE D, i=1,23. (26)
We are going to study G;(x, t), which is the inverse Fourier transform corresponding to @i(f;‘, t).

Before estimating G;(x,t), we give three lemmas which will be used later. The proofs of those lemmas can be found in
[12,13,24], so we omit them here.

Lemma 2.1. If supp £(§) C Og := {&; |&| > R}, and g() satisfies

lg©)|<c.  [plg@|<cle L g =1, (2.7)

then there exist distributions g1(x), g2(x) and a constant Cq such that

g(%) =g1(x) + g2(x) + Cod (%), (2.8)
where §(x) is the Dirac function. Furthermore, for a positive integer 2N > n + |«],

IDZg1 (0] < C(1+1x2) 7", (2.9)

lgalle, <C.  suppga(x) C {x; |x| <2e1}, (2.10)

with &1 being sufficiently small.
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Lemma 2.2. For any N > 0, T > 0, and multi-index «, we have that

2
a+550" a2\
— It dv,<ca+nN 14+ — . 211
V1i+T ‘ (a+0 <+1+r> (211)

lzIs1

Lemma 2.3. Assume that h(x) € C*°(R"), and for any multi-index c,

ID2h(x)| < C(1+ %) 7",

then
Dh(x + tz)z% 2\ 7N
/Mdz‘gcaﬂ)”“(Hﬂ) . (212)
V1 —1z|? 1+t

lzI<1

Now we consider G;(x, t). Firstly, we give two propositions regarding to G;(x,t) and G»(x,t). The proofs of them can be
found in [13].

Proposition 2.1. For sufficiently small €, there exist a constant C > 0, and N > n such that
19{DEG1(x, )| < C(1 + 1)~ H+2D2B (1] ), 1=0,1. (213)
Proposition 2.2. For fixed ¢ and R, there exist positive numbers b, C and N > n such that
9{DEGo(x, )| < Ce P By(Ixl,t), 1=0,1. (214)
The following Kirchhoff formulas can be seen in [1,2].

Lemma 2.4. Assume that w(x, t) is the fundamental solution of the following wave equation with c =1,

wtt — CZAa) =0,
wlt=0 =0,
Orw|t=0 = §(X).

There are constants ay, by depending only on the spatial dimension n > 1 such that, if h € C*°(R"), then

(w*h)(x,t) = Z aat‘“|+1/D“h(x+tz)z“dSz,

0<lo|< 53 |zj=1
(@ xhx =Y bat!" f D%h(x + t2)z* dS;,
0| 25t lzl=1

for odd n, and

D%h(x +tz)z*
_ Joe|+1
(w*h)(x,t) = E agt / 71 Yy dz

0< o< 52 lZ1<1
D%h(x +tz)z%
(@ xhx. =Y bat / (7+3dz
0<lal <2 oy V1I-H

for even n. Here dS, denotes surface measure on the unit sphere in R".
By Lemmas 2.2-2.4, we have the following lemma.

Lemma 2.5. Assume that h € C*°(R"), and for any multi-index «,
IDZh(o| < C(1+1x7) 7",

then we have that
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N
n X|2
wxh| <CA+t)2N1+z2 (1 Ll , 215
| * h| (1+10) +]+t (2.15)
and
1 2\
lwe x| < C(1+t)2N+1+2 (1 + 1—+t) , (2.16)

where w is the fundamental solution of the wave equation as in Lemma 2.4.

Now, for G3(x,t), when || is sufficiently large, we have

1
hae(®) =2 (-1 £E1 1172 — 4)

m—1
<_1i2“/_1|5|i(Zaj|€|1_2j>>+O(|§|1_2m),

j=1

N = N

and

A1E) = (1-42) % = |s|—1<—€ + 0(|5|—2)>.

This implies that

m—1 m—1 m
er=® =e—f/2eiﬁ'ff<1 + (Z(ﬂ:a;)|&|l‘”)t+---+ ,;(Z(iaj)léll‘zf) (" +Ri<s,t>>,

j=1 j=1

where RE(E,t) < (1 + )11 + |g)1—2m,
On the other hand, we denote that

W& 0= Q) "sin(|glt) /15, diE. ) = @) "2 cos(|&[t).

By a direct and a little tedious calculation, we get that

2m-2
G3(&.) =ef/2cbt< > pY(0g;&) +k?@,t>>

j=1

2m—2
+e—f/2cb<c1)<3(s>+ > pg’j(r)qj<s>+1‘e8(s,r)>,

j=1
and
R 2m-2 R
G35, 1) =e i <c2)<3<s>+ > p}j<t>qj<s)+R%<s,t>>
j=1
2m—-2 R
+e—f/2cb<p5<r>)<3(s> +Cx@IE+ Y py(Dg;E) + R;@,t)),

j=1

here

PO <CA+0),  q;E=x@E™, 1<j<2m-21=01;k=1,2;
p(l)(t) <C@A+t); C(Cq,Cy,Csare some constants;

[RE. 0], |RSE. D <ca+0™T(1+ g
[RI. 0|, [RYE o] < +0™ (1 + I€])

Since |&| > R, it is observed that

)]72171

’

2-2m

’

|G3(&, 0|+ |3:G3(&, 0)| < Ce™4. (2.17)

In the following, we use go(Dx),qg(Dx),q;(Dx) (1 < j <2m —2), @(Dy,t), @r(Dyx,t), R)(Dy,t), R9(Dy, 1), R} (Dy, 1),
R;(DX, t) to denote the pseudo-differential operators with symbols x3(¢), x3(§)I§],q;(§) (1< j<2m—2), @, t), (€, 1),
RYE, 0), RO(€,0), R1(E, ), R (£, 1) respectively.
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Lemma 2.6. For R being sufficiently large, there exist distributions qo(x), o(x); c‘;cl,(x), :j(l)(x); q4j(®),qjx), 1< j<2m—2anda
constant Cq such that
qo(Dx)8(x) = qo(x) + Go(x) + Cod(X),
1, -
45 (D)8(x) = (—=A)2 (Go(¥) + Go(¥) + Cod (%)),
qj(D)8(x) =q;(x) +qj(x) + Cod(x), 1<j<2m—2,

and

ID2Go()|, | DLGLX)|, |DLG (0| (1 < j<2m—2)<c(1+xP) 7",

ol a il A< j<2m-2)<C,

Iqoll,1s
suppqo. suppdy. suppq; (1< j<2m—2) C {x: x| <2¢1},

with &1 being sufficiently small.

Proof. It is easy to get that

D x3®)|. |DE (161" x3(®)) . | DEq;(®)| (1 < j<2m—2) < Cle| P,
suppqj(§) (1< j<2m—2) C [& [§] > R}.

By using Lemma 2.1, we complete the proof of Lemma 2.6. O

Let

Qo(x) = qo(x) + Cod(x),
Qo) =qo(®) + Cod (%),
Qi) =§;x) +Cod(x)., 1<j<2m—2,
and
LY(x,t) = Cr(Dyx, ) Qo (X),
Ly(x.t) = C20 (Dx, ) Qo(®) + pH(©)o(Dyx, 1) Qo(x) + C30(Dx, £) (= A)Z QG (1),
LY(x,t) = p; (@ (Dx, Qj(x) + P (D@ (Dy, HQj(®), 1< j<2m—2,
Li(x,0) = p1;()@r(Dx, )Qj(X) + p3;(Owe(Dx, HQj(x), 1< j<2m—2.

We have the following proposition. The proof of it is omitted here. The interested reader can found it in [13].

Proposition 2.3. For R sufficiently large, there exists distribution

2m-2
KL (x,t)y=e"t/? (L{)(x, n+ Y L t)), 1=0,1, (2.18)
j=1

such that m > [W], we have that
|D%(3/G3 — KL )(x,t)| < Ce /4By (Ix|,t), [=0,1. (219)

Then, by Propositions 2.1-2.3, we obtain the following estimates of the Green function.

Theorem 2.1. For any multi-index o, and m > [W], we have that

n+lo

|
P By(Ixl.t), 1=0,1. (2.20)

DY (8lG — KL)(x, 0| < CA+1)~
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3. The global existence of solution
3.1. Basic lemmas

First of all, we show some useful lemmas. The proof of the following lemma can be found in [22]. We omit it.

Lemma 3.1. Let 1 <, p < oo, m € N. Then there is a constant ¢ > 0 such that for all w € W™P N L' the inequality

|Diw],y <c[Dmw| I wi

holds, where j € {0,1,...,m} and

1 i1 i\ 1
—=i—+(1—i)—.
q mp mjr
Lemma 3.2. Let s and 0 be positive integers, let § > 0, p,q,r € [1,00] be such that 1/r=1/p+1/q,and letk € {0, 1,2, ...,s}. Let
F = F(v) be a function of class C* that satisfies
[aLEW)] < Cuslvi®* =l v <8, 0<I<s, <0 +1,
and
[aLF(v)| < Crs, VIS8, I<s, if0+1<L
IfveWkinLP NL® and ||v||i < 8, then

[FO) s < Crslvikglviis VIS (3.1)

Proof. Leibnitz’s formula shows that
WFVI= > Coponan F™P W V5.
a1+ t+om=o

Consider the case where m > 2. Let

L
rj k gq (m—1)p B
Since 1/ry +--- 4+ 1/ryp = 1/r, Holder’s inequality and Lemma 3.1 show that
" {6+1—-m,0} -
[F™ oty agmv |, < v = oz v |y - o v
{#4+1—m,0 k 1— k k 1-— k
< v v 5 v v
{6+1—m,0} -1
= VI g v I,
<CIVIT IVIkglviiLe. (3.2)
When m = 1, Hoélder’s inequality again shows that
— 0—1
|F'aagv], < cllvie=Hviagv], < CIvIT< IVIkglVIIp. (33)

From (3.2) and (3.3), we obtain
[FW [, <C D [F™magtve--aimv| , <CIvIE= IVIkg V-
a1+ t+om=o

Thus, the proof of Lemma 3.2 is completed. O

Lemma 3.3. Let s and 0 be positive integers, let § > 0, p,q,r € [1,00] be such that 1/r=1/p+ 1/q,and letk € {0, 1,2, ...,s}. Let
F = F(v) be a function that satisfies the assumptions of Lemma 3.1. Moreover assume that

05 F(v1) — 85 F(v2)| < Cs(Jva | + [va)) "0 7>0

Ifvi, vy € WO LP N L satisfy || vyl < 8 and ||va] = < 8, then

IV1 —val, [vil,lva] <6

|Fv) — F(V2)||k,r < Cs{(IVllkg + Iv2llkg) Vi = valie

91
+ (Ivillze + Ivaliee) Ive = valig (vl + Ivalize)” . (3.4)
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Since the proof of Lemma 3.3 is similar to that of Lemma 3.1, we omit it here.
By using Lemma 2.4, we obtain the following lemma.

Lemma 3.4. Assume that 0 < t <t and h(-, T) € W¥:%(R"), for any multi-index o with || >1n/2 and 2 < p < 400, then we have

ot =) xh(,T)|<C Y agt =)D, 1) (3.5)
0| < 12

(.t =T)xh(, )| <C Y bt — 1) D*h(, )| oo (3.6)
INES

Lemma 3.5. Assume that 0 < t <tand g(-,T) € W‘_[%]"’O(R”), then we have

[kt =0 8@y o <Ce T g@]_ny 1y =01 (37)

Proof. Firstly, by using (2.18) and the triangle inequality, we have

2m-2
“ K%(t - T) * g(‘c) ”sfnf],oo < Ce—(t—r)/Z (”l‘g(t - T) * g(r) ”sfnfl,oo + Z HL(J)(t - T) * g('c) ”3”100)
j=1
=D+ D>.
By using the Young inequality, Lemmas 2.4, 2.6 and 3.4, we have
D1 <Ce™ "2 |w(Dy, t = T)Qo* (D), o
<Ce 02 3T -0 Qox Dig(™] s o
0<IBI<
<Ce D2 3 =0 (G0 x Dig(], g o+ IDEED s o)
0<IBI< S
<Cem @2 N (=) (Jdolly [ DE 8D [y oo + [ DEEE) sy o)
0<IBI< 2
<Ce =" @)y o

—(t—1)/4
<Ce / Hg(r)”s—[%]—l,oo'
Similarly, we get the same estimate for D,. Thus, we obtain
[ Kt =0 8 [ _y_q 00 <C T gls 1)1 00

Finally, for [ =1, it is more straightforward to carry out the estimates on ||K,}1(t —7) % &(T)|ls—n—1,00 in the similar way.
The details are omitted. Thus, this completes the proof of Lemma 3.5. O

3.2. Global existence for the Cauchy problem

Here, we use the fixed point theorem of Banach to obtain a theorem about the global-in-time existence of the solution
to (1.1).
We consider the following Cauchy problem

{afu—Aquratu:f(v), xeR" t>0, (3.8)
(u, 9ru)(x, 0) = (up, u1)(x), xeR™
By the Duhamel principle, the solution to (3.8) can be expressed as follows:
t
ux,t) =G(t) * (up +u1) + 0:G(t) * uog + / G(it—1)=* f(v)(r)drt. (3.9)

0
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To apply the contraction mapping theorem, we denote the function on the right-hand side of (3.9) by Tv(x,t). Define a
space X; g as follows:

Xee={v=vx1)|Ds(v) <E},

where E is a positive constant and

Ds(v) = f;lg(l +0)2||v(, 0 st—n—tmmn) + glg(l +0)3|v(, 0 ”HS(R”)'

Then (Xs g, Ds(+)) is a Banach space.
In the following lemma, we show that T is a map from X; f to itself.

Lemma 3.6. If E and |luglls + llu1lls + lluolls,1 + llu1lls,1 are sufficiently small, then T is a map from X g to X; k.

Proof. Firstly, we write

ITVIs—n—1.00 < [ (G = K) (&)  (uo + uy) |
+ | Ko (0) * (uo + uy) |

s—n—1,00

s—n—1,00

+

+ [ K€ =D fFD@] o dT

O — O T—

Il
.P—jm

i=1

For I4, it follows from the Young inequality and Theorem 2.1 that

+ [ (3G —
+ [ K () % uo

[(G = Kn) & =) % FN @)y o dT

Ky ) (©) % uo|

s—n—1,00

I <[ (G = K9) (O ] ;oo o + trlls—n-1.1 < CA+ 07" [lug + g [ls—n-1.1-

Similarly to the estimates of I, we obtain

I <CA+D)™2|luglls—n-1.1.

From Lemma 3.5, it follows that

I3<CA+OTug +uills_1)-100 and L4 <C+10)" n/2||U0+U1||s n,

2

By using the Young inequality and Lemma 3.2 and noticing n > %

t
15 < [16 = k) =Dl [ F OOy n
0
t
¢ [ase-omlro@l, ., i
0
t
kal+f—fY”ﬂwuwuﬁ_JVUvawﬂﬁidr
0

< CEHT /(1 +t—T) 21+ 1) dr

< C(1+t)M2EHT,

, for Is, we have

For Ig, it follows from Lemmas 3.2, 3.5 and the Sobolev inequality that

s—n—1,00

(3.10)

(3.11)

(3.12)

(3.13)
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Is < C e—(t—r)/4 ”f(v)(r)”sf[%]fl,oo dr

<C [ e tD/4 |v(z) ||s v “iw dt

t

/

t
<C/e’(t”)/“Hf(v)(r)”Sdr

0

t

[

t
< CEOH! /e—(t—r)/4(1 + 1’_)7n/47(ne)/2 dr
0
< C(1+t) 2EHT,
Thus, the combination of (3.10)-(3.14) gives

_n
ITVlls—n—1,00 < CA+ 072 (ltdolls—(2),00 + 1U1lls—(21.00 + It0lls—n—1,1 + U1 lls—n—1.1 + E*1).

Now, we consider

ITvIls < (G = G3)(®)  (wo +un) |, + [ 3:(G — G3)(©) * uo]

+ [ G3(®) % (o +ur) |, + |0 G (t) *uo
t t

0
6
:ZZ],'.
i=1

By using Propositions 2.1-2.2 and the Young inequality, for J;, we obtain

J1 < (G = G3)®]|lluo + u1lls,1 < CA+0"*ug + uyll5.1.

For Js, it follows from the Plancherel theorem and (2.17) that

J3< Y630 DZwo +un)| = Y [G3@)DY o+ un) |
la|=0 la|=0

< Ce " lug + uqls.

Similarly to the estimates of J; and J3, we obtain

Ja<CA+6*uglls1 and  Ja < Ce™*Jugs.

Using Lemma 3.2, the Young inequality and noticing n > %, we have

t
Js < c/|| (G -G — D |[f V@], de
0
t
< cfa +t—0 v v v < de
0

t
< CE*! /(1 +t—1) A+ )02 gr
0

<C(1 4t VAgIHT,

+/|| (G = Ga)(t —7) % fV)(D)| dt +/||<;3(t —o)x f)(D)| dt
0

235

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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For Jg, by using the Plancherel theorem and (2.17), we get

t
Je < C/e*“*f)/“ |f W) (@) dr < C1+n) g (3.20)
0

Thus, we obtain

ITvs < CA+0""*(lluolls + llurlls + lluolls,1 + llurlls,a + E?F1). (321)

By using (3.15), (3.21) and the small assumptions of E,ug, uj, we get Ds(Tv) < E. Thus, the proof of Lemma 3.6 is
completed. O

In the next lemma, we prove that T is a contraction map.
Lemma 3.7. Assume v, v € Xs g and E > 0 is sufficiently small, then there exists a constant y with 0 < y < 1, such that
Ds(TV — TV) < y Ds(V — V). (3.22)
Proof. Let u =TV — TV, it follows from (1.1) that

{afu—Aquratu:f(\‘/)—f(f/), xeR", t>0, (323)

(u, du)(x,0) = (0, 0), xeR".

By the Duhamel principle and the triangle inequality, we have

t
1T = Tolls 100 < f 16— KS)(E =)+ (FB) = FE) @] s oo
0

t
+ [0~ (7O = SNy e
0

:= Hq + H». (3.24)

For Hq, by using the Young inequality and Lemma 3.3 and noticing n > %, we have

t
Hi < f [(G =Kt =D [ (F® = FD) @)y 1 AT
0
t
< Cf(l +e—)2|(F) = F@) @]y, dT
0

t
< Cf(l +t=O) 29 = V(P lls—n—1 + [Vlls—n-1)
0
_ = _ = _ = -1
AT = Vlsmn—t (V11V} - (19l + 1V l1)” " dT
t

< CE /(1 +E— D) 2A+ )T VI 4 IV = Vlls—n-1) dT

0

<CEY(1+t)"2Ds(v — ). (3.25)

For H,, it follows from Lemmas 3.3, 3.5 and the Sobolev inequality that

t
Hy < C\/ei(tit)/4 ” (f(‘_/) - f(‘:/))(T)||s—n—1,oodT
0
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t
<c / eI (F @) — FD)D],_gy dT
0
t

< [T = i (10 + 10 gy)
0
_ = _ = — = 0—-1
1T = Pllgny (1T + 17lle) } - (1Pl + (V1) d
t
< CE"/e—“—f)/“(l + 1) 24D (§ — V)dT
0
<CE (1 4+t)™"2Ds(v — V).

n
2

Then, we obtain

ITV = TVlls—n—1.00 < CE (1 + ) "/2Dg(V — V). (3.26)

On the other hand, by using the Young inequality, the Plancherel theorem, (2.17) and Lemma 3.3, we have

t
ITV — T </||(G —G)(t— 1) * (F(V) — FM)(D), dT
0
t
+/||G3(t—r)(t—t)*(f(\7) — fM) (@], dr
0
t
< c/a Ft— D@ - FD,, + [ F@ - D)) de
0

t
<c/<1+t—r>—"/4{(||0—5||+||0—5||Loo)(||v||s+||§||s)
0

—_ = —_ _ = = — = 0—1
+ 1V = VIs(IVI+ 1Vl + 11+ 1VIze) J(V I + [VIe<)” dT
<CE’(1+0)7"4Ds(v — W).
Then, we get
1TV —TV|s <CE? (1 +t)™4Ds(V — V). (3.27)

Combining (3.26) with (3.27), we obtain Ds(Tv — Tv) < CE? Dg(¥ — v). Using the smallness assumption of E, we complete
the proof of Lemma 3.7. O

By Lemmas 3.6-3.7 and using the fixed point theorem, there exists a unique global solution u(x, t) to (1.1) and u € Xs .
For the time derivatives of the solution u(x, t), we obtain some estimates by the energy method.

For any multi-index «, 0 < || <'s, by multiplying D§ (1.1); with D§u, and integrating on R" x (0,t) with respect to
(x,t) and noticing u € X; g, we get

t
| Dguco|* + [ Dy vu©|® + / | DSue (@) dr < C(lluol24 + ur 2 + CEZ+1).
0
By taking sum, it yields that
t
Mutll3yy + el +/ luz If dT < C(lluollZyy + lurllf +E**1). (3.28)
0

Then, we have the following theorem about the global-in-time existence of solution.
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Theorem 3.1. Under the assumptions of Theorem 1.1, if |uolls+1 + llu1lls + lluolls,1 + llu1lls,1 is sufficiently small, then (1.1) admits a
unique, global, classical solution u(x, t).

4. Pointwise estimate

In this section, we study the pointwise estimates to the nonlinear system. First, we give three lemmas for later use. We
omit their proofs since they can be found in [11,13,24].

Lemma 4.1.

(1) When t € [0, t] and A2 > t, we have

Az N\ 1+7\" A2\
1 <3 1 . 4.1
<+1+‘C> <1+t)<+l+t) (4.1)
(2) When A2 < t, we have
Az N\
1< 2”(1 + 1—+t) : (4.2)

(3) Whenny,ny > % and n3 = min{nq, ny}, we have

x — y|? -m _ x|2 —n3
/<1+| Yl > (1+1y?) ”Zdygc(er) ) (4.3)
Rn

1+t 1+t

Lemma 4.2. If the functions H(x, t) and S(x, t) satisfy
[DIH(x, t)| < C(1 + )~ D2, (1x,¢),
and
[DES(x, )| < C(A+ 1)~ @ HeD/2B, (|x],t),

then we have

<CA 40~ "2, (1x],1),

t
DY /(H(t — 1) S(1))dt
0

where nq,ny > 5 and n3 = min{nq, np}.

Lemma 4.3. Assume that 0 < T < t and h(x, T) satisfies

D%, 7)< CA+1)~ "2 1+ LA
X ) X l+f )

then we have that

« _ ntla] o X2\
(1) |D$h(x+tz,7)|dS, <CA+71)" 2 (1+¢) 7)) -

|z|=1

D%h t 1+t 2 \7T
) /—I gt Z’T)'dvzscaur“'z‘1(1+t>2r<1+—IXI ) .

V1—|z|? 1+

lzI<1

Applying the Duhamel principle, the solution to (1.1) can be expressed as follows:

t

u(x, t):(G(t)*<uo+u1)+atc<t)*uo)+/c<t—r)*f(u><r)dr
0

Il
<
_l’_
f=d]]

(4.4)
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From Theorem 2.1 in [13], we know that for any multi-index a, |a| < s — 3, if there exists some constant r > 3 such that
ID%ug| 4 |D%uq| < C(1 4 [x|?)7, then, for |a| < s —n, @i(x,t) has the following estimate

2\ T
D%, ] <1+~ (14 22 (4.5)
qux, )| < T+t . .
On the other hand, we consider & by applying D¥ on i and rewriting it as follows
t ¢
DYu(x,t) = /(G — KR)(t — 7) % DY f (u)(T)dT + / Ko(t — T) % DY f(u)(7)dt
0 0
=RY 4+ RY.
Set
ntle| -1 n
Pa(x,t) =14+ 2 (Br(x,t)) ", > 7 (4.6)
and
M(t) = sup DY ux, 0)|pa x, 7). (4.7)

(x,T)ERMx[0,t), || <n
Proposition 4.1. If |«| < n, then
IRY| < M1 (1 + 0~ "2 B, (Ixl. 1). (4.8)
Proof. Firstly, by noticing the hypothesis (4.7), we have

On+n+|o|

DS fy(y. )| <CMO T A+1)7 7 Bi(lyl. 7).

By Theorem 2.1, we have

D%(G — K%)(x, ] < €A+ 5~ "2 By(1x1, 1)

Using Lemma 4.2 and noticing r > % and 6 is a positive integer, we know that (4.8) is valid. O

Proposition 4.2. If |«| < n, then
n+|o|
IRE| <CM©® "'+ "2 B(Ixl, ). (4.9)

Proof. Firstly, if |x — y| < 2&1, then we have
B:(lyl, T) < B (Ixl, 7).
By using Lemmas 2.4 and 4.3, we have
¢
R3] = / / R (Qw(Dx, t—7)(@o + Cod) (X — y)

0 R
2m-2

+ ) (Y +09;)(t = D (Dy, t = T)(@; + Cod) (x — y))D‘jf(u)(y, T)dydt
j=1

t
//ef(tfﬂ/z (C]w(Dx, t—=1)qo(x—y)

0 R"

<

2m-2

+ (Y +09;)(t = D) (Dy, t — T)Fj(x — y))D‘;f(u)(y, 7)dxdt
=1

Jj=
t

/ e~ (=02 <C1w(Dx, t—1)

0 Rn

+
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2m-2
+ Y (P94 pY;)(t = D) (Dy. t — 7) | Cod(x — y) DS f (u)(y. T)dy dt
j=1
t 2m—2
<c / / e 2ol + 3 il ) - »
0 Rn j:1

n+n+|o|— 2 -
(14 £ — 7)2M=2428 41y (1 4 gy~ (1 n 1”_’#) dydrt

t

2 —r
n On+n+|o|—1 X
+C / e D21 pp - 2RI O (1 4y (1 + 1'+' t) dr

0
<M O + 07" B (X1, ).

Thus, the proof of Proposition 4.2 is completed. O

Combining Propositions 4.1-4.2 and noticing (4.5), it yields that

IDZu(x, 0)] < C(e + M) (g (x, ). (410)

Since ¢ is sufficiently small, by continuity we have M(t) < Ce with € << 1. Then we obtain

[DSu(x,0)| < Ce(1 +t)~"HeD/2B (|x], t). (411)

Thus, we complete the proof of Theorem 1.1.

Corollary 4.1. Under the assumptions of Theorem 1.1, for p € [1, o], || < n, we have

” fou(~, t) ”LP <Cp(1+ t)—n/Z(l—l/p)—|a|/2.
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