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1. Introduction

Let X be a Banach space. Recall that a sequence {xn}∞n=1 is a Schauder basis for X if for every x ∈ X there exists a unique
sequence of scalars {an}∞n=1 such that

x =
∞∑

n=1

anxn (1)

where the sum converges in the norm. The convergence in (1) is often conditional in the sense that rearrangements may
not converge (see [18] and the example at the end of Section 3). Not every Banach space possesses a Schauder basis (see
Enflo [2]) however if X = H is a (separable) Hilbert space then any orthonormal basis is a Schauder basis.

Since the scalars an = an(x) are unique, they are well defined as linear functionals. In fact one can show that these
linear functionals x �→ an(x) are continuous and hence belong to the dual space of X , which we denote by X∗ . It is for this
reason that we adopt the notation an(x) = 〈x,an〉. Also notice that 〈xm,an〉 = 0 if m 	= n and 〈xm,an〉 = 1 if m = n. The linear
functionals {an} ⊂ X∗ are an example of a biorthogonal sequence to {xn}n∈N .

Definition 1.1. Given a sequences {xn} ⊂ X and {an} ⊂ X∗ we say that {an} is biorthogonal to {xn} or ({xn}, {an}) is a biorthog-
onal system if

〈xm,an〉 = δm,n =
{

1, n = m,

0, n 	= m.

Biorthogonal sequences play an important role in the theory of Schauder bases. One of the main theorems concerning
Schauder bases is the following, which can be found in the online reference of Heil [7], or the book of Singer [18].
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Theorem 1.2. Let {xn}n∈N be a sequence in a Banach space X. The following statements are equivalent:

(1) {xn}∞n=1 is a Schauder basis for X.
(2) span{xn}n∈N = X and there exists a biorthogonal sequence {an}∞n=1 ⊂ X∗ such that the partial sum operators

SN x =
N∑

n=1

〈x,an〉xn

are uniformly bounded, i.e.

C = sup
N

‖SN‖X→X < ∞. (2)

The constant C in (2) is called the basis constant of {xn}.
In this work we are concerned with the trigonometric system {e2π ik·x}k∈Zd = {ek}k∈Zd , and when it forms a Schauder

basis of weighted Lebesgue spaces, L p(Td, w) (see below for pertinent definitions). When Z = {0,−1,1,−2,2, . . .}, {ek}k∈Z is
known to be a Schauder basis for L p(T, w) exactly when w belongs to the class A2(T). This result is often attributed to
Hunt, Muckenhoupt and Wheeden [11] but is clarified in Nielsen [13]. In fact, Nielsen [14] has characterized vector valued
trigonometric Schauder bases for L p(T → Cd, W ) in terms of matrix A p weights defined in Nazarov and Treil [12].

Our aim of this paper is to characterize when {ek}k∈Zd forms a Schauder basis of L p(Td, w) for d > 1. In higher dimen-
sions, one immediately encounters a problem. How should Zd be enumerated so that {ek}k∈Zd forms a Schauder basis for
L p(Td, w)? A natural way to enumerate Zd to utilize the one-dimensional results of [11] is to enumerate corresponding to
rectangles. It is for this reason that we need the notion of multiparameter A p or rectangular A p and a notion of rectangular
enumerations.

Fefferman and Stein [4] defined multiparameter A p , or A p,R , to be weights w such that

[w]A p,R = sup
R

(
1

|R|
∫
R

w dx

)(
1

|R|
∫
R

w1−p′
dx

)p−1

< ∞,

where the supremum is over all rectangles R with sides parallel to the axes. They showed, in R2 for instance, that
A p,R characterizes the L p(w) boundedness of multiparameter operators such as the strong maximal function

M S f (x) = sup
R
x

1

|R|
∫
R

∣∣ f (y)
∣∣dy

and the double Hilbert transform

H f (x, y) = pv

∫
R2

f (s, t)

(x − s)(y − t)
ds dt.

A nice account of weighted inequalities for these rectangular operators is given in the book by Garcia-Cuerva and Rubio de
Francia [5, p. 450] and further applications can be found in Chang and Fefferman [1].

The organization of this paper is as follows. In Section 2 we develop the theory of rectangular weights on the Torus.
Our main result of Section 2 is Theorem 2.1. Section 3 is devoted to characterizing when the trigonometric system forms
a Schauder basis of L2(Td, w). We develop the theory of rectangular enumerations, and use them to give a new charac-
terization of multiparameter A p(Td) weights. Our main result is Theorem 3.6. Finally, we give some applications of the
weighted theory to principle shift invariant spaces and Gabor systems in Section 4. Theorems 4.2 and 4.3 extend the results
in [8,14,16] to higher dimensions and/or more general enumerations. In Section 5 we discuss some possible extensions of
the work and further questions.

2. Weighted Lebesgue spaces

In this section we develop the theory of multiparameter or rectangular A p weights on the Torus Td = [−1/2,1/2]d .
Given a function w , and 1 � p � ∞, we say a function f is in L p(Td, w) if it is 1-periodic and the norm

‖ f ‖L p(Td,w) =
(∫

Td

∣∣ f (x)
∣∣p

w(x)dx

)1/p

is finite, with use the usual modification when p = ∞. When w ≡ 1 we simply write L p(Td). A weight is a positive L1(Td)

function. Define A p,R(Td) as all weights defined on Td with
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[w]A p,R(Td) = sup
R⊂Td

(
1

|R|
∫
R

w dx

)(
1

|R|
∫
R

w1−p′
dx

)
< ∞, (3)

where the supremum is over all rectangles contained in Td whose sides are parallel to the axes. Equivalently we could
define A p,R(Td) as weights on Rd that are 1-periodic and satisfy (3) except with the supremum over all rectangles in Rd .

We now define rectangular versions of classical operators associated to the Torus. As is custom with weighted inequalities
we start with a maximal function. Define the (local) strong Hardy–Littlewood maximal operator associated to Td by

MR,Td f (x) = sup
R⊂Td: x∈R

1

|R|
∫
R

∣∣ f (y)
∣∣dy.

We also define a rectangular conjugate function

C R f (x) = lim
ε1,...,εd→0

∫
ε1�|y1|�1/2

· · ·
∫

εd�|yd|�1/2

f (x − y)

tan(π y1) · · · tan(π yd)
dy

and finally the rectangular partial Fourier sum operators

S R,N f (x) =
∑

k∈Zd: |ki |�Ni

〈 f , ek〉ek

where N = (N1, . . . , Nd) ∈ Nd and ek(x) = e2π ik·x. Thus,

〈 f , ek〉 =
∫
Td

f ek dx =
∫
Td

f (x)e−2π ik·x dx = f̂ (k)

are the Fourier coefficients of f .
We start with a crucial lemma that illustrates the difficulty of the multiparameter situation. The following lemma says

that we only need to check the A p,R(Td) condition over rectangles with small sides. This lemma is trivial in the case of
cubes, since cubes with large side-length have measure bounded away from zero. However, rectangles may have a large side
yet still have small measure.

Lemma 2.1. Suppose 0 < c < 1 and w satisfies

sup
R=I1×···×Id⊂Td

|Ii |�c

(
1

|R|
∫
R

w dx

)(
1

|R|
∫
R

w1−p′
dx

)p−1

< ∞, (4)

then w ∈ A p,R(Td).

Proof. For notational simplicity we prove this in the case d = 2 and the same techniques can be used to prove the lemma
when d > 2. Without loss of generality we assume that 0 < c < 1/2, otherwise 1 will play the role of 2c in our proof. Notice
that since the quantity in (4) is finite, given any R = I × J with |I|, | J | � c and f � 0 by Hölder’s inequality we have(

1

|R|
∫
R

f

)p

� C
1

w(R)

∫
R

f p w.

Thus, if f = χR̃ where R̃ ⊂ R we have

w(R) � C

( |R|
|R̃|

)p

w(R̃), (5)

and likewise for σ = w1−p′
,

σ(R) � C

( |R|
|R̃|

)p

σ(R̃). (6)

Notice that (5) and (6) hold only for R = I × J with |I|, | J | � c.
Now let R = I × J ⊂ T2 be a larger rectangle on one side, say |I| � c and c < | J | � 2c. Split R = R1 ∪ R2 ∪ R3 ∪ R4 with

Rtop = R1 ∪ R2, Rmid = R2 ∪ R3 and Rbot = R3 ∪ R4 as in Fig. 1.
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Fig. 1. R written as the union of smaller rectangles.

Now Rtop, Rmid and Rbot have side-lengths bounded by c. Hence by (5)

w(Rtop) � C w(R2) and w(Rbot) � C w(R3).

Thus

w(R) = w(Rtop) + w(Rbot) � C
(

w(R2) + w(R3)
) = C w(Rmid).

Similarly by (6)

σ(R) � Cσ(Rmid).

Thus for such rectangles R(
1

|R|
∫
R

w dx

)(
1

|R|
∫
R

w1−p′
dx

)p−1

= w(R)σ (R)p−1

|R|p

� C

( |Rmid|
|R|

)p w(Rmid)σ (Rmid)p−1

|Rmid|p
� C .

Similarly we may extend this to all rectangles with R = I × J with |I| � 2c and | J | � 2c, showing that

sup
R=I× J⊂T2

|I|,| J |�2c

(
1

|R|
∫
R

w dx

)(
1

|R|
∫
R

w1−p′
dx

)p−1

< ∞.

From here, using the same process we may expand the rectangles side-length to min{4c,1}, and if necessary to min{8c,1},
and so on. This process must stop in finitely many steps since we are taking the supremum over R ⊂ [−1/2,1/2]n . We may
continue expanding the sides of the rectangles until we have

sup
R⊂T2

(
1

|R|
∫
R

w dx

)(
1

|R|
∫
R

w1−p′
dx

)p−1

< ∞,

showing w ∈ A p,R(T2). �
Theorem 2.2. Suppose w is a weight on Td and 1 < p < ∞. The following statements are equivalent.

(1) w ∈ A p,R(Td).
(2) For each i = 1, . . . ,d the functions wi = w(x1, . . . , xi−1, ·, xi+1, . . . , xd) are in A p(T) uniformly for almost every (x1, . . . , xi−1,

xi+1, . . . , xd) ∈ Td−1 .
(3) MR,Td is a bounded operator on Lp(Td, w).

(4) C R is a bounded operator on Lp(Td, w).
(5) The rectangular partial sum operators S R,N are uniformly bounded in N on L p(Td, w).
(6) If f ∈ L p(Td, w) then

lim
N1,...,Nd→∞

∫
Td

∣∣ f (x) − S R,N f (x)
∣∣p

w dx = 0.
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Remark 2.3. The proof of some implications of Theorem 2.2 will follow Theorem 6.2 in [5, p. 453], but we give the details
for the convenience of the reader. The case d = 1 is contained in [11]. When p = 2 the equivalence (1) ⇔ (5) is contained
in Nielsen [13] and Heil and Powell [8]. In fact when p = 2, the papers [14,15] contain more general results about matrix
A p weights found in [12].

Proof. Once again we give the proof when d = 2 as the case d > 2 presents no additional difficulties. Throughout the proof
we will use (x, y) and (s, t) to be points in T2. The following schematic diagram will be helpful for the implications of the
proof.

(3) (1) (6)

(4) (2) (5)

(1) ⇒ (2). If w ∈ A p,R(T2), then(
1

|I|| J |
∫
I

∫
J

w(x, y)dx dy

)(
1

|I|| J |
∫
I

∫
J

w(x, y)1−p′
dx dy

)p−1

� [w]A p,R(T2)

for all I, J ⊂ T. Fix I ⊂ T with rational end points, by the Lebesgue differentiation theorem we get(
1

|I|
∫
I

w(x, y)dy

)(
1

|I|
∫
I

w(x, y)1−p′
dy

)p−1

� [w]A p,R(T2) (7)

for a.e. x ∈ T. Thus for each I ⊂ T with rational endpoints we have inequality (7). Taking the supremum overall I with
rational endpoints, we have

sup
I=[p,q]⊂T: p,q∈Q

(
1

|I|
∫
I

w(x, y)dy

)(
1

|I|
∫
I

w(x, y)1−p′
dy

)p−1

� [w]A p,R(T2) (8)

for almost every x ∈ T. But the left side of inequality (8) is equal to [w(x, ·)]Ap(T) . The proof that [w(·, y)]Ap(T) � [w]Ap,R(T2)

for a.e. y is similar.
(2) ⇒ (3). Let Mi , i = 1,2 be the one-dimensional Hardy–Littlewood maximal function applied to the ith variable of

f (x, y), i.e.

M1 f (x, y) = sup
[a,b]⊂T
x∈[a,b]

1

b − a

b∫
a

∣∣ f (s, y)
∣∣ds

and

M2 f (x, y) = sup
[a,b]⊂T
y∈[a,b]

1

b − a

b∫
a

∣∣ f (x, t)
∣∣dt

so that

MR,T2 f (x, y) � M1 ◦ M2 f (x, y).

By the uniform A p(T) bounds on w(·, y) and w(x, ·) and Fubini’s theorem, we have∫
T2

MR,T2 f p w dx dy �
∫
T

∫
T

M1 ◦ M2 f (x, y)p w dx dy

� C

∫
T2

∣∣ f (x, y)
∣∣p

w(x, y)dx dy.

(3) ⇒ (1). Let R be a rectangle in T2, then for each (x, y) ∈ R

M( f χR)(x, y) � 1

|R|
∫ ∣∣ f (s, t)

∣∣ds dt.
R
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Hence,(
1

|R|
∫
R

| f |
)p ∫

R

w �
∫
R

M( f χR)p w � C

∫
R

| f |p w

holds for any f . Setting f = fn = min{w1−p′
,n} and taking limits shows the implication.

(2) ⇒ (5). Let N, M ∈ N, then notice

S R,(N,M) f (x, y) =
∑

|k|�N

∑
| j|�M

〈 f , e(k, j)〉e(k, j)

=
∑

|k|�N

∫
T

( ∑
| j|�M

〈
f (ξ, ·), e j

〉
e j

)
e−k(ξ)dξ ek

where e( j,k)(x, y) = e2π i( jx+ky) and en is the one variable function en(ξ) = e2π inξ . It follows that S R,(N,M) f = SN(SM f ),
hence by the one-dimensional result (see [11]) we have∫

T2

(S R,(N,M) f )p w dx dy � C

∫
T2

| f |p w dx dy.

(5) ⇒ (1). This proof closely follows [8, Theorem 5.6] for a general 1 < p < ∞. By Lemma 2.1 it suffices to show that

sup
R=I× J⊂T2

|I|,| J |�1/16

(
1

|R|
∫
R

w

)(
1

|R|
∫
R

w1−p′
)p−1

< ∞.

Suppose that S R,(M,N) are uniformly bounded on L p(Td, w) and write

S R,(M,N) f (x, y) =
∑

|k|�N

∑
| j|�M

〈 f , e(k, j)〉e(k, j) =
∫
T2

f (s, t)DN (s − x)DM(t − y)ds dt

where D K is the Dirichlet kernel

D K (z) = sin(π(2K + 1)z)

sinπ z
.

Let R = I × J ⊂ T2 be a rectangle with |I|, | J | � 1/16 and let N , M be the greatest integers less than or equal to 1/(16|I|)
and 1/(16| J |) respectively. Notice that for |z| � 1/(16K )

D K (z) � 2

π
(2K + 1).

Hence for (s, t), (x, y) ∈ R = I × J so |s − x| � |I| � 1/(16N) and |t − y| � | J | � 1/(16M)

DN(s − x)DM(t − y) � C(2N + 1)(2M + 1) � C

|I|| J | .
If f � 0 is supported in R and (x, y) ∈ R we have

S R,(N,M) f (x, y) � C
1

|R|
∫
R

f (s, t)ds dt.

Using the boundedness of S R,(N,M) we have(
1

|R|
∫
R

f (s, t)ds dt

)p

w(R) � C

∫
R

S R,(N,M) f (x, y)p w(x, y)

� C

∫
T2

S R,(N,M) f (x, y)p w(x, y) � C

∫
R

f p w.

Next, set f = w1−p′
χR (or an approximation) to arrive at(

1

|R|
∫

w

)(
1

|R|
∫

w1−p′
)p−1

� C .
R R
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Fig. 2. Rectangles R , with their possible reflections R̃ about a corner.

(2) ⇒ (4). Let

C1 f (x, y) = pv

∫
T

f (x − s, y)

tan(π s)
ds

and

C2 f (x, y) = pv

∫
T

f (x, y − t)

tan(πt)
dt.

Then C R f = C1(C2 f ) and since w(·, z), w(z, ·) are uniformly in A p(T), using the one-dimensional results in [11] we have∫
T2

∣∣C R f (x, y)
∣∣p

w(x, y)dx dy �
∫
T2

∣∣C1 ◦ C2 f (x, y)
∣∣p

w(x, y)dx dy

� C

∫
T2

∣∣ f (x, y)
∣∣p

w(x, y)dx dy.

(4) ⇒ (1). Once again by Lemma 2.1 it suffices to consider rectangles with small sides. Let R = I × J be a rectangle in T2

with |I|, | J | � 1/8, and let R̃ = Ĩ × J̃ be a rectangle in T2 that is obtained by reflecting R about a corner as in Fig. 2.
If R̃ is obtained by reflection about the upper right or lower left corners, then for (x, y) ∈ R̃ and (s, t) ∈ R

tan
(
π(x − s)

)
tan

(
π(y − t)

)
� Cπ2(x − s)(y − t) � C2|I| · 2| J | = C |R|

and if R̃ is obtained by reflection about the upper left or lower right corners, then

− tan
(
π(x − s)

)
tan

(
π(y − t)

)
� Cπ2(s − x)(y − t) � C |R|.

Hence for f � 0 supported in R and all (x, y) ∈ R̃ ,

∣∣C R f (x, y)
∣∣ � C

1

|R|
∫
R

f (x, y)dx dy.

Using the boundedness of C R on L p(T2, w) we have(
1

|R|
∫
R

f (x, y)dx dy

)p ∫
R̃

w dx dy � C

∫
R

f (x, y)p w(x, y)dx dy. (9)

Let f = w−1/(p−1)χR (or an approximation) we have(
1

|R|
∫
R

w(x, y)1−p′
dx dy

)p ∫
R̃

w(x, y)dx dy � C

∫
R

w(x, y)1−p′
dx dy. (10)

But we may also interchange the roles of R and R̃ in (9) and take f = χR̃ to obtain

w(R) � C w(R̃).

Combining everything we have
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(
1

|R|
∫
R

w(x, y)dx dy

)(
1

|R|
∫
R

w(x, y)1−p′
dx dy

)p−1

� C

(
1

|R̃|
∫
R̃

w(x, y)dx dy

)(
1

|R|
∫
R

w(x, y)1−p′
dx dy

)p−1

� C .

(5) ⇔ (6). This is a routine computation. (6) ⇒ (5) follows from the principle of uniform boundedness and (6) ⇐ (5)

follows from the density of the trigonometric system in L p(T2, w). �
We also note that we do not need to use symmetric partial sums. For a,b ∈ Zd with a = (a1, . . . ,ad), b = (b1, . . . ,bd) and

ai � bi for 1 � i � d, define the operator

Pa,b f (x) =
∑

k∈Zd,ai�ki�bi

〈 f , ek〉ek.

Corollary 2.4. The operators Pa,b are bounded on L p(Td, w) uniformly in a,b if and only if SN,R are bounded on L p(Td, w) in
N ∈ Nd.

One direction of this corollary is easy since SN,R = P−N,N , the other direction follows from the one-dimensional formula

Pa,b f (x) =
b∑

k=a

〈 f , ek〉ek(x)

=
{

eπ i(b+a)x ∑(b−a)/2
k=−(b−a)/2〈 f e−π i(b+a)(·), ek〉ek(x) if b − a is even,

Pa,b−1 f (x) + 〈 f , eb〉eb(x) if b − a is odd,

and

∥∥〈 f , eb〉eb
∥∥

L p(Td,w)
�

(∫
Td

w

)1/p ∫
Td

| f |w1/p w−1/p

�
(∫

Td

w

)1/p(∫
Td

w1−p′
)1/p′(∫

Td

| f |p w

)1/p

.

3. Schauder basis for L p(TTTd, w)

We now turn to characterizing the trigonometric Schauder bases for L p(Td, w). It is known that {ek}k∈Z is a Schauder
basis for L p(T, w) if and only if w ∈ A p(T). Since Schauder bases can be conditionally convergent it is assumed that
Z is ordered as Z = {0,1,−1,2,−2, . . .}. Notice that this ordering corresponds to the symmetric partial sum operator.
Specifically, if {ẽk}k∈Z is a dual basis to {ek}k∈Z and SN is the partial sum operator associated to the dual basis, then

S2N+1 f =
N∑

k=−N

〈 f , ẽk〉ek

and

S2N f =
N−1∑

k=−(N−1)

〈 f , ẽk〉ek + 〈 f , ẽN〉eN .

This ordering is crucial, when p 	= 2 even when w ≡ 1, {e2π ikx}k∈Z is a conditional basis (see [17] and [18, p. 428]). For di-
mensions d > 1, one immediately encounters an obstacle. How should Zd be enumerated so that the associated partial sum
operators are uniformly bounded? One way to enumerate Zd would be to correspond to spherical partials sum operators,

S S,M f =
∑
k∈Zd

〈 f , ek〉ek, M ∈ N,
|k|�M
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where |k|2 = |k1|2 + · · · + |kd|2. However, these partial are unbounded on L p(Td) when p 	= 2 and d � 2. The continuous
version of this is due to Fefferman [3] who showed that the unit ball is not a multiplier on L p(Rd) when p 	= 2 and d � 2.
In order to utilize Theorem 2.2 we would like the enumeration to correspond to rectangular partial sums,

S R,N f =
∑

k∈Zd, |ki |�Ni

〈 f , ek〉ek, N = (N1, . . . , Nd) ∈ Nd.

It is for this reason that we need the notion of rectangular enumerations of Zd .
We say σ is an enumeration of Zd if it is a one-to-one map from N onto Zd . Rectangular enumerations of Zd were

defined in [8] and [14], but we define a larger set of rectangular enumerations of Zd , denoted by ΛR(Zd). Before we define
the set of rectangular enumerations we clear up some notation issues. Given a = (a1, . . . ,ad) and b = (b1, . . . ,bd) in Zd we
write a � b if ai � bi for i = 1, . . . ,d. For a � b in Zd we refer to the rectangle, Ra,b , to be the set of all integer points
k = (k1, . . . ,kd) ∈ Zd with ai � ki � bi for i = 1, . . . ,d. Occasionally we will write Ra,b = {a1, . . . ,b1} × · · · × {ad, . . . ,bd}.

Definition 3.1. Let σ be an enumeration of Z, a,b ∈ Z with a � b, and J ∈ N. We say that σ is consecutive to the interval of
points {a,a + 1, . . . ,b − 1,b}, on { J , J + 1, . . . , J + n} (notice n = b − a) if for each 0 � i � n the set{

σ( J ),σ ( J + 1), . . . , σ ( J + i)
}

forms a consecutive set of integers between a and b. This means that for each 1 � i � n there exists ki with

σ
({ J , . . . , J + i}) = {ki,ki + 1, . . . ,ki + i} ⊂ {a, . . . ,b}.

We now inductively define what it means for an enumeration of Zd to be consecutive to a rectangle Ra,b ⊂ Zd . Roughly
speaking, an enumeration consecutive to a rectangle Ra,b ⊂ Zd fills out each element of the (d −1)-dimensional hyperplanes
of Ra,b consecutively, while filling out the hyperplanes themselves in a consecutive manner. Given a rectangle Ra,b ⊂ Zd , we
define the following numbers which will be useful in our definition. Fix 1 � i � d,

N = # of elements in Ra,b =
d∏

j=1

(b j − a j + 1),

Ni = # of elements in a hyperplane of Ra,b perpendicular to the ith coordinate axis

=
∏
j 	=i

(b j − a j + 1),

ni = # of hyperplanes in Ra,b perpendicular to the ith coordinate axis

= (bi − ai + 1).

Notice that ni Ni = N . Given J , we partition the set { J + 1, . . . , J + N} according to the (d − 1)-hyperplanes of Ra,b perpen-
dicular to the ith coordinate axis. Let

[ J1] = { J + 1, . . . , J + Ni},
[ J2] = { J + Ni + 1, . . . , J + 2Ni},

...

[ Jni ] = {
J + (ni − 1)Ni + 1, . . . , J + ni Ni

}
.

We say that an enumeration σ is consecutive to Ra,b on { J + 1, J + 2, . . . , J + N} if there exist 1 � i � d, such that the
following hold.

(1) There exist ni enumerations of Zd−1

τ1 = (
τ

(1)
1 , . . . , τ

(1)

d−1

)
, τ2 = (

τ
(2)
1 , . . . , τ

(2)

d−1

)
, . . . , τni = (

τ
(ni)
1 , . . . , τ

(ni)

d−1

)
,

that are consecutive to the (d − 1)-dimensional rectangle

{a1, . . . ,b1} × · · · × {ai−1, . . . ,bi−1} × {ai+1, . . . ,bi+1} × · · · × {ad, . . . ,bd}
on [ J1], [ J2], . . . , [ Jni ] respectively.

(2) There exists an enumeration λ of Z that is consecutive to {ai, . . . ,bi} on {1, . . . ,ni}.
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Fig. 3. A consecutive enumeration to the horizontal hyperplanes of a rectangle in Z2.

Fig. 4. A consecutive enumeration to the vertical hyperplanes of a rectangle in Z2.

(3) The enumeration σ has the following form

σ(k) = (
τ

(1)
1 (k), . . . , τ

(1)
i−1(k), λ(1), τ

(1)
i (k), . . . , τ

(1)

d−1(k)
)

for k ∈ [ J1],
σ (k) = (

τ
(2)
1 (k), . . . , τ

(2)
i−1(k), λ(2), τ

(2)
i (k), . . . , τ

(2)

d−1(k)
)

for k ∈ [ J2],
...

σ (k) = (
τ

(ni)
1 (k), . . . , τ

(ni)

i−1 (k), λ(ni), τ
(ni)

i (k), . . . , τ
(ni)

d−1(k)
)

for k ∈ [ Jni ].

The above definition is admittedly rather technical and we illustrate some examples of a consecutive enumeration below
in Fig. 3 and Fig. 4.

Definition 3.2. Let a,b ∈ Zd with a � b, N be the number of elements of Ra,b and σ be an enumeration of Zd . We say that
σ is adapted to the rectangle

Ra,b = {a1, . . . ,b1} × · · · × {ad, . . . ,bd}
if the following hold.

(1) The enumeration σ is consecutive to the rectangle Ra,b on {1, . . . , N}.
(2) There exists a sequence of rectangles in Zd ,

Ra,b = R(0) � R(1) � · · · � R(i) � R(i+1) � · · ·
with

⋃
i R(i) = Zd and R(i+1)\R(i) is a rectangle in Zd .

(3) If Ni is the number of elements in R(i+1)\R(i) , then σ is consecutive to R(i+1)\R(i) on{
N +

i−1∑
m=1

Nm + 1, . . . , N +
i∑

m=1

Nm

}

for each i = 0,1, . . . .

Remark 3.3. The important property of an enumeration adapted to a rectangle is that given any N ∈ N, we can find K ∈ N

with K � N and rectangles R(i), R(i+1) ⊂ Zd such that

σ
({1, . . . , K }) = R(i)

and σ({K , . . . , N}) is the disjoint union of at most d rectangles in R(i+1)\R(i) .

Definition 3.4. Given a,b ∈ Zd with a � b let

Ra,b = {σ : σ is adapted to Ra,b}



276 K. Moen / J. Math. Anal. Appl. 371 (2010) 266–281
and define the set of all rectangular enumerations to be

ΛR
(
Zd) =

⋃
a,b∈Zd

a�b

Ra,b.

Remark 3.5. We remark that the set of all rectangular enumerations defined in Definition 3.4 is a larger class of enumera-
tions than those used in [8, Definition 5.8] and [14].

We are now ready to give an alternative characterization of A p,R(Td) in terms of Schauder bases. Our main theorem is
the following.

Theorem 3.6. Suppose 1 < p < ∞ and w is a weight. Then the following are equivalent.

(1) For each σ ∈ ΛR(Zd), {eσ(n)}∞n=1 is a Schauder basis of L p(Td, w) with basis constant Cσ and supσ∈Λ(Zd) Cσ < ∞.

(2) w ∈ A p,R(Td).

Proof. (1) ⇒ (2). We will show that the rectangular partial sum operations

S R,N f =
∑
k∈Zd

|ki |�Ni

〈 f , ek〉ek

are uniformly bounded on L p(Td, w). Set

C = sup
σ∈ΛR(Zd)

Cσ < ∞

where Cσ is the basis constant from the Schauder basis {eσ(n)}∞n=1. Let N ∈ Nd , then there exists σ ∈ ΛR(Zd) that is adapted

to R−N,N . Since {eσ(n)}∞n=1 is a Schauder basis for L p(Td, w) there exist a sequence { fn}∞n=1 ⊂ (L p(Td, w))∗ = L p′
(Td, w) such

that

〈eσ (m), fn〉w =
∫
Td

eσ (m) fn w dx = δm,n.

Since fn ∈ L p′
(Td, w) and w ∈ L1(Td) we have fn w ∈ L1(Td). Furthermore fn w has the same Fourier coefficients as e−σ(n) ,

hence

fn = eσ (n)

w

and

〈 f , fn〉w =
∫
Td

f e−σ (n)w−1 w dx = 〈 f , eσ (n)〉. (11)

We also have the partial sum operators associated to σ ,

T σ
M f =

N∑
n=1

〈 f , fn〉w eσ (n)

uniformly bounded on L p(Td, w) with

sup
M

∥∥T σ
M

∥∥ � C .

Since σ is adapted to R−N,N there exists K ∈ N with σ({1, . . . , K }) = R−N,N and using (11) we have

T σ
K f =

K∑
n=1

〈 f , fn〉w eσ (n) =
∑

|ki |�N

〈 f , ek〉ek = S R,N f

hence,

‖S R,N f ‖ p d = ∥∥T σ f
∥∥

p d � C‖ f ‖ p d .
L (T ,w) K L (T ,w) L (T ,w)
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(2) ⇒ (1). Let w ∈ A p,R(Td) and σ ∈ ΛR(Zd). Since w ∈ A p,R(Td) the operators

Pa,b f =
∑
k∈Zd

ai�ki�bi

〈 f , ek〉ek

are bounded on L p(Td, w) uniformly in a,b ∈ Zd . The span of {eσ(n)}n∈N is dense in L p(Td, w) since w ∈ L1(Td). Further-
more, w−1 ∈ L p′

(Td, w) so

{ fn}n∈N =
{

eσ (n)

w

}
n∈N

is biorthogonal to {eσ(n)}n∈N in L p(Td, w). Let T σ
N be the partial sum operators associated to σ ,

T σ
N f =

N∑
n=1

〈 f , fn〉w eσ (n) =
N∑

n=1

〈 f , eσ (n)〉eσ (n).

Let K � N be the largest integer such that σ is adapted to a rectangle Ra,b on {1, . . . , K }. Then we may write

T σ
N f =

K∑
n=1

〈 f , eσ (n)〉eσ (n) +
N∑

n=K+1

〈 f , eσ (n)〉eσ (n)

= Pa,b f + Remainder terms.

In light of Remark 3.3 we have

Remainder terms =
∑
k∈R1

〈 f , ek〉ek

+ · · · +
∑
k∈Rd

〈 f , ek〉ek

for some rectangles R1, . . . , Rd . Thus

‖Remainder terms‖L p(Td,w) � dc‖ f ‖L p(Td,w)

and

‖Pa,b f ‖L p(Td,w) � c‖ f ‖L p(Td,w).

Thus ‖T σ
N f ‖Lp(Td,w) � (d + 1)c‖ f ‖Lp(Td,w) and c is independent of σ and N . �

Remark 3.7. Careful examination of the proof yields that we only need uniform bounds on the basis constant of enumera-
tions adapted to symmetric rectangles of the form R−N,N for N ∈ Nd . These symmetric rectangular enumerations correspond
to the enumerations used in [8] and [14].

Remark 3.8. When d = 1 we have A p,R(T) = A p(T). Thus Theorem 3.6 extends the original results of [11] to more general
enumerations.

Definition 3.9. A sequence {xn}n∈N is an unconditional basis of X if it is a Schauder basis and

∞∑
n=1

〈x,aσ (n)〉xσ (n) = x

for every one-to-one map σ from N onto N.

Definition 3.10. In a Hilbert space H, a sequence is a Riesz basis if it is a Schauder basis ({xn}, {an}) and there are constants
c, C > 0 such that

c
∑
n∈N

∣∣〈x,an〉∣∣2 �
∥∥∥∥∑

n∈N

〈x,an〉xn

∥∥∥∥
2

H
� C

∑
n∈N

∣∣〈x,an〉
∣∣2

.

It is a well-known fact that in Hilbert spaces unconditional bases and Riesz bases coincide (see [7]).
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Example 3.11. The power weight | · |δ is in A p(T) if and only if −1 < δ < p −1. Thus for a fixed 1 � i � d and δ ∈ (−1, p −1),
the weight

wδ(x) = wδ(x1, . . . , xd) = |xi |δ, x ∈ Td, (12)

is in A p,R(Td) by (2) of Theorem 2.2. When p = 2, L2(Td, w) is a Hilbert space and {ek}k∈Zd is a Riesz basis if and only if
0 < c � w � C < ∞ a.e. This follows because it is equivalent to the operator g �→ √

w g being a bounded invertible operator
on L2(Td). The weight wδ from (12) is not bounded above (below) if δ < 0 (δ > 0). Hence {eσ(n)}∞n=1 is a Schauder basis of
L2(Td, wδ) for every σ ∈ ΛR(Zd), however {ek}k∈Zd is not an unconditional basis of L2(Td, wδ).

4. Applications

We now present some applications of the weighted theory to principle shift invariant spaces and Gabor systems. Versions
of these applications can be found in [8] (Gabor systems) and [14,16] (shift invariant systems). In fact [14] contains a
characterization of finitely generated shift invariant systems in terms of matrix A p . However, our results are either in
higher dimensions and/or contain more general enumerations than those found in [8] and [14,16]. First we introduce the
modulation and shift operators,

M y f (x) = e2π ix·y f (x), τy f (x) = f (x − y).

We define the Fourier transform as

F f (ξ) = f̂ (ξ) =
∫
Rd

f (x)e−2π ix·ξ dx

and the Zak transform

Z f (x, ξ) =
∑
k∈Zd

f (x + k)e2π ik·ξ .

Both are initially defined on L1(Rd) ∩ L2(Rd) and extended to L2(Rd) by density. Notice the relationships

(τy f )ˆ= M−y f̂ and (M y f )ˆ= τy f̂

and

Z(Mzτy f )(x, ξ) = e2π iz·x Z f (x − y, ξ) = M(z,0)τ(y,0) Z f (x, ξ).

If y = k ∈ Zd we have

Z(Mzτk f )(x, ξ) = e2π iz·xe2π ik·ξ Z f (x, ξ). (13)

We recall the Plancherel theorem

‖F f ‖L2(Rd) = ‖ f̂ ‖L2(Rd) = ‖ f ‖L2(Rd).

Similarly for the Zak transform, using Fourier series one has∫
T2d

∣∣Z f (x, ξ)
∣∣2

dξ dx =
∫
Td

∑
k∈Zd

∣∣ f (x + k)
∣∣2

dx

=
∫
Rd

∣∣ f (x)
∣∣2

dx.

Hence Z : L2(Rd) → L2(T2d) is an isometry. These operators have inverses given by

F −1 f (x) = f̌ (x) =
∫
Rd

f̂ (ξ)e2π ix·ξ dξ

and

Z−1 f (x) =
∫

d

Z f (x, ξ)dξ.
T
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The Fourier and Zak transforms are related in the following manner:

Z f (x, ξ) = e2π ix·ξ Z f̂ (x,−ξ).

More information about the Zak transform can be found in [6]. Finally, we will make use of the following lemma, which we
present without proof.

Lemma 4.1. Suppose X and Y are Banach spaces and T : X → Y is an isomorphism (linear, continuous, one-to-one and onto). Then
{xn}∞n=1 is a Schauder basis for X if and only if {T (xn)}∞n=1 is a Schauder basis for Y .

4.1. Principle shift invariant spaces

Let ψ ∈ L2(Rd), and ψk = τkψ = ψ(· − k), the principle shift invariant space generated by ψ is given by

〈ψ〉 = span
{
ψ(· − k): k ∈ Zd

}
.

Principle shift invariant spaces are related to wavelet expansions and multiresolution analysis (see the book by Hernández
and Weiss [9]). Associated to ψ its periodization function, pψ , is given by

pψ(ξ) =
∑
k∈Zd

∣∣ψ̂(ξ + k)
∣∣2

.

Notice that pψ is in L1(Td) with

‖pψ‖L1(Td) = ‖ f̂ ‖2
L2(Rd)

= ‖ f ‖2
L2(Rd)

.

The main idea is that we may study properties of 〈ψ〉 by analyzing pψ , see [16] and [10]. We have the following theorem.

Theorem 4.2. Suppose ψ ∈ L2(Rd), then the following are equivalent.

(1) For each σ ∈ ΛR(Zd), {ψσ(n)}∞n=1 is a Schauder basis of 〈ψ〉 with basis constant Cσ and supσ∈ΛR(Zd) Cσ < ∞.

(2) pψ ∈ A2,R(Td).

Proof. The map

Jψ : L2(Td, pψ

) → L2(Rd)
m �→ (mψ̂)ˇ

is an isometry onto 〈ψ〉 and Jψ(e−k) = τkψ = ψk . Notice that if σ is adapted to the rectangle Ra,b if and only if −σ is
adapted to the rectangle R−b,−a . Hence {ψσ(n)}∞n=1 is a Schauder basis for 〈ψ〉 if and only if {e−σ(n)}∞n=1 is a Schauder basis
for L2(Td, pψ). �
4.2. Gabor systems

Let g ∈ L2(Rd) and let g j,k = M jτk g . The Gabor system generated by {g j,k}( j,k)∈Z2d is defined to be

G g = span
{

g j,k: j,k ∈ Zd
}
.

For Gabor systems the Zak transform takes the place of the Fourier transform and we study properties of G g by analyz-
ing Z g . We have the following theorem. A version containing less general enumerations can be found in [8] for d = 1.

Theorem 4.3. Suppose g ∈ L2(Rd), then the following are equivalent.

(1) For each σ ∈ ΛR(Z2d), {gσ(n)}∞n=1 forms a Schauder basis of L2(Rd) with basis constant Cσ and supσ∈ΛR(Z2d) Cσ < ∞.

(2) |Z g|2 ∈ A2,R(T2d).

Proof. Noticing from (13) it follows that

Z g j,k(x, ξ) = e j(x)ek(ξ)Z g(x, ξ) = e( j,k)(x, ξ)Z g(x, ξ).

It follows that span{g j,k}( j,k)∈Z2d is dense in L2(Rd) if and only if |Z g(x, ξ)| > 0 a.e. Since g ∈ L2(Rd), |Z g|2 ∈ L1(T2d) so we

may assume |Z g|2 is a weight. Then notice that
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P g : L2(T2d, |Z g|2) → L2(Rd)
ν �→ Z−1(ν Z g)

is an isometry onto L2(Rd). This follows from

‖P gν‖L2(Rd) = ∥∥Z−1(ν Z g)
∥∥

L2(Rd)
= ‖ν Z g‖L2(T2d) = ‖ν‖L2(T2d,|Z g|2).

Finally, P g(e( j,k)) = g j,k and if σ is an enumeration of Z2d then {gσ(n)}∞n=1 is a Schauder basis of L2(Rd) if and only if
{eσ(n)}∞n=1 is a Schauder basis of L2(T2d, |Z g|2). �
5. Conclusions and further questions

Our main result is the characterization of A p,R(Td) in terms of Schauder bases. Theorem 3.6 shows that for w ∈
A p,R(Td) and any rectangular enumeration σ , {eσ(n)}∞n=1 forms a Schauder basis of L p(Td, w). When p = 2 the weighted
theory is applied to principle shift invariant systems and Gabor systems. Given w in a class of weights, it would be interest-
ing to find the largest class of enumerations Λmax(Z

d) that characterizes when {eσ(n)}∞n=1 is a Schauder basis of L p(Td, w).
For the class of weights A p,R(Td), the set of rectangular enumerations ΛR(Zd) is not the largest class of enumerations.
Here is one way to expand them.

Definition 5.1. A countable collection of pairwise disjoint rectangles {R j}∞j=1 such that
⋃

j R j = Zd will be referred as a

rectangular tiling of Zd . We will denote a rectangular tiling of Zd by R. We say that a rectangular tiling R = {R j} has
depth D if for any m ∈ N, the union

m⋃
j=1

R j

is the disjoint union of at most D + 1 rectangles in Zd . The idea is that as m becomes large the smaller rectangles, R j com-
bine into large rectangles, never becoming more than D + 1 disjoint rectangles.

Definition 5.2. Given a rectangular tiling of Zd , R = {R j}∞j=1, let n j be the number of elements of R j . We say an enumeration

σ is adapted to R if σ is consecutive to R j on {1 + ∑ j−1
m=1 nm + 1, . . . ,1 + ∑ j

m=1 nm} for each j ∈ N. An enumeration σ

belongs to the class of rectangular enumerations of depth D , denoted by ΛD
R(Zd), if there exists a rectangular tiling R with

depth D , such that σ is adapted to R.

Each rectangular enumeration σ ∈ ΛR(Zd) is of depth 1, and Theorem 3.6 holds with ΛR(Zd) replaced by ΛD
R(Zd),

for a fixed D < ∞. The key property of such enumerations is that if σ ∈ ΛD
R(Zd) and N ∈ N then there exists K � N with

σ({1, . . . , K }) being the disjoint union of at most D rectangles and σ({K + 1, . . . , N}) an incomplete rectangle (hence the
disjoint union of at most d rectangles).

The classical definition of A p(Td) is weights that satisfy (3) with the supremum over cubes instead of rectangles, i.e.
w ∈ A p(Td) if(

1

|Q |
∫
Q

w dx

)(
1

|Q |
∫
Q

w1−p′
dx

)p−1

� C

for all cubes Q contained in Td . It would be interesting to see if there is a class of enumerations that characterize the
classic A p(Td) weights. More specifically, does there exist a class of enumerations Γ (Zd) such that for each σ ∈ Γ (Zd),
{eσ(n)}∞n=1 forms a Schauder basis for L p(Td, w) if and only if w ∈ A p(Td)?
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