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In this work we study, in the framework of Colombeau’s generalized functions, the Hamil-
ton–Jacobi equation with a given initial condition. We have obtained theorems on existence
of solutions and in some cases uniqueness. Our technique is adapted from the classical
method of characteristics with a wide use of generalized functions. We were led also to
obtain some general results on invertibility and also on ordinary differential equations of
such generalized functions.
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1. Introduction

In the classical context one has the following result (see [3] or [11]):

Given an open interval I of R containing 0, an open interval I ′ of R, open subsets Ω and Ω ′ of R
n, H ∈ C∞(I × Ω × I ′ × Ω ′) and

f ∈ C∞(Ω), there are an open subset W of I ×Ω and a function u ∈ C∞(W ) such that V := {z ∈ Ω | (0, z) ∈ W } is nonempty and
u is a solution to the Hamilton–Jacobi equation ∂u

∂t + H(t, x1, . . . , xn, u, ∂u
∂x1

, . . . , ∂u
∂xn

) = 0 with the initial condition u|{0}×V = f |V .

The aim of this work is to obtain, under certain conditions, an analogous result for the generalized case, that is, admitting
H and f Colombeau’s generalized functions. The problem of determining, in this case, the function u is called, in this
paper, the HJ-Problem and u is called a solution to the HJ-Problem. Among the existing classical methods, we search to
adapt the method of characteristics. This method consists in transforming a Partial Differential Equation with a given initial
condition in an Ordinary Differential Equation problem with a certain given initial condition. To adapt the classical method
of characteristics, we define (see Definition 3.1) the set S(I,Ω, I ′,Ω ′, H, f , J , W ) in which the elements (X, U , P ) are so
that a certain generalized mapping, defined from X , is invertible and the derivative in relation to the first variable of
the generalized X , U and P satisfy a certain system of ODE evolving generalized functions (this system, in the classical
case, is called Hamiltonian system). This led us to obtain some results on invertible generalized functions (see Section 2)
and on local solutions to ODE in the framework of generalized functions (see Section 4). In Section 3 we prove that, under
certain conditions, if S(I,Ω, I ′,Ω ′, H, f , J , W ) is nonempty, then the HJ-Problem has a generalized solution. On uniqueness
of solutions to the HJ-Problem, we have obtained partial answers to this question (see Section 5). We finish by presenting,
under certain conditions, a theorem of existence and uniqueness of solution to the HJ-Problem.

Results on generalized solutions to nonlinear first-order systems using an algebra of generalized germs G(Ω × X) (see
definition in [5]) or other specific techniques such as mollification of derivatives (see presentation in [10]) can be found in
[5,7,8].
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In [12] one can find, in the framework of tempered generalized functions, results on existence and uniqueness of global
solutions to systems of ODE as well as the flow generated by these solutions. Based on these concepts and in some of the
arguments of the proofs of the results presented here (see Section 4), E.R. Oliveira has obtained some results on existence
of local solutions to systems of ODE of such generalized functions (see [14]).

Recently, S. Konjik, M. Kunzinger and M. Oberguggenberger have introduced a formulation of the calculus of variations
in the framework of generalized functions (see [13]).

2. Preliminaries

We briefly introduce the notation that will be used throughout this paper. Our mains references for Colombeau’s the-
ory and notation in general are [1,4,6,12]. Moreover we introduce some results and concepts which will be used in this
work.

Let Ω be an open subset of R
n and Ω ′ an open subset of R

m . The notation K � Ω means that K is a compact subset
of Ω . If L is a subset of R

p with L �= R
p , then L and

◦
L denote the closure of L and the interior of L, respectively.

The algebra R is the quotient E0M(R)/N0(R), where

E0M(R) := {
u ∈ R

]0,1] ∣∣ ∃N ∈ N such that
∣∣u(ε)

∣∣ = O
(
ε−N)

as ε ↓ 0
};

N0(R) := {
u ∈ E0M(R)

∣∣ ∀q ∈ N one has
∣∣u(ε)

∣∣ = O
(
εq) as ε ↓ 0

}
.

The Colombeau algebra G(Ω) is the quotient EM(Ω)/N (Ω), where

EM(Ω) :=
{
(uε)ε ∈ (

C∞(Ω)
)]0,1] ∣∣∣ ∀K � Ω, ∀α ∈ N

n, ∃N ∈ N such that sup
x∈K

∣∣∂αuε(x)
∣∣ = O

(
ε−N)

as ε ↓ 0
}
;

N (Ω) :=
{
(uε)ε ∈ (

C∞(Ω)
)]0,1] ∣∣∣ ∀K � Ω, ∀α ∈ N

n and ∀q ∈ N one has sup
x∈K

∣∣∂αuε(x)
∣∣ = O

(
εq) as ε ↓ 0

}
.

The elements of EM(Ω) (resp. N (Ω)) are called moderate (resp. null) nets of smooth functions. G(Ω) is a unitary
associative, commutative, differential algebra whose elements are equivalence classes u := [(uε)ε].

One can prove (see [12, Theorem 1.2.3]) that u ∈ EM(Ω) is null if and only for all K � Ω and for all q ∈ N one has
supx∈K |uε(x)| = O (εq) as ε ↓ 0.

If u = ([(u1ε)ε], . . . , [(upε)ε]) ∈ (G(Ω))p , then (uε)ε := ((u1ε, . . . , upε))ε will be called a representative of u.
Let J be an open subset of R and V an open subset of Ω . Then

π := [(
(t, x1, . . . , xn) ∈ J × Ω 
→ t

)
ε

] ∈ G( J × Ω);
πi := [(

(t, x1, . . . , xn) ∈ J × Ω 
→ xi
)
ε

] ∈ G( J × Ω), ∀1 � i � n;
1Ω := ([(

(x1, . . . , xn) ∈ Ω 
→ x1
)
ε

]
, . . . ,

[(
(x1, . . . , xn) ∈ Ω 
→ xn

)
ε

]) ∈ (
G(Ω)

)n;
u|V := [

(uε|V )ε
] ∈ G(V ), for u := [

(uε)ε
] ∈ G(Ω).

Let W be an open subset of R × R
n with U := {z ∈ R

n | (0, z) ∈ W } �= ∅. Then u|{0}×U := [(uε|{0}×U )ε] ∈ G(U ), for
u ∈ G(W ).

If u := [(uε)ε] ∈ G(Ω), w := ([(w1ε)ε], . . . , [(wnε)ε]) ∈ (G(Ω))n and x = (x1, . . . , xn) denotes points in R
n , then

∇u :=
(

∂u

∂x1
, . . . ,

∂u

∂xn

)
∈ (

G(Ω)
)n;

Jw := [
(Jwε)ε

] ∈ G(Ω), where Jwε(x) := det

(
∂ wiε

∂x j
(x)

)
1�i, j�n

.

The space G∗(Ω;Ω ′) is the set of all u ∈ (G(Ω))m for which there is a representative (uε)ε such that:

(∗) ∀K � Ω , ∃K ′ � Ω ′ , ∃η ∈ ]0,1] with uε(K ) ⊂ K ′,∀ε ∈ ]0, η[.

The elements of G∗(Ω;Ω ′) are called c-bounded generalized functions from Ω to Ω ′ . Note that, if u ∈ G∗(Ω;Ω ′), then all
representatives of u satisfy (∗).

We say that u ∈ G∗(Ω;Ω ′) is an invertible mapping if, and only if, there is v ∈ G∗(Ω ′;Ω) such that u ◦ v = 1Ω ′ and
v ◦ u = 1Ω . This v is unique and it is called the inverse mapping of u.

First we will present some results on invertibility of a generalized function.

Proposition 2.1. Let Ω1 and Ω2 be open subsets of R
n and f ∈ G∗(Ω1,Ω2). If f is an invertible mapping, then J f has multiplicative

inverse in G(Ω1).
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Proof. It is enough to note that Jg ◦ f is the multiplicative inverse of J f in G(Ω1), where g is the inverse mapping of f . �
Proposition 2.2. Let Ω1 and Ω2 be open subsets of R

n and f ∈ G∗(Ω1,Ω2). If there are ( fε)ε := (( f1ε, . . . , fnε))ε ∈ (EM(Ω1))
n

with f = ([( f1ε)ε], . . . , [( fnε)ε]) and τ ∈ ]0,1] satisfying:

(i) fε(Ω1) = Ω2 , ∀ε ∈ ]0, τ [;
(ii) fε is an invertible mapping with inverse gε , ∀ε ∈ ]0, τ [;

(iii) ∀K ′ � Ω2 , ∃K � Ω1 , ∃η ∈ ]0, τ [ such that gε(K ′) ⊂ K , ∀ε ∈ ]0, η[;
(iv) J fε(Ω1) ⊂ R \ {0}, ∀ε ∈ ]0, η[;

then the following statements are equivalent:

(a) J f has multiplicative inverse in G(Ω1);
(b) f is an invertible mapping and its inverse is g := ([(g1ε)ε], . . . , [(gnε)ε]), where (g1ε, . . . , gnε) := gε if ε ∈ ]0, τ [ and

(g1ε, . . . , gnε) := g τ
2

if ε ∈ [τ ,1].

Proof. Suppose that (a) is true and let K ′ � Ω2 and α ∈ N
n . We will prove that there is N ∈ N such that

sup
{∣∣∂α glε(y)

∣∣ ∣∣ y ∈ K ′ and 1 � l � n
} = O

(
ε−N)

as ε ↓ 0, (1)

and thus (gε)ε ∈ (EM(Ω2))
n . From this, it is easy to check that (b) holds.

Take K � Ω1 and η ∈ ]0, τ [ as in (iii). If |α| = 0 then (1) holds for N = 0. Assume that |α| � 1. We will prove (1), in this
case, using induction on |α|.

Denote by y = (y1, . . . , yn) points in R
n .

For (ε, y) ∈ ]0, η[ × Ω2 we know, from (ii), that

∂ gkε

∂ y j
(y) = 1

J fε(gε(y))
a jk, ∀1 � j,k � n,

where a jk is a sum of products of elements of the set{
∂ f iε

∂xs

(
gε(y)

) ∣∣∣ 1 � i, s � n

}
∪ {1,−1}.

Using that J f has multiplicative inverse in G(Ω1), (iv) and [2] (see Theorem 5.3), there are η2 ∈ ]0, η[ and b ∈ R such
that

εb � inf
{∣∣J fε(x)

∣∣ ∣∣ x ∈ K
}
, ∀ε ∈ ]0, η2[.

Since (iii) holds and ( f iε)ε ∈ EM(Ω1) for all 1 � i � n, there is N1 ∈ N such that

sup

{
1

|J fε(gε(y))|
∣∣∣ y ∈ K ′

}
= O

(
ε−N1

)
as ε ↓ 0;

sup
1�i�n

{∣∣∂γ f iε
(

gε(y)
)∣∣ ∣∣ y ∈ K ′, γ ∈ N

n and |γ | � |α| + 1
} = O

(
ε−N1

)
as ε ↓ 0.

If |α| = 1 then (1) is true for N := (n + 1)N1.
Let |α| > 1 and ν ∈ N

n with |ν| = |α| + 1. By hypothesis of induction, there is N2 ∈ N such that

sup
1�l�n

{∣∣∂β giε(y)
∣∣ ∣∣ y ∈ K ′, β ∈ N

n and |β| � |α|} = O
(
ε−N2

)
as ε ↓ 0.

Noting that given 1 � k � n there are 1 � j � n and γ̃ ∈ N
n with |γ̃ | = |α| such that ∂ν gkε = ∂γ̃ ∂ gkε

∂ y j
, it is clear that (1)

holds for ν .
By Proposition 2.1 we have that (b) implies (a). �
Next result, apart from supplying invertible mappings, will be used in Section 5.

Proposition 2.3. Let I be an open interval of R containing 0, τ ∈ ]0,1], (gε)ε := ((g1ε, . . . , gnε))ε ∈ (EM(I × R
n))n, ( fε)ε :=

(( f0ε, f1ε, . . . , fnε))ε ∈ (EM(I × R
n))1+n given by

fε(t, x) := (
t, gε(t, x) + x

)
and f := ([( f0ε)ε], [( f1ε)ε], . . . , [( fnε)ε]) ∈ (G(I × R

n))1+n. If
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(i) giε(0, x) = 0, ∀(ε, x) ∈ ]0, τ [ × R
n, ∀1 � i � n;

(ii) there is M > 0 such that ‖∂β gε(t, x)‖ � M, ∀(ε, t, x) ∈ ]0, τ [ × I × R
n, ∀β := (β0, β1, . . . , βn) ∈ N

1+n with 1 � β0 � |β| � 2,

then there is Ia := ]−a,a[, for some a > 0, such that Ia ⊂ I , f |Ia×Rn ∈ G∗(Ia × R
n; Ia × R

n) and f |Ia×Rn is an invertible mapping.

Proof. Denote by (t, x) = (t, x1, . . . , xn) points in I × R
n . Let M be as in (ii), a∗ > 0 with [−a∗,a∗] ⊂ I and a > 0 such that

a < min

{
a∗, 1

nn!Mn
,

nn

nn!(n + 1)n

}
.

Using the Mean Value Theorem, (i) and (ii) we have∣∣giε(t, x)
∣∣ � M|t|, ∀(ε, t, x) ∈ ]0, τ [ × I × R

n, ∀1 � i � n; (1)∣∣∣∣∂ giε

∂xk
(t, x)

∣∣∣∣ � M|t|, ∀(ε, t, x) ∈ ]0, τ [ × I × R
n, ∀1 � i,k � n. (2)

Let Ia := ]−a,a[. From (1) we obtain f |Ia×Rn ∈ G∗(Ia × R
n; Ia × R

n).
Fix ε ∈ ]0, τ [.
Let (s, x), (t, y) ∈ Ia × R

n with (s, x) �= (t, y). If s �= t one has fε(s, x) �= fε(t, y). Suppose s = t and let 1 � j � n such that
|xi − yi | � |x j − y j | for all 1 � i � n. From Mean Value Theorem there is z ∈ R

n for which

∣∣g jε(s, x) + x j − g jε(s, y) − y j
∣∣ =

∣∣∣∣∣
n∑

i=1

∂ g jε

∂xi
(s, z)(xi − yi) + x j − y j

∣∣∣∣∣
and so, by (2), we obtain∣∣g jε(s, x) + x j − g jε(s, y) − y j

∣∣ � |x j − y j| − nMa|x j − y j| > 0.

This implies that fε(s, x) �= fε(s, y). Hence fε|Ia×Rn is one-to-one.
Let (s, y) ∈ Ia × R

n , d := ‖y‖ + nM|s| + 1, B ′
d(0) := {z ∈ R

n | ‖z‖ � d} and Ψ : x ∈ B ′
d(0) 
→ y − gε(s, x). From (1) we have

Ψ (B ′
d(0)) ⊂ B ′

d(0) and hence, applying Brouwer’s Theorem, we conclude that there is x̃ ∈ B ′
d(0) such that Ψ (x̃) = x̃. Thus

fε|Ia×Rn is onto and if J � Ia and K ′ � R
n , then ( fε|Ia×Rn )−1( J × K ′) ⊂ J × B ′

r(0), where r := max{‖z‖ + nM|t| | (t, z) ∈
J × K ′}.

Let (Γε)ε := ((Γ0ε,Γ1ε, . . . ,Γnε))ε defined by

Γε := ( fε|Ia×Rn )−1, for ε ∈ ]0, τ [, and Γε = ( f τ
2
|Ia×Rn )−1, for ε ∈ [τ ,1].

So Γε( J × K ′) � Ia × R
n for all J � Ia , K ′ � R

n and ε ∈ ]0,1].
Let M1 > 0 such that nn!max{Mn, (1 + 1

n )n} < M1 < 1
a . From (2), (i), (ii) and the Mean Value Theorem we have, for all

(ε, t, x) ∈ ]0, τ [ × Ia × R
n , that

∣∣J fε(t, x)
∣∣ �

∣∣J fε(0, x)
∣∣ − sup

s∈Ia

∣∣∣∣∂J fε
∂t

(s, x)

∣∣∣∣|t| � 1 − M1a > 0.

Thus, by [2] (see Theorem 5.3) (or see [15, Theorem 3.5]), we obtain that J f |Ia×Rn has multiplicative inverse.
Applying Proposition 2.2 we have that f |Ia×Rn is an invertible mapping and its inverse has (Γε)ε as its representative. �
From the proof of Proposition 2.3 we have:

Remark 2.4. In Proposition 2.3 we can add the following statement:
There are a representative (Γε)ε of ( f |Ia×Rn )−1, τ ∈ ]0,1] and M2 > 0 for which one has

Γε = ( fε|Ia×Rn )−1, ∀ε ∈ ]0, τ [;∥∥∂γ Γε(t, y)
∥∥ � M2, ∀(ε, t, y) ∈ ]0, τ [ × Ia × R

n, ∀α ∈ N
1+n with |α| = 1.

We end this section by introducing two definitions that will be important to achieving our goal.

Definition 2.5. Let Ω be an open subset of R
n and (uε)ε ∈ (EM(Ω))k . We say that

(i) (uε)ε is bounded on A ⊂ Ω if there are M > 0 and τ ∈ ]0,1] such that ‖uε(x)‖ � M , for all (ε, x) ∈ ]0, τ [ × A;
(ii) (uε)ε has the property (LLG) (locally logarithmic growth) if it satisfies the following statement:

∀K � Ω , ∃N ∈ N, ∃c > 0, ∃η ∈ ]0,1] such that ‖uε(x)‖ � log(cε−N ), ∀(ε, x) ∈ ]0, η[ × K .
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Clearly the bounded nets have the property (LLG) and if (uε)ε ∈ (EM(Ω))k has the property (LLG) and (vε)ε ∈ (EM(Ω))k

is such that (uε − vε)ε ∈ (N (Ω))k , then (vε)ε also has the property (LLG).

Definition 2.6. Let I be an open interval of R, Ω an open subset of R
n and Ω ′ an open subset of R

m . We say that:

(i) (uε)ε ∈ (EM(I × Ω × Ω ′))k has the property (LLL) (locally logarithmically Lipschitz) in (I,Ω,Ω ′) if it satisfies the fol-
lowing statement:
∀ J � I , ∀K � Ω , ∀K ′ � Ω ′ , ∃N ∈ N, ∃c > 0, ∃η ∈ ]0,1] such that∥∥uε(t, x, y) − uε(t, x, z)

∥∥ � log
(
cε−N)‖y − z‖, ∀ε ∈ ]0, η[, ∀t ∈ J , ∀x ∈ K , ∀y, z ∈ K ′.

(ii) (uε)ε ∈ (EM(I × Ω))k has the property (LLL) (locally logarithmically Lipschitz) in (I,Ω) if it satisfies the following
statement:
∀ J � I , ∀K � Ω , ∃N ∈ N, ∃c > 0, ∃η ∈ ]0,1] such that∥∥uε(t, y) − uε(t, z)

∥∥ � log
(
cε−N)‖y − z‖, ∀ε ∈ ]0, η[, ∀t ∈ J , ∀y, z ∈ K .

3. Method of characteristics

Here Ω and Ω ′ will be open subsets of R
n , I an open interval of R containing 0 and I ′ an open interval of R.

Moreover, for a given t0 ∈ R and a > 0, we will denote by Ia(t0) the interval ]t0 − a, t0 + a[. Sometimes we will write
Ia instead of Ia(0). We will denote by x = (x1, . . . , xn), (t, x) = (t, x1, . . . , xn) (or (s, r) = (s, r1, . . . , rn)) and (t, x, y, p) =
(t, x1, . . . , xn, y, p1, . . . , pn) points in Ω , I × Ω and I × Ω × I ′ × Ω ′ , respectively.

Now we are ready to present the main object of our study. Consider the following statement (which here is called
HJ-Problem):

HJ-Problem. Given H ∈ G(I × Ω × I ′ × Ω ′) and f ∈ G(Ω), there are an open subset W of I × Ω and u ∈ G(W ) such that
V := {z ∈ Ω | (0, z) ∈ W } �= ∅ and one has the following statements:(

u,
∂u

∂x1
, . . . ,

∂u

∂xn

)
∈ G∗

(
W ; I ′ × Ω ′);

∂u

∂t
+ H ◦

(
π,π1, . . . ,πn, u,

∂u

∂x1
, . . . ,

∂u

∂xn

)
= 0 in G(W );

u|{0}×V = f |V .

Our goal is to study under what conditions, given H and f , there are an open subset W and a function u as in HJ-
Problem. When there is this function u, we say that the HJ-Problem has a solution in G(W ) (or that u is a solution to the
HJ-Problem in G(W )). To provide such conditions, we have adapted for the generalized case the classical method of char-
acteristics. Before presenting the theorem of existence that we have obtained, we introduce, to simplify the writing, the
definition below.

Definition 3.1. Let H ∈ G(I × Ω × I ′ × Ω ′), f ∈ G(Ω), W be an open subset of I × Ω with V := {z ∈ Ω | (0, z) ∈ W } �= ∅
and J an open interval of R with 0 ∈ J ⊂ I . We will denote by S(I,Ω, I ′,Ω ′, H, f , J , W ) the set of all (X, U , P ), where
P = (P1, . . . , Pn), for which one has:

(i) (X, U , P ) ∈ G∗( J × V ;Ω) × G∗( J × V ; I ′) × G∗( J × V ;Ω ′);
(ii) (X, U , P ) is a solution of system:

∂ X

∂s
= ∂ H

∂ p
◦ (π, X, U , P );

∂U

∂s
= −H ◦ (π, X, U , P ) +

n∑
j=1

∂ H

∂ p j
◦ (π, X, U , P )P j;

∂ P

∂s
= −∂ H

∂x
◦ (π, X, U , P ) − P

∂ H

∂ y
◦ (π, X, U , P );

(iii) (X, U , P )|{0}×V = (1V , f |V ,∇ f |V );
(iv) Y := (π, X) ∈ G∗( J × V ; W ) and Y is an invertible mapping.

Unless otherwise stated, H and f belong to G(I × Ω × I ′ × Ω ′) and G(Ω), respectively.
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Theorem 3.2 (Existence Theorem). Suppose S(I,Ω, I ′,Ω ′, H, f , J , W ) �= ∅. If there is a representative (Hε)ε of H such that ( ∂ Hε
∂ y )ε

has the property (LLG), then the HJ-Problem has a solution in G(W ). More precisely, for all (X, U , P ) ∈ S(I,Ω, I ′,Ω ′, H, f , J , W ),
the function u := U ◦ (π, X)−1 is a solution to the HJ-Problem in G(W ) and ( ∂u

∂x1
, . . . , ∂u

∂xn
) = P ◦ (π, X)−1 .

Proof. Fix (X, U , P ) ∈ S(I,Ω, I ′,Ω ′, H, f , J , W ). We will prove that u := U ◦ (π, X)−1 is a solution to the HJ-Problem in
G(W ).

Let Y := (π, X) and h := (h0,h1, . . . ,hn) = Y −1. Then

(π |{0}×V ,π1|{0}×V , . . . ,πn|{0}×V ) = (Y ◦ h)|{0}×V

= (
h0|{0}×V , X ◦ (h|{0}×V )

)
= (h0|{0}×V ,h1|{0}×V , . . . ,hn|{0}×V ).

Thus u|{0}×V = U ◦ (h|{0}×V ) = f |V .
Since U = u ◦ Y and Definition 3.1(ii) holds we have(

∂u

∂t
◦ Y

)
+ H ◦ (π, X, U , P ) +

n∑
j=1

(
∂u

∂x j
◦ Y − P j

)
∂ X j

∂s
= 0; (1)

∂U

∂ri
=

n∑
j=1

(
∂u

∂x j
◦ Y

)
∂ X j

∂ri
, ∀1 � i � n. (2)

Suppose it has been proved that ∂U
∂ri

− ∑n
j=1 P j

∂ X j
∂ri

= 0, for all 1 � i � n. Then, by (1) and (2), we have the system:((
∂u

∂t
◦ Y

)
+ H ◦ (π, X, U , P )

)
+

n∑
j=1

(
∂u

∂x j
◦ Y − P j

)
∂ X j

∂s
= 0;

n∑
j=1

(
∂u

∂x j
◦ Y − P j

)
∂ X j

∂ri
= 0, ∀1 � i � n.

Applying that Y is an invertible mapping we conclude that JY has multiplicative inverse in G( J × V ) (see Proposition 2.1).
This implies that the system above has only the trivial solution. Hence(

∂u

∂x1
, . . . ,

∂u

∂xn

)
= P ◦ Y −1 ∈ G∗

(
W ,Ω ′);

∂u

∂t
= −H ◦ (π, X, U , P ) ◦ Y −1 = −H ◦

(
π,π1, . . . ,πn, u,

∂u

∂x1
, . . . ,

∂u

∂xn

)
.

Fix 1 � i � n and define ϕ := ∂U
∂ri

− ∑n
j=1 P j

∂ X j
∂ri

∈ G( J × V ).
To finish the proof of this theorem, it remains to verify that ϕ = 0.
Let ( J j) j∈N be an exhaustive sequence of compact subsets of J with 0 ∈ ⋂

j∈N
J j and J j closed interval for all j ∈ N,

(K ′
j) j∈N an exhaustive sequence of compact subsets of V and (Xε)ε , (Uε)ε , (Pε)ε and (ϕε)ε representatives of X , U , P

and ϕ , respectively.
Fix j ∈ N, [a,b] ⊂ ◦

J j containing 0 and K ′ �
◦
K ′

j . We will prove that

given q ∈ N one has sup
(s,r)∈[a,b]×K ′

∣∣ϕε(s, r)
∣∣ = O

(
εq) as ε ↓ 0, (3)

and, as j ∈ N is arbitrary, we conclude, by [12] (see Theorem 1.2.3), that ϕ = 0.
From Definition 3.1 we have that

∂ϕ

∂s
= −ϕ

∂ H

∂ y
◦ (π, X, U , P ) and ϕ|{0}×V = 0.

Thus there are (gε)ε ∈ N (
◦
J j × ◦

K ′
j), (hε)ε ∈ N (

◦
K ′

j) and η j ∈ ]0,1] such that

ϕε(s, r) − hε(r) =
s∫

0

(
ψε

(
w,ϕε(w, r), r

) + gε(w, r)
)

dw,

where ψε(s, t, r) = −t ∂ Hε (s, Xε(s, r), Uε(s, r), Pε(s, r)), for all (ε, s, t, r) ∈ ]0, η j[ × ◦
J j × R × ◦

K ′ .

∂ y j
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Using Definition 3.1(i) and that ( ∂ Hε
∂ y )ε has the property (LLG) we can find N ∈ N, c > 0 and τ ∈ ]0, η j[ such that∣∣ψε

(
s,ϕε(s, r), r

)∣∣ � log
(
cε−N)∣∣ϕε(s, r)

∣∣, ∀(ε, s, r) ∈ ]0, τ [ × [a,b] × K ′.

So, for all (ε, s, r) ∈ ]0, τ [ × [a,b] × K ′ , we obtain that

∣∣ϕε(s, r) − hε(r)
∣∣ �

∣∣∣∣∣
s∫

0

(
log

(
cε−N)∣∣ϕε(w, r) − hε(w)

∣∣ + log
(
cε−N)∣∣hε(w)

∣∣ + ∣∣gε(w, r)
∣∣)dw

∣∣∣∣∣.
This, together with (gε)ε ∈ N (

◦
J j × ◦

K ′
j), (hε)ε ∈ N (

◦
K ′

j) and Gronwall’s Lemma, gives us

sup
(s,r)∈[a,b]×K ′

∣∣ϕε(s, r) − hε(r)
∣∣ = O

(
εq) as ε ↓ 0.

Hence (3) holds. �
As an application of the previous theorem we give the following result:

Proposition 3.3. Let (hε)ε ∈ EM(I × R
n), ((μ0ε,μ1ε, . . . ,μnε))ε ∈ (E0M(R))1+n, (Hε)ε ∈ EM(I × R

n × R × R
n) defined by

Hε(t, x1, . . . , xn, y, p1, . . . , pn) := hε(t, p1, . . . , pn) + μ0ε y +
n∑

i=1

μiεxi,

H = [(Hε)ε] ∈ G(I × R
n × R × R

n) and f = [( fε)ε] ∈ G(Rn). If

(i) ∃K � R
n such that με := (μ1ε, . . . ,μnε) ∈ K , ∀ε ∈ ]0,1];

(ii) ∃L � I such that 0 /∈ L and μ0ε ∈ L,∀ε ∈ ]0,1];
(iii) (∂αhε)ε is bounded on I × R

n, ∀α := (α0,α1, . . . ,αn) ∈ N
1+n with 0 = α0 < |α| � 2 or 1 = α0 < |α| = 2;

(iv) (∂β fε)ε is bounded on R
n, ∀β ∈ N

n with 1 � |β| � 2;
(v) f ∈ G∗(Rn;R) and h := [(hε)ε] ∈ G∗(I × R

n;R);

then the HJ-Problem has a solution in G(Ia × R
n), for some a > 0.

Proof. Clearly ( ∂ Hε
∂ y )ε has the property (LLG). So it is enough to prove that S(I,R

n,R,R
n, H, f , Ia, Ia × R

n) �= ∅, for some
a > 0 (see Theorem 3.2).

Denote by (t, x, y, p) = (t, x1, . . . , xn, y, p1, . . . , pn) points in R
1+n+1+n and by (s, r) = (s, r1, . . . , rn) or (t, p) :=

(t, p1, . . . , pn) points in R
1+n .

Let (Pε)ε := ((P1ε, . . . , Pnε))ε , (Xε)ε := ((X1ε, . . . , Xnε))ε and (Uε)ε defined, on I × R
n , by

Pε(s, r) :=
(

∇ fε(r) + με

μ0ε

)
exp(−μ0εs) − με

μ0ε
;

Xε(s, r) := r +
s∫

0

∂hε

∂ p

(
t, Pε(t, r)

)
dt;

Uε(s, r) := exp(−μ0εs)

(
fε(r) −

s∫
0

exp(μ0εt)hε

(
t, Pε(t, r)

)
dt

)

+ exp(−μ0εs)
n∑

j=1

s∫
0

−exp(μ0εt)μ jε X jε(t, r)dt

+ exp(−μ0εs)
n∑

j=1

s∫
0

exp(μ0εt)
∂hε

∂ p j

(
t, Pε(t, r)

)
P jε(t, r)dt.

Define (gε)ε := ((g1ε, . . . , gnε))ε by gε : (s, r) ∈ I × R
n 
→ Xε(s, r) − r.
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Note that, for all (ε, s, r) ∈ ]0,1] × I × R
n and 1 � i,k � n, we have

∂ giε

∂s
(s, r) = ∂hε

∂ pi

(
s, Pε(s, r)

);
∂2 giε

∂s2
(s, r) = −

n∑
j=1

∂2hε

∂ p j∂ pi

(
s, Pε(s, r)

)(∂ fε
∂r j

(r) + μ jε

μ0ε

)
exp(−μ0εs)μ0ε + ∂2hε

∂t∂ pi

(
s, Pε(s, r)

);
∂2 giε

∂rk∂s
(s, r) =

n∑
j=1

∂2hε

∂ p j∂ pi

(
s, Pε(s, r)

) ∂2 fε
∂rk∂r j

(r)exp(−μ0εs).

Let J be an open interval of R with 0 ∈ J ⊂ J � I . Thus, from (i), (ii), (iii) and (iv), there is M > 0 such that for all
1 � i,k � n one has

max
(ε,s,r)∈]0,1]× J×Rn

{∣∣∣∣∂ giε

∂s
(s, r)

∣∣∣∣,
∣∣∣∣∂2 giε

∂s2
(s, r)

∣∣∣∣,
∣∣∣∣∂2 giε

∂rk∂s
(s, r)

∣∣∣∣
}

� M. (1)

Let (Yε)ε := ((Y1ε, . . . , Ynε))ε defined by

Yε : (s, r) ∈ J × R
n 
→ (

s, Xε(s, r)
)

and Y := ([(Y1ε)ε], . . . , [(Ynε)ε]) ∈ (G( J × R
n))n.

Since giε(0, r) = 0, for all (ε, r) ∈ ]0,1] × R
n and 1 � i � n and (1) holds, we have, by Theorem 2.3, that there is a > 0

such that Ia ⊂ J , Y |Ia×Rn ∈ G∗(Ia × R
n; Ia × R

n) and Y |Ia×Rn is an invertible mapping.
It is easy to verify that (X, U , P ) ∈ S(I,R

n,R,R
n, H, f , Ia, Ia × R

n) (note that, from (v), U ∈ G∗(Ia × R
n;R)). �

To find H and f for which the HJ-Problem has a solution we need, according to Theorem 3.2, to solve a system of
ordinary differential equations in the framework of generalized functions. This led us to obtain, in this context, some results
on ordinary differential equations. These results will be presented in the next section. From these results we have obtained
functions H and f for which the HJ-Problem has at least one solution. We have also studied some cases in which one has
unique solution (see Section 5).

4. Some results on the existence and uniqueness of solutions to ordinary differential equations

Here Ω will be an open subset of R
n , Ω ′ an open subset of R

m , I an open interval of R, t0 ∈ I and Ia(t0) := ]t0 −a, t0 +a[,
for a > 0.

The purpose of this section is to study under what conditions one has the following statement:

Problem 4.1. Given f ∈ (G(I × Ω × Ω ′))m and g ∈ (G(Ω))m , there are an open subset W of Ω , a > 0 and u ∈ G∗(Ia(t0) ×
W ;Ω ′) such that

∂u

∂t
(t, y1, . . . , yn) = f

(
t, y1, . . . , yn, u(t, y1, . . . , yn)

)
in

(
G
(

Ia(t0) × W
))m;

u|{t0}×W = g|W .

The function u ∈ (G(Ia(t0) × W ))m is said to be a solution to Problem 4.1 and we say that Problem 4.1 has a solution in
(G(Ia(t0) × W ))m .

The first equation that appears in Problem 4.1 should be read as ∂u
∂t = f ◦ (π,π1, . . . ,πn, u).

Theorem 4.2. Let W be an open subset of Ω , x0 := ([(x01ε)ε], . . . , [(x0mε)ε]) ∈ R
m and f := ([( f1ε)ε], . . . , [( fmε)ε]) ∈

(G(I × Ω × Ω ′))m satisfying

(i) W � Ω;
(ii) ∃K1 � Ω ′ , ∃τ1 ∈ ]0,1] such that (x01ε, . . . , x0mε) ∈ K1 , ∀ε ∈ ]0, τ1[ (i.e. x0 is a compactly supported generalized point in Ω ′);

(iii) f ∈ G∗(I × Ω × Ω ′;R
m);

(iv) (∂α f iε)ε has the property (LLG), ∀1 � i � m, ∀α ∈ N
1+n+m with |α| = 1 and α = (0,0, . . . ,0,α1, . . . ,αm).

Then Problem 4.1, for g := ([(x 
→ x01ε)ε], . . . , [(x 
→ x0mε)ε]) ∈ (G(Ω))m, has a solution in (G(Ia(t0) × W ))m, for some a > 0.

Proof. Let a∗ > 0 with Ia∗ (t0) ⊂ I , K1 and τ1 as in (ii), V an open subset of Ω ′ such that K1 ⊂ V ⊂ V � Ω ′ and d > 0 the
distance of K1 to Ω ′ \ V .
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Define x0ε := (x01ε, . . . , x0mε) and fε := ( f1ε, . . . , fmε), for all ε ∈ ]0,1].
By (i) and (iii) there are τ ∈ ]0, τ1[ and M > 0 such that∥∥ fε(t, y, z)

∥∥ � M, ∀(ε, t, y, z) ∈ ]0, τ [ × Ia∗(t0) × W × V . (1)

Take a > 0 with a < min{a∗,d/M}. Fixed any ε ∈ ]0, τ [ there is a unique uε := (u1ε, . . . , umε) ∈ C(Ia(t0) × W ; V ) ∩
C∞(Ia(t0) × W ;R

m) such that

uε(t, y) = x0ε +
t∫

t0

fε
(
s, y, uε(s, y)

)
ds, ∀(t, y) ∈ Ia(t0) × W .

Remark that uε(Ia(t0) × W ) ⊂ {z ∈ R
n | ‖z − x0ε‖ � d} ⊂ V .

For all ε ∈ [τ ,1], define uε := u τ
2

.

By induction on |γ |, where γ ∈ N
1+n , we will prove that there is N2 ∈ N such that

sup
(t,y)∈Ia(t0)×W

∥∥∂γ uε(t, y)
∥∥ = O

(
ε−N2

)
as ε ↓ 0. (2)

Thus (uε)ε ∈ (EM(Ia(t0) × W ))m and u := ([(u1ε)ε], . . . , [(umε)ε]) is a solution to Problem 4.1 in (G(Ia(t0) × W ))m .
Note that (2) is true for |γ | = 0.
To facilitate the writing we will prove (2) for the cases |γ | = 1 and |γ | = 2, since the induction argument is similar.
Denote by (t, y1, . . . , yn, z1, . . . , zm) points in I × Ω × Ω ′ . Let β ∈ N

1+n and suppose that β = (β0, β1, . . . , βn).
Using that Ia(t0) × W × V � I × Ω × Ω ′ , ( fε)ε ∈ (EM [I × Ω × Ω ′])m and (iv), there are c > 0, η ∈ ]0, τ [ and N ∈ N such

that ∣∣∣∣∂ f iε

∂z j

(
s, y, uε(s, y)

)∣∣∣∣ � log
(
cε−N)

and
∣∣∂α f iε

(
s, y, uε(s, y)

)∣∣ � cε−N , (3)

∀(ε, s, y) ∈ ]0, η[ × Ia(t0) × W , ∀1 � i, j � m and ∀|α| � |β|.
If β0 �= 0 and |β| = 1, then ∂βuε(t, y) = f (t, y, uε(t, u)), for all (ε, t, y) ∈ ]0, η[ × Ia(t0) × W . Then, by (1), it is clear that

(2) is true for γ = β .
If β0 = 0 and |β| = 1, then

∂uiε

∂ y j
(t, y) =

t∫
t0

(
∂ f iε

∂ y j

(
s, y, uε(s, y)

) +
m∑

k=1

∂ f iε

∂zk

(
s, y, uε(s, y)

)∂ukε

∂ y j
(s, y)

)
ds,

∀(ε, t, y) ∈ ]0, η[ × Ia(t0) × W , ∀1 � i � m and ∀1 � j � n with β j = 1.
From (3), for all (ε, t, y) ∈ ]0, η[ × Ia(t0) × W , one has

∥∥∂βuε(t, y)
∥∥ �

m∑
i=1

∣∣∂βuiε(t, y)
∣∣ �

∣∣∣∣∣
t∫

t0

(
mcε−N + 2mlog

(
cε−N)∥∥∂βuε(t, y)

∥∥)
ds

∣∣∣∣∣.
This inequality, together with Gronwall’s Lemma, proves (2) for γ = β .

If β0 �= 0 and |β| = 2, then

∂2uiε

∂ y j∂t
(t, y) = ∂ f iε

∂ y j

(
t, y, uε(t, y)

) +
m∑

k=1

∂ f iε

∂zk

(
t, y, uε(t, y)

)∂ukε

∂ y j
(t, y),

∀(ε, t, y) ∈ ]0, η[ × Ia(t0) × W , ∀1 � i � m and ∀1 � j � n with β j = 1.
So, by (2) for |γ | = 1 and (3), we have that (2) holds for γ = β .
If β0 = 0 and |β| = 2, then

∂βuiε(t, y) =
t∫

t0

∂2 f iε

∂ yν∂ y j

(
s, y, uε(s, y)

)
ds +

t∫
t0

(
m∑

l=1

∂2 f iε

∂zl∂ y j

(
s, y, uε(s, y)

)∂ulε

∂ yν
(s, y)

)
ds

+
t∫ (

m∑
k=1

∂2 f iε

∂ yν∂zk

(
s, y, uε(s, y)

)∂ukε

∂ y j
(s, y)

)
ds
t0
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+
t∫

t0

(
m∑

k=1

m∑
l=1

∂2 f iε

∂zl∂zk

(
s, y, uε(s, y)

)∂ulε

∂ yν
(s, y)

∂ukε

∂ y j
(s, y)

)
ds

+
t∫

t0

(
m∑

k=1

∂ f iε

∂zk

(
s, y, uε(s, y)

)
∂βukε(t, y)

)
ds,

∀(ε, t, y) ∈ ]0, η[ × Ia(t0) × W , ∀1 � i � m and ∀1 � j, ν � n with β j = 1 = βν .
From (2) for |γ | = 1 and (3), there are c1 > 0, N1 ∈ N and η1 ∈ ]0, η[ such that, for all (ε, t, y) ∈ ]0, η1[× Ia(t0)× W , one

has

∥∥∂βuε(t, y)
∥∥ �

m∑
i=1

∣∣∂βuiε(t, y)
∣∣ �

∣∣∣∣∣
t∫

t0

(
c1ε

−N1 + 2mlog
(
cε−N)∥∥∂βuε(t, y)

∥∥)
ds

∣∣∣∣∣.
This inequality, together with Gronwall’s Lemma, proves (2) for γ = β . �
Theorem 4.3 (First Existence Theorem). Let f := ([( f1ε)ε], . . . , [( fmε)ε]) ∈ (G(I × Ω × Ω ′))m, W be an open subset of Ω and
g := ([(g1ε)ε], . . . , [(gmε)ε]) ∈ (G(W ))m such that

(i) W � Ω;
(ii) ∃ an open subset U of Ω ′ , ∃τ1 ∈ ]0,1] such that U � Ω ′ and

(g1ε, . . . , gmε)(W ) ⊂ U , ∀ε ∈ ]0, τ1[;
(iii) g ∈ G∗(W ; U ), where U is as in (ii);
(iv) f ∈ G∗(I × Ω × Ω ′;R

m);
(v) (∂α f iε)ε has the property (LLG), ∀1 � i � m, ∀α ∈ N

1+n+m with |α| = 1 and α = (0,0, . . . ,0,α1, . . . ,αm).

Then Problem 4.1 has a solution in (G(Ia(t0) × W ))m, for some a > 0.

Proof. Let U and τ1 be as in (ii), take U1 and U2 opens subsets of Ω ′ such that U ⊂ U1 ⊂ U1 ⊂ U2 ⊂ U2 � Ω ′ and let 4d
the distance of U 1 to Ω ′ \ U2.

Note that, if z ∈ Bd(0) := {w ∈ R
m | ‖w‖ < d}, then y + z ∈ Ω ′ for all y ∈ U1. Thus we can define the moderate net

(hε)ε := ((h1ε, . . . ,hmε))ε by hε(s, x, y, z) := fε(s, x, y + z), for all (s, x, y, z) ∈ I × Ω × U1 × Bd(0).
We will denote by (s, x, y, z) = (s, x1, . . . , xn, y1, . . . , ym, z1, . . . , zm) points in I × Ω × U1 × Bd(0).
Note that the hypotheses (iii) and (iv) in Theorem 4.2 are satisfied replacing ( fε)ε , Ω and Ω ′ by (hε)ε , Ω × U1 and

Bd(0), respectively. In fact, for J � I , L � Ω × U1 and K2 � Bd(0), take K � Ω and K1 � U1 such that L ⊂ K × K1. Using
that K1 + K2 � Ω ′ , (iv) and (v), there are M > 0, c > 0, η ∈ ]0, τ1[ and N ∈ N such that, for all (ε, s, x, z, y) ∈ ]0, η[ × J ×
K × K1 × K2, one has

∥∥hε(s, x, y, z)
∥∥ � M and

∣∣∣∣∂hiε

∂z j
(s, x, y, z)

∣∣∣∣ � log
(
cε−N)

, ∀1 � i, j � m.

From Theorem 4.2 and its proof, there are a > 0 with Ia(t0) ⊂ I , τ ∈ ]0, τ1[ and (vε)ε ∈ (EM(Ia(t0) × W × U ))m such that

vε

(
Ia(t0) × W × U

) ⊂ B d
2
(0), ∀ε ∈ ]0, τ [;

vε(t0, .) = 0, ∀ε ∈ ]0, τ [;
∂vε

∂s
(s, y, z) = hε

(
s, y, z, vε(s, y, z)

)
, ∀(ε, s, y, z) ∈ ]0, τ [ × Ia(t0) × W × U .

From (ii) and (iii) we can define (uε)ε := ((u1ε, . . . , umε))ε ∈ (EM(Ia(t0) × W ))m by

uε(t, y) := gε(y) + vε

(
t, y, gε(y)

)
, if ε ∈ ]0, τ [;

uε(t, y) := g τ
2
(y) + v τ

2

(
t, y, g τ

2
(y)

)
, if ε ∈ [τ ,1].

Let u := ([(u1ε)ε], . . . , [(umε)ε]) ∈ (G(Ia(t0) × W ))m .
It is easy to verify that u is a solution to Problem 4.1 in (G(Ia(t0) × W ))m (note that, if V := U + B d

2
(0) then

uε(Ia(t0) × W ) ⊂ V � Ω ′ , for all ε ∈ ]0, τ [). �
From the proof of previous theorem, we have:
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Remark 4.4. In Theorem 4.3 we can add the following statement:
Problem 4.1 has a solution u ∈ (G(Ia(t0) × W ))m , for some a > 0, for which there are a representative ((u1ε, . . . , umε))ε

and τ ∈ ]0,1] such that

uε

(
Ia(t0) × W

) ⊂ K ′, ∀ε ∈ ]0, τ [ and some K ′ � Ω ′;
∂uε

∂t
(t, y) = fε

(
t, y, uε(t, y)

)
, ∀(ε, t, y) ∈ ]0, τ [ × Ia(t0) × W ;

uε(t0, .) = (g1ε, . . . , gmε), ∀ε ∈ ]0, τ [.

Now we will provide conditions for which Problem 4.1 has a solution in (G(Ia(t0) × Ω))m , for some a > 0.

Theorem 4.5. Let f := ([( f1ε)ε], . . . , [( fmε)ε]) ∈ (G(I × Ω × Ω ′))m and x0 := ([(x01ε)ε], . . . , [(x0mε)ε]) ∈ R
m such that

(i) the hypotheses (ii) and (iv) in Theorem 4.2 are true;
(ii) (( f1ε, . . . , fmε))ε is bounded on I × Ω × Ω ′ .

Then Problem 4.1, for g := ([(x 
→ x01ε)ε], . . . , [(x 
→ x0mε)ε]) ∈ (G(Ω))m, has a solution in (G(Ia(t0) × Ω))m, for some a > 0.

Proof. Let a∗ > 0 with Ia∗ (t0) ⊂ I , K1 and τ1 be as in Theorem 4.2(ii), V an open subset of Ω ′ such that K1 ⊂ V ⊂ V � Ω ′
and d > 0 the distance of K1 to Ω ′ \ V .

Define x0ε := (x01ε, . . . , x0mε) and fε := ( f1ε, . . . , fmε), for all ε ∈ ]0,1].
By (ii), there are τ ∈ ]0, τ1[ and M > 0 such that∥∥ fε(t, x, z)

∥∥ � M, ∀(ε, t, x, z) ∈ ]0, τ [ × I × Ω × Ω ′.

Take a > 0 with a < min{a∗,d/M}. Using an argument similar to the proof of Theorem 4.2 we have:
∀(ε, y) ∈ ]0, τ [ × Ω , there is a unique uε

ry
∈ C(Ia(t0) × Bry (y); V ) such that

uε
ry

(t, z) = x0ε +
t∫

t0

fε
(
s, z, uε

ry
(s, z)

)
ds, ∀(t, z) ∈ Ia(t0) × Bry (y),

where ry > 0 and Bry (y) ⊂ Ω is the closed ball of center y and radius ry .

Note that, if there is (ε, y, z) ∈ ]0, τ [ × Ω × Ω such that K := Bry (y) ∩ Brz (z) �= ∅, then uε
ry

|Ia(t0)×K = uε
rz

|Ia(t0)×K . So we
can define the net (uε)ε := ((u1ε, . . . , umε))ε ∈ (C∞(Ia(t0) × Ω))m by uε|Ia(t0)×Br y (y) := uε

ry
if ε ∈ ]0, τ [ and uε constant in

Ia(t0) × Ω if ε ∈ [τ ,1].
By an argument similar to the proof of Theorem 4.2 we conclude that the net (uε)ε is moderate and u :=

([(u1ε)ε], . . . , [(umε)ε]) is a solution to Problem 4.1 in (G(Ia(t0) × Ω))m . �
Theorem 4.6 (Second Existence Theorem). Let f := ([( f1ε)ε], . . . , [( fmε)ε]) ∈ (G(I × Ω × R

m))m and g := ([(g1ε)ε], . . . ,
[(gmε)ε]) ∈ (G(Ω))m such that

(i) the hypothesis (v) in Theorem 4.3 is true;
(ii) g ∈ G∗(Ω,R

m);
(iii) (( f1ε, . . . , fmε))ε is bounded on I × Ω × R

m.

Then Problem 4.1 has a solution in (G(Ia(t0) × Ω))m, for some a > 0.

Proof. Define ( fε)ε := (( f1ε, . . . , fmε))ε and let (hε)ε := ((h1ε, . . . ,hmε))ε where hε(s, x, y, z) := fε(s, x, y + z), for all
(s, x, y, z) ∈ I × Ω × R

m × R
m .

Note that the hypotheses (iii) and (iv) in Theorem 4.2 are satisfied replacing ( fε)ε , Ω and Ω ′ by (hε)ε , Ω × R
m and R

m ,
respectively.

From Theorem 4.5 and its proof, there are a > 0 with Ia(t0) ⊂ I , τ ∈ ]0,1] and (vε)ε ∈ (EM(Ia(t0) × Ω × R
m))m such that

vε(t0, .) = 0, ∀ε ∈ ]0, τ [;
∂vε

∂s
(s, y, z) = hε

(
s, y, z, vε(s, y, z)

)
, ∀(ε, s, y, z) ∈ ]0, τ [ × Ia(t0) × Ω × R

m.

Let (uε)ε and u be as in the proof of Theorem 4.3 (replacing W by Ω × R
m). This u is a solution to Problem 4.1 in

(G(Ia(t0) × Ω))m . �
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It follows from the proof of the last theorem, together with Gronwall’s Lemma, the following fact will be important in
Section 5 (see Theorem 5.3).

Remark 4.7. If in Theorem 4.6 we add the conditions:(
∂α f iε

)
ε

is bounded on I × Ω × R
m, ∀1 � i � m, ∀α ∈ N

1+n+m with |α| = 1 and α = (0,α1, . . . ,αn+m);(
∂γ giε

)
ε

is bounded on Ω , ∀1 � i � m, ∀γ ∈ N
m with |γ | = 1;

then, for some a > 0, Problem 4.1 has a solution u ∈ (G(Ia(t0) × Ω))m for which there are a representative ((u1ε, . . . , umε))ε
and τ ∈ ]0,1] such that

∂uε

∂t
(t, y) = fε

(
t, y, uε(t, y)

)
, ∀(ε, t, y) ∈ ]0, τ [ × Ia(t0) × Ω;

uε(t0, .) = (g1ε, . . . , gmε), ∀ε ∈ ]0, τ [;(
∂βuiε

)
ε

is bounded on J1 × Ω, ∀ J1 � Ia(t0), ∀β ∈ N
1+n with |β| = 1 and β = (0, β1, . . . , βn), ∀1 � i � m.

We finish this section with a theorem on uniqueness of solution to Problem 4.1.

Theorem 4.8 (Uniqueness Theorem). Let f := ([( f1ε)ε], . . . , [( fmε)ε]) ∈ (G(I × Ω × Ω ′))m such that (( f1ε, . . . , fmε))ε has the
property (LLL) in (I,Ω,Ω ′). If u and v are solutions to Problem 4.1 in (G(I × Ω))m, then u = v.

Proof. Suppose u := ([(u1ε)ε], . . . , [(umε)ε]) and v := ([(v1ε)ε], . . . , [(vmε)ε]).
Let (uε)ε := ((u1ε, . . . , umε))ε and (vε)ε := ((v1ε, . . . , vmε))ε .
It suffices to prove (see [12, Theorem 1.2.3]) that, if J � I and K � Ω , then one has

sup
(t,y)∈ J×K

∥∥(vε − uε)(t, y)
∥∥ = O

(
εq) as ε ↓ 0, ∀q ∈ N. (1)

Fix J � I , K � Ω and q ∈ N. Take a, b ∈ R such that J ∪ {t0} ⊂ [a,b] � I . Since u, v ∈ G∗(I × Ω;Ω ′), there are K ′ � Ω ′
and η ∈ ]0,1] such that

uε

([a,b] × K
) ∪ vε

([a,b] × K
) ⊂ K ′ � Ω ′, ∀ε ∈ ]0, η[.

Thus, from ( fε)ε := (( f1ε, . . . , fmε))ε has the property (LLL) in (I,Ω,Ω ′), there are N ∈ N, c > 0 and τ ∈ ]0, η[ such that∥∥ fε
(
t, y, uε(t, y)

) − fε
(
t, y, vε(t, y)

)∥∥ � log
(
cε−N)∥∥(uε − vε)(t, y)

∥∥, (2)

∀(ε, t, y) ∈ ]0, τ [ × [a,b] × K , ∀1 � i,k � m.
Let (gε)ε ∈ (N (I × Ω))m and (hε)ε ∈ (N (Ω))m such that

vε(t, y) − uε(t, y) − hε(y) =
t∫

t0

(
fε

(
s, y, vε(s, y)

) − fε
(
s, y, uε(s, y)

) + gε(s, y)
)

ds

∀(ε, t, y) ∈ ]0, τ [ × I × Ω .
Let lε : I × Ω → R

m defined by lε(t, y) := vε(t, y) − uε(t, y) − hε(y), with ε ∈ ]0, τ [.
Since (hε)ε and (gε)ε are null there are c1 > 0, τ1 ∈ ]0, τ [ and N1 ∈ N with N1 > max{N, N(b − t0), N(t0 − a)} such that

max
{∥∥hε(y)

∥∥,
∥∥gε(t, y)

∥∥}
� c1ε

q+2N1 , ∀(ε, t, y) ∈ ]0, τ1[ × [a,b] × K .

From this inequality and (2) we have, for all (ε, t, y) ∈ ]0, τ1[ × [a,b] × K , that

∥∥lε(t, y)
∥∥ �

∣∣∣∣∣
t∫

t0

(
log

(
cε−N)∥∥l(ε, s, y)

∥∥ + (c + 1)c1ε
q+N1

)
ds

∣∣∣∣∣.
This, together with Gronwall’s Lemma, implies that

sup
(t,y)∈[a,b]×K

∥∥(vε − uε)(t, y) − hε(y)
∥∥ = sup

(t,y)∈[a,b]×K

∥∥lε(t, y)
∥∥ = O (εq) as ε ↓ 0.

Hence (1) is true. �
For an open interval J of I , we define π∗ := [(π∗ε)ε] ∈ G( J ), where π∗ε(t) := t . Using this definition and with arguments

similar to the proof of Theorem 4.2 and Theorem 4.8 can be verified that:
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Remark 4.9. Let x0 := ([(x01ε)ε], . . . , [(x0nε)ε]) ∈ R
n and f := [( f1ε)ε], . . . , [( fnε)ε]) ∈ G∗(I × Ω;R

n) such that

(i) {(x01ε, . . . , x0nε) | ε ∈ ]0, τ [} � Ω , for some τ ∈ ]0,1];
(ii) (( f1ε, . . . , fnε))ε has the property (LLL) in (I,Ω).

Then there are a > 0 with Ia(t0) ⊂ I and a unique u ∈ G∗(Ia(t0);Ω) satisfying: u′ = f ◦ (π∗, u) and u(t0) = x0. Moreover,
from (G(.))n be a sheaf of vector spaces on R, one has that there is a unique maximal solution of ω′ = f ◦ (π∗,ω) satisfying
w(t0) = x0 (a maximal solution is a solution that cannot be extended).

5. Some results on uniqueness of solution to the HJ-Problem

In this last section we present, using the results of the previous section, some cases in which the HJ-Problem has a
unique solution.

Here the sets Ω , Ω ′ , I and I ′ , and the notations are as in Section 3. Moreover, the functions f := [( fε)ε] and H := [(Hε)ε]
belong to G(Ω) and G(I × Ω × I ′ × Ω ′), respectively, and S(I,Ω, I ′,Ω ′, H, f , J , W ) is as in Definition 3.1.

Under certain conditions, for each element of S(I,Ω, I ′,Ω ′, H, f , J , W ) is possible to find a solution to the HJ-Problem
(see Theorem 3.2). Therefore, it is important to obtain some conditions for which it has at most one element. The result we
have obtained is the following:

Proposition 5.1. If (Hε)ε is such that (Hε)ε , ( ∂ Hε
∂x )ε , ( ∂ Hε

∂ y )ε and ( ∂ Hε
∂ p )ε have the property (LLL) in (I,Ω × I ′ × Ω ′), then

S(I,Ω, I ′,Ω ′, H, f , J , W ) is empty or has a unique element.

Proof. Let V := {z ∈ Ω | (0, z) ∈ W }.
Define (ϕε)ε := ((ϕ1ε, . . . ,ϕ(2n+1)ε))ε ∈ (EM( J × V × Ω × I ′ × Ω ′))n+1+n and ϕ by

(ϕ1ε, . . . ,ϕnε)(t, z, x, y, p) := ∂ Hε

∂ p
(t, x, y, p);

ϕ(n+1)ε(t, z, x, y, p) := −Hε(t, x, y, p) +
n∑

j=1

∂ Hε

∂ p j
(t, x, y, p)p j;

(ϕ(n+2)ε, . . . ,ϕ(2n+1)ε)(t, z, x, y, p) := −∂ Hε

∂x
(t, x, y, p) − p

∂ Hε

∂ y
(t, x, y, p);

ϕ := ([
(ϕ1ε)ε

]
, . . . ,

[
(ϕ(2n+1)ε)ε

]) ∈ (
G
(

J × V × (
Ω × I ′ × Ω ′)))n+1+n

.

Then (ϕε)ε has the property (LLL) in ( J , V ,Ω × I ′ × Ω ′).
Let (X, U , P ), (X1, U 1, P 1) ∈ S(I,Ω, I ′,Ω ′, H, f , J , W ). Since the elements of S(I,Ω, I ′,Ω ′, H, f , J , W ) are solutions of

the system(
∂ X̃

∂s
,
∂ Ũ

∂s
,
∂ P̃

∂s

)
= ϕ ◦ (π,π1, . . . ,πn, X̃, Ũ , P̃ );

( X̃, Ũ , P̃ )|{0}×V = (1|V , f |V ,∇ f |V )

we obtain (X, U , P ) = (X1, U 1, P 1) (see Theorem 4.8). �
For the case Ω = R

n and I ′ = R we have the following theorem:

Theorem 5.2 (Uniqueness Theorem). Let (Hε)ε such that

(i) (∂α( ∂ Hε
∂ p ))ε has the property (LLG), ∀α ∈ N

1+n+1+n with |α| = 1 and α = (0,α1, . . . ,α2n+1);

(ii) (Hε)ε , ( ∂ Hε
∂x )ε , ( ∂ Hε

∂ y )ε and ( ∂ Hε
∂ p )ε have the property (LLL) in (I,R

n × R × Ω ′);

(iii) ( ∂ Hε
∂ p )ε is bounded on I × R

n × R × Ω ′ .

If S(I,R
n,R,Ω ′, H, f , J , J × R

n) �= ∅, then there is at most one solution u to the HJ-Problem in G( J × R
n) satisfying:

(I) there are a representative (uε)ε of u and τ ∈ ]0,1] for which(
∂uε

∂x1
, . . . ,

∂uε

∂xn

)(
J × R

n) ⊂ Ω ′, ∀ε ∈ ]0, τ [;
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(II) ∂γ u ∈ G∗( J × R
n), ∀γ ∈ N

1+n with 1 � |γ | � 2 and γ = (0, γ1, . . . , γn).

Moreover, if there is this solution u, then S(I,R
n,R,Ω ′, H, f , J , J × R

n) = {(X, U , P )} and u = U ◦ (π, X)−1 .

Proof. Note that S(I,R
n,R,Ω ′, H, f , J , J × R

n) = {(X, U , P )} (see Proposition 5.1). Suppose that there is a solution
u := [(uε)ε] to the HJ-Problem in G( J × R

n) satisfying (I) and (II). Thus we can define (ψε)ε := ((ψ1ε, . . . ,ψnε))ε ∈
(EM( J × R

n × R
n))n by

ψε(t, z, x) := ∂ Hε

∂ p

(
t, x, uε(t, x),

∂uε

∂x1
(t, x), . . . ,

∂uε

∂xn
(t, x)

)
and ψ := ([(ψ1ε)ε], . . . , [(ψnε)ε] ∈ (G( J × R

n × R
n))n .

Applying (i), (iii), (II) and Theorem 4.6, we know that given t ∈ J there are at > 0 with Iat (t) ⊂ J and X̃t ∈ G∗(Iat (t) ×
R

n;R
n) such that

∂ X̃t

∂s
= ψ ◦ (π,π1, . . . ,πn, X̃t) and X̃t |{t}×Rn = X |{t}×Rn .

Since J × R
n = ⋃

t∈ J Iat (t) × R
n and G∗(.,R

n) is a sheaf of vector spaces on R, there is X̃ ∈ G∗( J × R
n;R

n) such that

X̃|Iat (t)×Rn = X̃t for all t ∈ J . Hence X̃|{0}×Rn = X̃0|{0}×Rn = X |{0}×Rn = 1Rn and

∂ X̃

∂s
= ∂ H

∂ p
◦

(
π, X̃, u ◦ (π, X̃),

∂u

∂x1
◦ (π, X̃), . . . ,

∂u

∂xn
◦ (π, X̃)

)
.

Let Ũ := u ◦ (π, X̃) and P̃ = ( ∂u
∂x1

◦ (π, X̃), . . . , ∂u
∂xn

◦ (π, X̃)). Define (ϕε)ε ∈ (EM( J × R
n × R

n × R × Ω ′))n+1+n and ϕ as
in the proof of Proposition 5.1 (replacing J × V × Ω × I ′ × Ω ′ by J × R

n × R
n × R × Ω ′). Then we have(

∂ X̃

∂s
,
∂ Ũ

∂s
,
∂ P̃

∂s

)
= ϕ ◦ (π,π1, . . . ,πn, X̃, Ũ , P̃ );

( X̃, Ũ , P̃ )|{0}×Rn = (1Rn , f |Rn ,∇ f |Rn ).

This together with (ii) and Theorem 4.8 gives us ( X̃, Ũ , P̃ ) = (X, U , P ). Therefore u = U ◦ (π, X)−1. �
For the case Ω = Ω ′ = R

n and I ′ = R we have the following theorem of existence and uniqueness of solution to the
HJ-Problem.

Theorem 5.3 (Existence and Uniqueness Theorem). Assume that the following statements are true:

(i) f ∈ G∗(Rn;R);
(ii) (∂α fε)ε is bounded on R

n, ∀α ∈ N
n with 1 � |α| � 2;

(iii) (∂γ Hε)ε is bounded on I × R
n+1+n, ∀γ ∈ N

1+n+1+n with |γ | � 2 and γ = (0, γ1, . . . , γn, γn+1, γn+2, . . . , γ2n+1);
(iv) (∂γ Hε)ε is bounded on I × R

n+1+n, ∀γ ∈ N
1+n+1+n with |γ | = 2 and γ = (1,0, . . . ,0,0, γn+2, . . . , γ2n+1).

Then the HJ-Problem has a unique solution in G(Ia × R
n), for some a > 0, satisfying the assertions (I) and (II) of Theorem 5.2.

Proof. Let (ϕε)ε ∈ (EM(I ×R
n ×R

n ×R×R
n))n+1+n and ϕ be as in the proof of Proposition 5.1 (replacing J × V ×Ω × I ′ ×Ω ′

by I × R
n × R

n × R × R
n).

Define (gε)ε := ((g1ε, . . . , g(2n+1)ε))ε ∈ (EM(Rn))n+1+n by

gε(z) = (
z, fε(z),∇ fε(z)

)
and g := ([(g1ε)ε], . . . , [(g(2n+1)ε)ε]) ∈ (G(Rn))n+1+n .

Applying (i), (ii), (iii) and Remark 4.7 there are a∗ > 0 with Ia∗ ⊂ I and (X, U , P ) ∈ G∗(Ia∗ × R
n;R

n+1+n) for which there
are (Xε)ε := ((X1ε, . . . , Xnε))ε , (Uε)ε , (Pε)ε := ((P1ε, . . . , Pnε))ε and τ ∈ ]0,1] satisfying

X = ([
(X1ε)ε

]
, . . . ,

[
(Xnε)ε

]); U = [
(Uε)ε

]
, P = ([

(P1ε)ε
]
, . . . ,

[
(Pnε)ε

]);(
∂ Xε

∂s
,
∂Uε

∂s
,
∂ Pε

∂s

)
= ϕε ◦ (πε,π1ε, . . . ,πnε, Xε, Uε, Pε) on Ia∗ × R

n, ∀ε ∈ ]0, τ [;(
Xε(0, r), Uε(0, r), Pε(0, r)

) = gε(r), ∀(ε, r) ∈ ]0, τ [ × R
n;(

∂α Xiε
)
ε
,
(
∂αUε

)
ε
,
(
∂α Piε

)
ε

are bounded on Ib × R
n, ∀b ∈ ]0,a∗[,

∀α := (0,α1, . . . ,αn) ∈ N
1+n with |α| = 1 and ∀1 � i � n.



R. Fernandez / J. Math. Anal. Appl. 382 (2011) 487–502 501
Fix b ∈ ]0,a∗[. Define (Yε)ε := ((Y1ε, . . . , Y(n+1)ε))ε ∈ (EM(Ib × R
n))1+n by Yε(s, r) := (s, Xε(s, r)), Y := ([(Y1ε)ε], . . . ,

[(Y(n+1)ε)ε]) ∈ (G(Ib × R
n))1+n and (lε)ε ∈ (EM(Ib × R

n))n by lε(s, r) := Xε(s, r) − r.
Note that, for all (ε, s, r) ∈ ]0,1] × Ib × R

n , one has Yε(s, r) = (s, lε(s, r) + r) and

lε(s, r) =
s∫

0

∂ Hε

∂ p

(
t, Xε(t, r), Uε(t, r), Pε(t, r)

)
dt.

Then, by (iii), (iv), Proposition 2.3 and Remark 2.4, there is a > 0 with Ia ⊂ Ib such that:

Y |Ia×Rn ∈ G∗(Ia × R
n; Ia × R

n) and it is an invertible mapping;
there is a moderate net (Γε)ε := ((Γ1ε, . . . ,Γ(n+1)ε))ε satisfying

(Y |Ia×Rn )−1 = ([
(Γ1ε)ε

]
, . . . ,

[
(Γ(n+1)ε)ε

]);
Γε = (Yε|Ia×Rn )−1 for all ε ∈ ]0, τ1[, for some τ1 ∈ ]0, τ [;(
∂αΓε

)
ε

is bounded on Ia × R
n, ∀α ∈ N

1+n with |α| = 1.

Hence (X, U , P )|Ia×Rn ∈ S(I,R
n,R,R

n, H, f , Ia, Ia × R
n). Thus, from (iii) and Theorem 3.2, one has that u = U ◦ (Y |Ia×Rn )−1

is a solution to the HJ-Problem in G(Ia × R
n) and ( ∂u

∂x1
, . . . , ∂u

∂xn
) = P ◦ (Y |Ia×Rn )−1.

Clearly u satisfies the requirements of our proposition. The uniqueness is a consequence of Theorem 5.2 (note that the
hypothesis (ii) of Theorem 5.2 is obtained from the Mean Value Theorem and (iii)). �

We conclude our work by providing some ( fε)ε and (Hε)ε that satisfy the assumptions of previous theorem.

Example 5.4. Let μ,ν ∈ R
n]0,1]

and ϕ,Ψ ∈ C∞(R;R
n) such that μ, ν , ϕ , ϕ′ , Ψ , Ψ ′ and Ψ ′′ are bounded. Suppose μ :=

(μ1, . . . ,μn), ν := (ν1, . . . , νn), ϕ := (ϕ1, . . . , ϕn) and Ψ := (Ψ1, . . . ,Ψn). If ( fε)ε ∈ EM(Rn) is given by

fε(r1, . . . , rn) :=
n∑

j=1

r j∫
0

ϕ j
(
μ j(ε)s

)
ds

and (Hε)ε ∈ EM(I × R
n+1+n) is one of the following nets:

Hε(t, x1, . . . , xn, y, p1, . . . , pn) :=
n∑

j=1

Ψ j
(
ν j(ε)(t + x j + y + p j)

);
Hε(t, x1, . . . , xn, y, p1, . . . , pn) :=

n∑
j=1

ν j(ε)Ψ j(t + x j + y + p j),

then ( fε)ε and (Hε)ε satisfy the assumptions of Theorem 5.3.

For the next example consider the following embedding of space of Schwartz distributions D′(Rm) into G(Rm) (see [9]):
Take ρ ∈ S(Rm) even such that∫

Rm

ρ(x)dx = 1;
∫

Rm

xpρ(x)dx = 0, ∀p ∈ N
m \ {0}

and χ ∈ C∞(Rm) such that 0 � χ � 1, χ ≡ 1 on B1(0) and χ ≡ 0 on R
m \ B2(0). Define

ρε(x) := 1

εm
ρ

(
x

ε

)
, ∀ε ∈ ]0,1], ∀x ∈ R

m;
θε(x) := ρε(x)χ

(
x
∣∣log(ε)

∣∣), ∀ε]0,1[; θ1 ≡ 1.

Let iD′ : D′(Rm) → G(Rm) given by iD′ (T ) = [(T ∗ θε)ε]. We recall that (T ∗ θε)(w) = T (x 
→ θε(w − x)).
For g ∈ C(Rm) denote by T g the distribution

T g : ϕ ∈ D
(
R

m) 
→
∫
m

g(x)ϕ(x)dx
R
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and by (T gε)ε the representative of iD′(Rm)(T g) defined by

T gε(w) :=
∫

Rm

g(x)θε(w − x)dx, ∀w ∈ R
m.

Note that, if g ∈ C(Rm) is globally Lipschitz-continuous, then there is L > 0 such that∥∥T gε(z) − T gε(w)
∥∥ � L‖z − w‖, ∀z, w ∈ R

m, ∀ε ∈ ]0,1].
Thus (

∂αT gε

)
ε

is bounded, ∀α ∈ N
m with |α| = 1.

From the above definitions and notations we have the following:

Example 5.5. Let h ∈ C(R), g ∈ C 1(Rn) and Ψ ∈ C 1(Rn+1+n) such that

(i) h and Ψ are bounded;
(ii) h, g and Ψ are globally Lipschitz-continuous;

(iii) ∂α g is globally Lipschitz-continuous, for all α ∈ N
n with |α| = 1;

(iv) ∂γ Ψ is globally Lipschitz-continuous, for all γ ∈ N
n+1+n with |γ | = 1.

Define ( fε)ε := (T gε)ε and (Hε)ε by

Hε(t, x1, . . . , xn, y, p1, . . . , pn) := Thε(t)TΨε(x1, . . . , xn, y, p1, . . . , pn).

Then the HJ-Problem, for f := [( fε)ε] and H := [(Hε)ε], has a unique solution in G(Ia × R
n), for some a > 0, satisfying the

assertions (I) and (II) of Theorem 5.2 (see Theorem 5.3).
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