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1. Introduction

In this note we introduce the notion of strong uniqueness sets for Banach function algebras A and compare this class
of sets with the recently introduced t-analytic sets for A. Recall that a subset E of the spectrum M(A) of A is said to
be t-analytic (denoted by E € &), if for every f € A and every open set U in M(A) with UNE # @ one has f=0 on E
whenever f =0 on ENU. For example the empty set and every singleton is a t-analytic set. Also, each point in M(A) is
contained in a maximal, though not necessary unique, t-analytic set (see [2]).

A non-void set E C M(A) is called a uniqueness set for A, if for every f and g in A, f =g whenever f and g coincide
on E. If this property also holds locally, that is, if for every open set U in M(A) with UNE # @, flune = glune implies
f =g, then we say that E is a strong uniqueness set for A. The set of strong uniqueness sets for A is denoted by % .

It is clear that any strong uniqueness set is a t-analytic set. These classes are different though, since for example a
singleton {x}, known to be t-analytic, is a strong uniqueness set if and only if M(A) = {x} (and so A = C({x}) = C). We
remark that a t-analytic set E is a strong uniqueness set if and only if the hull-kernel closure Eof E equals M(A). Recall
that E is the zero set (or hull) of the ideal

I(E,A)={f € A: flg=0}.

The concept of t-analytic sets, originally considered only for open sets in [1] in connection with local/restricted decom-
posability of multiplication operators on commutative, semisimple Banach algebras, was first given in this generality in [2].
It turned out that it has a surprising connection to closed prime ideals: if E € M(A) is a t-analytic set for A, then the ideal
I(E, A) is a closed prime ideal. We also unveiled the connection of t-analytic sets with ideals of the form

J(x, A)={f € A: f vanishes identically on a neighborhood of x in M(A)},

that appear in problems on spectral synthesis for Banach function algebras (see for example [5]). In fact, if E € o and x € E,
then E is contained in the zero set ka(x) of the ideal J(x, A).
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A description of the t-analytic sets in concrete algebras seems to be a very hard problem. At the moment, such a
characterization is only known for the disk-algebra and general regular function algebras (see [2]). In the present paper we
will be concerned with the t-analytic sets in the algebra H* of bounded analytic functions in the open unit disk D and
its associated Sarason algebra H* + C of sums of boundary values of functions in H* and (complex-valued) continuous
functions on the unit cicle T. We assume that the reader is familiar with the structure of the maximal ideal spaces of these
algebras (see [4]).

First results in this direction were given in [2]. For example, it is known [2] that in H*® + C the t-analytic sets are very
small. In fact, if E is a t-analytic set for H® + C then, due to the fact that E C kyoc(x) for some x € E, the set E is
nowhere dense and contained in a single fiber.

The situation for H* is quite different. Here kg~ (x) equals M(H*) for every x € M(H®). Moreover, t-analytic sets for
H® may be big. For example, the unit disk D is a t-analytic set for H*. Hence, by the corona theorem, the whole spectrum
M(H®®) is the maximum t-analytic set for H*°. But also the Shilov boundary, dH®°, of H* is a t-analytic set for H*. Or the
uniqueness set [0, 1[. On the other hand, the uniqueness set [0, 1[ U {—1/2} is not t-analytic. Neither the corona M(H*°)\ D
is a t-analytic set for H®°.

A way for comparing t-analytic sets for H* with those of H* + C comes from the fact that the spectrum M(H*> + C)
of H* + C can be identified with the corona M(H*) \ D of D in M(H®). Also, the Shilov boundaries for H* and H* + C
coincide and can be identified with M(L*), the maximal ideal space of the algebra of (equivalence classes) of Lebesgue
measurable and essentially bounded functions on T.

Natural questions now arise. For instance, which t-analytic sets for H* + C are t-analytic for H*? Are there essentially
other t-analytic sets for H* besides those mentioned above? Can we describe all the strong uniqueness sets for H*,
respectively H* + C?

In this paper we give answers to these questions.

We conclude the introduction with some additional notations used throughout the paper. For a Banach function alge-
bra A, we always consider A as a set of continuous functions that live on M(A).

If feA,then Z(f)={xe M(A): f(x) =0} is the zero set of f.If I is an ideal in A, then Z(I) = ﬂde(f) is the zero

set (or hull) of I. The interior of a subset E of a topological space X will be denoted by E°; its closure by E. If X € M(A),
then Zx(f) = Z(f) N X.

2. Some general facts on strong uniqueness sets

In this section we present some general, topological properties of the class % of strong uniqueness sets. Although the
proofs are straightforward, we present them for completeness.

The first question that raises, is whether %/ is stable with respect to taking closures; a property enjoyed by the class of
t-analytic sets for A (see [2]). The same property now is valid for the class of strong uniqueness sets:

Observation 2.1. Let A be a Banach function algebra. Then E C M(A) is a strong uniqueness set for A, that is E € %, if and only if
Eew.

Proof. Assume that E € % . Let U € M(A) be open, UNE #,and let f=0on UNE.Then UNE#® and f =0 on UNE.
Hence f is the zero function. Thus E € % .

Conversely, let E € % . Let U € M(A) be open, UNE ##, and f =0 on UNE. Then the openness of U and the continuity
of f imply that f =0 on U NE. Hence f is the zero function, too. Thus E € %. O

As an immediate consequence we have
Observation 2.2. Let E C F C E. Then F € % whenever E € % .

Observation 2.3. Let E € %/ and suppose that F is closed. Then E \ F € %/ U{@}. In other words, every non-void relatively open subset
of a strong uniqueness set belongs to %, too.

Whereas the set o7 of t-analytic sets always contains the empty set and the singletons, its subset %/ of strong unique-
ness sets may be void. Indeed, this happens quite frequently, as the following result shows.

Observation 2.4. If the set of strong uniqueness sets for a Banach function algebra is not empty, then the spectrum of A is connected.

Proof. We show the contraposition. Suppose that M(A) is disconnected. Then there are two disjoint, non-void open-closed
sets S1 and S, such that S; U Sy, = M(A). Let E € M(A). Without loss of generality, we may assume that E N Sy # @. By
Shilov's idempotent theorem (see [3, p. 88]), there is a function f € A such that f=1 on S; and f =0 on S,. Now we
choose U = S,. Then U is open, f =0 on UNE, but f is not the zero function. Hence E ¢ %. O
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Fig. 1. An instructive example.

Of course the connectivity condition above is far from being sufficient for % to be non-empty. In fact, Z =@ for any
regular algebra strictly containing C. But %/ may be empty, too, for other algebras with connected spectrum, as for example
H® 4 C (see Theorem 3.1).

Observation 2.5.

(1) If M(A) is not a strong uniqueness set, then there exists x € M(A) such that k4 (x) ; M(A).
(2) If % = @, then the set of points x for which k4 (x) g M(A), is dense in M(A).

Proof. (1) Since M(A) ¢ % there exists a non-void open set V € M(A) and f € A such that f =0 on V but f # 0. Hence,
for any x € V, we have ka(x) & M(A).

(2) Let @+ V be open in M(A). Since % =, V ¢ % . Hence there is a second open set V' such that VNV’ #¢ and a
non-constant function f € A such that f=0o0n V NV’. Thus any x € V NV’ has the property that k4(x) S M(A). O

Observation 2.6. If for every x € M(H®®), k (x) is a proper subset of M(A), then % = (.

Proof. Let ) # E C M(A). Choose x € E. Since ka(x) # M(A), there exist y € M(A) \ ka(x) and a function f € J(x, A) with
f(y) #0. Hence ENZ(f)° # 0, but f 0. Therefore, E is not a strong uniqueness set. 0

Whereas the union of two t-analytic sets is, in general, not t-analytic (even if they are non-disjoint and connected)
(see [2]), we have the following result concerning the subclass of strong uniqueness sets.

Observation 2.7. Any union of strong uniqueness sets in a Banach function algebra is a strong uniqueness set again.

Proof. Let E, € %, and set E = | J E,. Note that strong uniqueness sets are never empty. Let U be open and suppose that
f=0on UnNE. We assume that this last set is non-empty. Hence there exists « such that U N Ey # @. Since f =0 on
U N E, our hypothesis implies that f =0. Thus E€c %. O

The class %, though, is not stable with respect to intersections; even if those intersections are non-empty. For exam-
ple, [-1,0] and [0, 1] are strong uniqueness sets for the disk-algebra A(ID), but their intersection not. As a corollary to
Observation 2.7 we obtain:

Observation 2.8. Let A be a Banach function algebra for which % +# (. Then there exists a biggest strong uniqueness set.

Note that in the class of t-analytic sets for A there always exist maximal elements; but, in general, no maximum
t-analytic set (see [2]).

In [2, Example 2.4], an example of a compact set K = K7 U K, € C is given which shows that for the algebra A = A(K)
of all functions continuous on K and holomorphic in the interior K° of K, K1 and K, are (non-disjoint) maximal t-analytic
sets. Moreover, ka(z) = K = M(A) for every z € K1 and ks (z) = K> g M(A) for any z € K, \ K. Here we can now add that
K, is the maximum strong uniqueness set for A(K) (see Fig. 1).

Observation 2.9. Let A be a Banach function algebra for which % +# (. Then the biggest strong uniqueness set, Enax, is also a maximal
t-analytic set.

Proof. Obviously Emax is t-analytic. Now let Enqax € E for some t-analytic set E. We show that E € % . Let U be open,
UNE # @, and suppose that f =0 on UNE. Since E is t-analytic, f =0 on E. In particular f =0 on Epax. But Epax = M(A).
Hence f =0 and so E € % . The maximality of Eya.x now implies that E = Epax. O
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3. Strong uniqueness sets and t-analytic sets for H* + C

In order to be able to compare the different situations for both of the algebras H* and H*> + C, we start with the
following results from [2]; excepted item (4). Recall that a thin point x € M(H*) \ D is any point lying in the M(H*)-
closure of a sequence (z;) € DN satisfying

o0
lim ) =
j_)ool_[p(zn»zj) 1,
n#j

where p(z, w) =|(z— w)/(1 —zw)]| is the pseudohyperbolic distance. Moreover, P(x) is the Gleason part associated with a
point x € M(H® 4+ C). The zero sets kyo,c(x) of the ideals I(x, H* + C) are called k-hulls and will be denoted by k(x). See
[5-7] for a detailed study of these k-hulls.

Theorem 3.1.

(1) Let E be a t-analytic set for H*® + C and suppose that x € E. Then E C k(x).

(2) Ifthe t-analytic set E meets the Shilov boundary of H* + C, then E is a singleton.

(3) If E is a maximal t-analytic set containing the thin point x, then E = P (x).

(4) There are no strong uniqueness sets for H> + C.

Proof. (4) This follows from the Observation 2.6 and the fact that for each x € M(H*® + C), k(x) # M(H®* + C) (see [5]). O

It is conjectured that in H* + C all maximal t-analytic sets and all hull-kernel closed t-analytic sets with cardinal bigger
than two are given by the closures of Gleason parts (see [2]).

4. t-Analytic sets for H*

In [2] it was implicitly shown that in the disk-algebra the class of t-analytic sets with cardinal bigger than two and the
class of strong uniqueness sets coincide. In H*, the class of t-analytic sets containing more than one point is much bigger
than % . For instance, the closure of any non-trivial Gleason part in the corona of H* is t-analytic, but obviously not a
uniqueness set (see [2]).

However, if the set E meets the Shilov boundary, dH*°, of H®°, then the result just mentioned for A(ID) remains valid.

Proposition 4.1. A non-void set E € M(H®) with E N dH™ # @ is t-analytic for H* if and only if E is either a singleton or a strong
uniqueness set.

Proof. One direction being obvious, we need only show that every t-analytic set E with E N 3dH® # ( and containing
at least two points is a strong uniqueness set for H*. In fact, by [2], the ideal I(E, H*) is a closed prime ideal. By [8,
Theorem 3.3], any non-zero closed prime ideal whose hull meets the Shilov boundary, is maximal. Thus I(E, H*) = {0}
whenever E contains at least two points. Hence E is a strong uniqueness set in that case. O

In what follows, let & denote the lifted Lebesgue measure defined on the Borel sets of the extremely disconnected set
M(L®®) (see [3, p. 17]). Recall that for any f € L*°®

/ fdo = / fdé,

T M(L%)
and that 6 (B°) = 6 (B) = & (B) for any Borel set B C M(L>). Here j‘ is the Gelfand transform of f € L*°. The characteristic
function of a set S C T is denoted by xs. Similarly for sets in M(L®°). It is well known that the sets

{(Xs =1} :={xe M(L*®): xs(x) =1},

S € T Lebesgue-measurable, form a basis of closed-open sets for the topology on M(L*°) (see [3, p. 17]).

Let Q C be the algebra of quasi-continuous functions on T; that is Q C is the biggest C*-subalgebra of H*>® + C. Moreover,
let QA= QCNH™>. See [9,10] for a thorough study of these algebras.

The following lemma has been communicated to me by Keiji Izuchi.

Lemma 4.2. Let E be a non-void closed subset of M(L*) with 6 (E) = 0. Then there exists a non-constant function f € H* such that
f=0onkE.
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Proof. Let K, be a sequence of closed-open sets in M (L) satisfying

E C Kns1 € Kn

and 6 (K,) — 0. Let

F=)"(1— i)/

n=1

Then F € C(M(L™)). Hence there is g € L such that § = F. Moreover,

o0
F=0 onP::ﬂKn.

n=1

Note that E C P and that & (P) = 0. By Wolff [10, Theorem 1], there is a non-zero f € Q A such that fF € QC. Then, with
X =M(L>),

Zx(fF)=Zx(f)UZx(F)=Zx(f)UP.

Since zero-sets of Q C-functions have lifted Lebesgue measure 0 (on M(Q C)), we deduce from [10, Lemma 2.3] that Zx(f)U
P is a weak peak interpolation set for Q A. Hence there is a non-constant g € Q A such that g=0on Zx(f)UP2DE. O

Theorem 4.3. Let E be a non-void closed subset of 9 H*. The following assertions are equivalent:

(1) E is a strong uniqueness set for H*;
(2) For every Lebesgue measurable set S C T with strictly positive Lebesgue measure either 5 (EN{{s =1}) > 00orEN{)s =1} =0.

In particular, JH*® € % .

Proof. (2) =— (1): Let U € M(H®) be any open set with UNE # (. Let x € U N E. Then there is a Lebesgue measurable set
S C T with o(S) > 0 such that

xe{fs=1}SUNM(L™®).

Hence ## EN{xs =1} C ENU. Suppose that for some fe€ H*®, f=0o0n ENU. Then f =0 on EN{xs =1}, too. Now we
use that for any f € H* \ {0}, Z(f) N dH* has lifted Lebesgue measure 0. Our hypothesis that 6 (E N {xs = 1}) > 0 now
implies that f is the zero function in H*°. Hence E € % .

(1) = (2) will be proven via contraposition. So suppose E C dH*® = M(L*) satisfies E N {}s = 1} # @, but

G(EN{xs=1})=0

for some measurable set S C T of positive Lebesgue measure. By Lemma 4.2, there is a non-constant f € H>* with f =0
on EN{xs=1}. Hence E cannot be a strong uniqueness set for H*. O

[s it possible to give a description of the strong uniqueness sets E in d H> using only properties of H* when viewed as
a set of functions defined on T?

For example let S be a measurable subset of T. Then S is a ‘strong uniqueness set’ for H*| if and only if (SN 1) >0
for every open arc I € T with S NI # @. Which relations can one expect between S and E?

Next we compare the t-analytic sets for H* and H* + C.

Lemma 4.4. Let x € M(H® + C). Denote the identity function on T by z. Then the k-hull k(x) of x is contained in a single fiber
M, ={meM(H® +C): m(z) =1},

Al =1.

Proof. The assertion follows from the facts that k(x) is contained in a unique C(T)-level set

Ey={meM(H® +C): m(f) = f(») forevery f € C(T)}

which coincides with the fibers. O
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We shall need several times the following lemma, whose first assertion is a special case of [5, Lemma 2.4].

Lemma 4.5. Let x € M(H*® + C) \ dH®°. Then the ideal J(x, H* + C) is algebraically generated by Blaschke products. Moreover, k(x)
is hull-kernel closed in H*°.

Proof. Since | := J(x, H* + () is generated by Blaschke products, we have that k(x) = (5. 1 Z(B). Accordingly, for every
y € M(H®) \ k(x) there exists a Blaschke product B with B € J, hence B =0 on k(x), but B(y) # 0. Thus k(x) is hull-kernel
closed in H®. O

Lemma 4.6. Let E C M(H®°) \ D be a t-analytic set for H*° and let x € E \ dH*°. Then E C k(x).

Proof. By Lemma 4.4, k(x) is contained in a single fiber. In particular, M(H*® + C) \ k(x) £ @. So let y € M(H* + C) \ k(x).
Since x ¢ dH®, by Lemma 4.5, there is a Blaschke product B € J(x, H* + C) such that B(y) # 0. In particular B =0 on an
open set U in M(H® + C) with x € U. Note that ENU # (. Choose an open set V in M(H®°) such that U =V NM(H* +C).
Then B=0on ENV =ENU. Since E is t-analytic for H*>, we conclude that y ¢ E. Hence E Ck(x). O

Corollary 4.7. Let E € M(H*) \ D be a t-analytic set for H*®. Then E either is entirely contained in the Shilov boundary or in
M(H*® + C)\ dH®.

Proof. Assume that there is x € E\ 9H*. By the Observation 2.1, E is t-analytic. Hence, by Lemma 4.6, E C k(x). By [5],
k(x) N9H® =@. Thus E does not meet dH*®. O

Theorem 4.8. Let E be a set in M(H®®) \ D that does not meet the Shilov boundary of H*>. Then E is t-analytic for H* if and only if
E is t-analytic for H* + C.

Proof. If E is t-analytic for H* + C, then it is easily seen that E is t-analytic for H*. Indeed, it suffices to observe that any
open set U in M(H®) induces the open set U N M(H®* + C) in M(H*® + C).

Conversely, let E C M(H®* + C) be t-analytic for H* with EN3dH*> = (. Let f € H* + C vanish identically on E N £2
for an open set £2 € M(H® 4 C) with EN §2 # (. Let x € E. Since EN9dH* = we may use Lemma 4.6 to conclude that
E C k(x). Moreover, by Lemma 4.4, k(x) is contained in a single fiber M;. Now on fibers, (H* + C)|y, = H*|pm, . Thus we
may choose F € H* such that F = f on M,. Now for any open set W in M(H*) with W N M(H* + C) = §2, we have
F=0on WNE.Since E is t-analytic for H*, F=0 on E and so does f. Hence E is t-analytic for H° +C. O

Recall that a point x € E C X, X a topological space, is said to be an isolated point (for E), if there exists an open
neighborhood U of x such that U N E = {x}.

Proposition 4.9. Let E be a subset of ID. Suppose that E contains more than one point. Then the following assertions are equivalent:

(1) E is a strong uniqueness set for H*;
(2) E is t-analytic for H*;
(3) E does not contain any isolated point.

Proof. (1) — (2) trivial.

(2) = (3) Suppose to the contrary that zg € E is an isolated point. The function z — zo then vanishes in a relative open
neighborhood of E, but not at any other point. Thus E is no longer a t-analytic set.

(3) = (1) This follows immediately from the fact that the zeros of non-constant holomorphic functions are discrete
(inD). O

We note that the implication (2) = (3) holds true in any function algebra; this is a special case of [2, Corollary 4.11].
Theorem 4.10. Let E be a t-analytic set for H* such that E N D # @. Then
ECOH®UEND.
Proof. Suppose contrariwise that there is some x € E\ dH® and x ¢ END. Let zg € E NID. Choose, as in Lemma 4.6, a
Blaschke product B such that B vanishes identically on a neighborhood U* of x in M(H®* + C). Let the open subset U of U*

satisfy x e U and U NE ND = @. We may also assume that B(zg) # 0 (otherwise we just delete the zero zg). Let V € M(H*)
be open with VN MH® +C)=U, zo¢ V and VNEND =¢. Note that E\ (END) C M(H* + C). Then
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VNE=VNE\END)=VN(E\END)NM(H®+C)
=UN(E\END)=WUNE)\END=UNE.

Hence B=0 on V NE, but B(zp) # 0. Accordingly, E is not t-analytic. O
As an immediate corollary we have the following corona-type theorem.
Corollary 4.11. Let E be a closed t-analytic set for H> with END # @ and ENJH*> = @. Then E = E N D.

Let us note that the set of non-closed t-analytic sets for H* is very huge. For example, in view of Observation 2.2 one
has that for all S € M(H* + C) the set DU S is a strong uniqueness set for H.

Theorem 4.12. Let E C M(H®®) and suppose that E NID # @ or E € 9 H*°. Then the following assertions are equivalent:

(1) E is a strong uniqueness set for H*;
(2) E is t-analytic for H* and contains more than one point.

Proof. (1) — (2) is trivial. By Proposition 4.1, (2) = (1) whenever E C dH*. Now suppose that END # ¢ and that
E contains more than one point. As previously mentioned, the t-analyticity of E implies that E N 1D does not contain any
isolated point. Hence, by Proposition 4.9, E N DD is a strong uniqueness set. By Observation 2.1, this implies that END is
in %, too. Consider now the set

S:=E\END.

If S=¢, then EC END. Hence END C E C END. Since END € %, we have, by Observation 2.2, that E € % .

Let us now assume that S # (. By Theorem 4.10, S € dH. Note that S is not a singleton, since otherwise E would
contain an isolated point. This would contradict the fact that E is t-analytic.

We are going to show that S is t-analytic. Let U be an open set in M(H*) with UNS # ¥ and let f € H* be such that
f=0o0n UNS. By passing to a subset, we may assume that UNEND =, but still UN S # #. Hence UN S =U N E. Since
E is t-analytic, we get that f =0 on E. In particular, f =0 on S. Thus S is t-analytic. By Proposition 4.1, S is in %/. By the
Observation 2.7, SUEND € % . Since E =S UE ND, we conclude that E€ %. O

Let & denote the class of subsets F of D that do not contain any isolated points, let %, denote the class of those
strong uniqueness sets for H> that are closed. The following concluding theorems sum up the different situations dealt
with above.

Theorem 4.13. Let E € M(H™) be closed. Then E € %. U {8} if and only if E = K U F, where F € % and where K C dH*® is a
closed set such that for every Lebesgue measurable set S C T with strictly positive Lebesgue measure either 6 (K N {}s =1}) > 0 or
KN{xs=1}=40.

Proof. Let E =K UF, where K and F satisfy the conditions above. By Theorem 4.3, K € % whenever K # . By Proposi-
tion 4.9, F € % whenever F # (). By the Observation 2.7, E € % .

Conversely, let E € %,. We discuss two cases:

Case 1. EN D # @. Since strong uniqueness sets do not contain isolated points, E N D € %#. Hence, by Proposition 4.9,
END e % . Moreover, by Observation 2.1, END € % . If END = E, then we are done. So suppose that END ; E. By the
Observation 2.3, E\END € %, and so again,

K:=E\ENDe%.

But by Theorem 4.10, K € dH®. Hence we can conclude from Theorem 4.3 that K has the desired property. Since E = FUK,
where F = E N D, we are done.

Case 2. END =@. Corollary 4.7 implies that either E C dH*, or E N dH® = {#. We shall see that the hypotheses E € %
implies that the second case does not occur. So suppose that E € M(H®* 4 C) \ dH*. Then, by Lemma 4.6, E C k(x) for
x € E. Hence the hull-kernel closure in M(H®) of E is contained in k(x), too (see Lemma 4.5). Since E is t-analytic, we
deduce that E cannot be a strong uniqueness set. Hence we must have that E C dH®°. Using Theorem 4.3 again, we see
that K := E has the property we wish. O
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Combining Theorems 4.3, 4.12 and 4.13, we get the following result.

Theorem 4.14. The class <7y of closed t-analytic sets for H* that meet D is given by oy = o1 U af, where

o = {{z0}: 20 €D},

and
oy ={KUF: 9#FCD, Fe #, KC0H®, K € % orK =0}.
Finally, a combination of Theorems 4.7, 4.8 and 4.12 yields:

Theorem 4.15. The class <7co; of closed t-analytic sets for H* contained in the corona M(H® +C) of H*® is given by /o = /53U <74,
where

a3 = {E: E t-analytic for H* + C}

and
oy ={E: ECOH™, E € %}.
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