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1. Introduction

In this note we introduce the notion of strong uniqueness sets for Banach function algebras A and compare this class
of sets with the recently introduced t-analytic sets for A. Recall that a subset E of the spectrum M(A) of A is said to
be t-analytic (denoted by E ∈ A ), if for every f ∈ A and every open set U in M(A) with U ∩ E �= ∅ one has f ≡ 0 on E
whenever f ≡ 0 on E ∩ U . For example the empty set and every singleton is a t-analytic set. Also, each point in M(A) is
contained in a maximal, though not necessary unique, t-analytic set (see [2]).

A non-void set E ⊆ M(A) is called a uniqueness set for A, if for every f and g in A, f = g whenever f and g coincide
on E . If this property also holds locally, that is, if for every open set U in M(A) with U ∩ E �= ∅, f |U∩E = g|U∩E implies
f = g , then we say that E is a strong uniqueness set for A. The set of strong uniqueness sets for A is denoted by U .

It is clear that any strong uniqueness set is a t-analytic set. These classes are different though, since for example a
singleton {x}, known to be t-analytic, is a strong uniqueness set if and only if M(A) = {x} (and so A = C({x}) ∼= C). We
remark that a t-analytic set E is a strong uniqueness set if and only if the hull-kernel closure Ê of E equals M(A). Recall
that Ê is the zero set (or hull) of the ideal

I(E, A) = { f ∈ A: f |E ≡ 0}.
The concept of t-analytic sets, originally considered only for open sets in [1] in connection with local/restricted decom-

posability of multiplication operators on commutative, semisimple Banach algebras, was first given in this generality in [2].
It turned out that it has a surprising connection to closed prime ideals: if E ⊆ M(A) is a t-analytic set for A, then the ideal
I(E, A) is a closed prime ideal. We also unveiled the connection of t-analytic sets with ideals of the form

J (x, A) = {
f ∈ A: f vanishes identically on a neighborhood of x in M(A)

}
,

that appear in problems on spectral synthesis for Banach function algebras (see for example [5]). In fact, if E ∈ A and x ∈ E ,
then E is contained in the zero set kA(x) of the ideal J (x, A).
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A description of the t-analytic sets in concrete algebras seems to be a very hard problem. At the moment, such a
characterization is only known for the disk-algebra and general regular function algebras (see [2]). In the present paper we
will be concerned with the t-analytic sets in the algebra H∞ of bounded analytic functions in the open unit disk D and
its associated Sarason algebra H∞ + C of sums of boundary values of functions in H∞ and (complex-valued) continuous
functions on the unit cicle T. We assume that the reader is familiar with the structure of the maximal ideal spaces of these
algebras (see [4]).

First results in this direction were given in [2]. For example, it is known [2] that in H∞ + C the t-analytic sets are very
small. In fact, if E is a t-analytic set for H∞ + C then, due to the fact that E ⊆ kH∞+C (x) for some x ∈ E , the set E is
nowhere dense and contained in a single fiber.

The situation for H∞ is quite different. Here kH∞ (x) equals M(H∞) for every x ∈ M(H∞). Moreover, t-analytic sets for
H∞ may be big. For example, the unit disk D is a t-analytic set for H∞ . Hence, by the corona theorem, the whole spectrum
M(H∞) is the maximum t-analytic set for H∞ . But also the Shilov boundary, ∂ H∞ , of H∞ is a t-analytic set for H∞ . Or the
uniqueness set [0,1[. On the other hand, the uniqueness set [0,1[ ∪ {−1/2} is not t-analytic. Neither the corona M(H∞) \D
is a t-analytic set for H∞ .

A way for comparing t-analytic sets for H∞ with those of H∞ + C comes from the fact that the spectrum M(H∞ + C)

of H∞ + C can be identified with the corona M(H∞) \ D of D in M(H∞). Also, the Shilov boundaries for H∞ and H∞ + C
coincide and can be identified with M(L∞), the maximal ideal space of the algebra of (equivalence classes) of Lebesgue
measurable and essentially bounded functions on T.

Natural questions now arise. For instance, which t-analytic sets for H∞ + C are t-analytic for H∞? Are there essentially
other t-analytic sets for H∞ besides those mentioned above? Can we describe all the strong uniqueness sets for H∞ ,
respectively H∞ + C?

In this paper we give answers to these questions.
We conclude the introduction with some additional notations used throughout the paper. For a Banach function alge-

bra A, we always consider A as a set of continuous functions that live on M(A).
If f ∈ A, then Z( f ) = {x ∈ M(A): f (x) = 0} is the zero set of f . If I is an ideal in A, then Z(I) = ⋂

f ∈I Z( f ) is the zero

set (or hull) of I . The interior of a subset E of a topological space X will be denoted by E◦; its closure by E . If X ⊆ M(A),
then Z X ( f ) = Z( f ) ∩ X .

2. Some general facts on strong uniqueness sets

In this section we present some general, topological properties of the class U of strong uniqueness sets. Although the
proofs are straightforward, we present them for completeness.

The first question that raises, is whether U is stable with respect to taking closures; a property enjoyed by the class of
t-analytic sets for A (see [2]). The same property now is valid for the class of strong uniqueness sets:

Observation 2.1. Let A be a Banach function algebra. Then E ⊆ M(A) is a strong uniqueness set for A, that is E ∈ U , if and only if
E ∈ U .

Proof. Assume that E ∈ U . Let U ⊆ M(A) be open, U ∩ E �= ∅, and let f ≡ 0 on U ∩ E . Then U ∩ E �= ∅ and f ≡ 0 on U ∩ E .
Hence f is the zero function. Thus E ∈ U .

Conversely, let E ∈ U . Let U ⊆ M(A) be open, U ∩ E �= ∅, and f ≡ 0 on U ∩ E . Then the openness of U and the continuity
of f imply that f ≡ 0 on U ∩ E . Hence f is the zero function, too. Thus E ∈ U . �

As an immediate consequence we have

Observation 2.2. Let E ⊆ F ⊆ E. Then F ∈ U whenever E ∈ U .

Observation 2.3. Let E ∈ U and suppose that F is closed. Then E \ F ∈ U ∪{∅}. In other words, every non-void relatively open subset
of a strong uniqueness set belongs to U , too.

Whereas the set A of t-analytic sets always contains the empty set and the singletons, its subset U of strong unique-
ness sets may be void. Indeed, this happens quite frequently, as the following result shows.

Observation 2.4. If the set of strong uniqueness sets for a Banach function algebra is not empty, then the spectrum of A is connected.

Proof. We show the contraposition. Suppose that M(A) is disconnected. Then there are two disjoint, non-void open–closed
sets S1 and S2 such that S1 ∪ S2 = M(A). Let E ⊆ M(A). Without loss of generality, we may assume that E ∩ S2 �= ∅. By
Shilov’s idempotent theorem (see [3, p. 88]), there is a function f ∈ A such that f ≡ 1 on S1 and f ≡ 0 on S2. Now we
choose U = S2. Then U is open, f ≡ 0 on U ∩ E , but f is not the zero function. Hence E /∈ U . �
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Fig. 1. An instructive example.

Of course the connectivity condition above is far from being sufficient for U to be non-empty. In fact, U = ∅ for any
regular algebra strictly containing C. But U may be empty, too, for other algebras with connected spectrum, as for example
H∞ + C (see Theorem 3.1).

Observation 2.5.

(1) If M(A) is not a strong uniqueness set, then there exists x ∈ M(A) such that kA(x) � M(A).
(2) If U = ∅, then the set of points x for which kA(x) � M(A), is dense in M(A).

Proof. (1) Since M(A) /∈ U there exists a non-void open set V ⊆ M(A) and f ∈ A such that f ≡ 0 on V but f �≡ 0. Hence,
for any x ∈ V , we have kA(x) � M(A).

(2) Let ∅ �= V be open in M(A). Since U = ∅, V /∈ U . Hence there is a second open set V ′ such that V ∩ V ′ �= ∅ and a
non-constant function f ∈ A such that f ≡ 0 on V ∩ V ′ . Thus any x ∈ V ∩ V ′ has the property that kA(x) � M(A). �
Observation 2.6. If for every x ∈ M(H∞), kA(x) is a proper subset of M(A), then U = ∅.

Proof. Let ∅ �= E ⊆ M(A). Choose x ∈ E . Since kA(x) �= M(A), there exist y ∈ M(A) \ kA(x) and a function f ∈ J (x, A) with
f (y) �= 0. Hence E ∩ Z( f )◦ �= ∅, but f �≡ 0. Therefore, E is not a strong uniqueness set. �

Whereas the union of two t-analytic sets is, in general, not t-analytic (even if they are non-disjoint and connected)
(see [2]), we have the following result concerning the subclass of strong uniqueness sets.

Observation 2.7. Any union of strong uniqueness sets in a Banach function algebra is a strong uniqueness set again.

Proof. Let Eα ∈ U , and set E = ⋃
Eα . Note that strong uniqueness sets are never empty. Let U be open and suppose that

f ≡ 0 on U ∩ E . We assume that this last set is non-empty. Hence there exists α such that U ∩ Eα �= ∅. Since f ≡ 0 on
U ∩ Eα , our hypothesis implies that f ≡ 0. Thus E ∈ U . �

The class U , though, is not stable with respect to intersections; even if those intersections are non-empty. For exam-
ple, [−1,0] and [0,1] are strong uniqueness sets for the disk-algebra A(D), but their intersection not. As a corollary to
Observation 2.7 we obtain:

Observation 2.8. Let A be a Banach function algebra for which U �= ∅. Then there exists a biggest strong uniqueness set.

Note that in the class of t-analytic sets for A there always exist maximal elements; but, in general, no maximum
t-analytic set (see [2]).

In [2, Example 2.4], an example of a compact set K = K1 ∪ K2 ⊆ C is given which shows that for the algebra A = A(K )

of all functions continuous on K and holomorphic in the interior K ◦ of K , K1 and K2 are (non-disjoint) maximal t-analytic
sets. Moreover, kA(z) = K = M(A) for every z ∈ K1 and kA(z) = K2 � M(A) for any z ∈ K2 \ K1. Here we can now add that
K1 is the maximum strong uniqueness set for A(K ) (see Fig. 1).

Observation 2.9. Let A be a Banach function algebra for which U �= ∅. Then the biggest strong uniqueness set, Emax , is also a maximal
t-analytic set.

Proof. Obviously Emax is t-analytic. Now let Emax ⊆ E for some t-analytic set E . We show that E ∈ U . Let U be open,
U ∩ E �= ∅, and suppose that f ≡ 0 on U ∩ E . Since E is t-analytic, f ≡ 0 on E . In particular f ≡ 0 on Emax. But Êmax = M(A).
Hence f ≡ 0 and so E ∈ U . The maximality of Emax now implies that E = Emax. �
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3. Strong uniqueness sets and t-analytic sets for H∞ + C

In order to be able to compare the different situations for both of the algebras H∞ and H∞ + C , we start with the
following results from [2]; excepted item (4). Recall that a thin point x ∈ M(H∞) \ D is any point lying in the M(H∞)-
closure of a sequence (zn) ∈ DN satisfying

lim
j→∞

∞∏
n �= j

ρ(zn, z j) = 1,

where ρ(z, w) = |(z − w)/(1 − zw)| is the pseudohyperbolic distance. Moreover, P (x) is the Gleason part associated with a
point x ∈ M(H∞ + C). The zero sets kH∞+C (x) of the ideals I(x, H∞ + C) are called k-hulls and will be denoted by k(x). See
[5–7] for a detailed study of these k-hulls.

Theorem 3.1.

(1) Let E be a t-analytic set for H∞ + C and suppose that x ∈ E. Then E ⊆ k(x).
(2) If the t-analytic set E meets the Shilov boundary of H∞ + C, then E is a singleton.
(3) If E is a maximal t-analytic set containing the thin point x, then E = P (x).
(4) There are no strong uniqueness sets for H∞ + C.

Proof. (4) This follows from the Observation 2.6 and the fact that for each x ∈ M(H∞ + C), k(x) �= M(H∞ + C) (see [5]). �
It is conjectured that in H∞ + C all maximal t-analytic sets and all hull-kernel closed t-analytic sets with cardinal bigger

than two are given by the closures of Gleason parts (see [2]).

4. t-Analytic sets for H∞

In [2] it was implicitly shown that in the disk-algebra the class of t-analytic sets with cardinal bigger than two and the
class of strong uniqueness sets coincide. In H∞ , the class of t-analytic sets containing more than one point is much bigger
than U . For instance, the closure of any non-trivial Gleason part in the corona of H∞ is t-analytic, but obviously not a
uniqueness set (see [2]).

However, if the set E meets the Shilov boundary, ∂ H∞ , of H∞ , then the result just mentioned for A(D) remains valid.

Proposition 4.1. A non-void set E ⊆ M(H∞) with E ∩ ∂ H∞ �= ∅ is t-analytic for H∞ if and only if E is either a singleton or a strong
uniqueness set.

Proof. One direction being obvious, we need only show that every t-analytic set E with E ∩ ∂ H∞ �= ∅ and containing
at least two points is a strong uniqueness set for H∞ . In fact, by [2], the ideal I(E, H∞) is a closed prime ideal. By [8,
Theorem 3.3], any non-zero closed prime ideal whose hull meets the Shilov boundary, is maximal. Thus I(E, H∞) = {0}
whenever E contains at least two points. Hence E is a strong uniqueness set in that case. �

In what follows, let σ̂ denote the lifted Lebesgue measure defined on the Borel sets of the extremely disconnected set
M(L∞) (see [3, p. 17]). Recall that for any f ∈ L∞

∫

T

f dσ =
∫

M(L∞)

f̂ dσ̂ ,

and that σ̂ (B◦) = σ̂ (B) = σ̂ (B) for any Borel set B ⊆ M(L∞). Here f̂ is the Gelfand transform of f ∈ L∞ . The characteristic
function of a set S ⊆ T is denoted by χS . Similarly for sets in M(L∞). It is well known that the sets

{χ̂S = 1} := {
x ∈ M

(
L∞)

: χ̂S(x) = 1
}
,

S ⊆ T Lebesgue-measurable, form a basis of closed–open sets for the topology on M(L∞) (see [3, p. 17]).
Let Q C be the algebra of quasi-continuous functions on T; that is Q C is the biggest C∗-subalgebra of H∞ + C . Moreover,

let Q A = Q C ∩ H∞ . See [9,10] for a thorough study of these algebras.
The following lemma has been communicated to me by Keiji Izuchi.

Lemma 4.2. Let E be a non-void closed subset of M(L∞) with σ̂ (E) = 0. Then there exists a non-constant function f ∈ H∞ such that
f ≡ 0 on E.
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Proof. Let Kn be a sequence of closed–open sets in M(L∞) satisfying

E ⊆ Kn+1 ⊆ Kn

and σ̂ (Kn) → 0. Let

F =
∞∑

n=1

(1 − χKn )/n2.

Then F ∈ C(M(L∞)). Hence there is q ∈ L∞ such that q̂ = F . Moreover,

F ≡ 0 on P :=
∞⋂

n=1

Kn.

Note that E ⊆ P and that σ̂ (P ) = 0. By Wolff [10, Theorem 1], there is a non-zero f ∈ Q A such that f F ∈ Q C . Then, with
X = M(L∞),

Z X ( f F ) = Z X ( f ) ∪ Z X (F ) = Z X ( f ) ∪ P .

Since zero-sets of Q C-functions have lifted Lebesgue measure 0 (on M(Q C)), we deduce from [10, Lemma 2.3] that Z X ( f )∪
P is a weak peak interpolation set for Q A. Hence there is a non-constant g ∈ Q A such that g ≡ 0 on Z X ( f ) ∪ P ⊇ E . �
Theorem 4.3. Let E be a non-void closed subset of ∂ H∞ . The following assertions are equivalent:

(1) E is a strong uniqueness set for H∞;
(2) For every Lebesgue measurable set S ⊆ T with strictly positive Lebesgue measure either σ̂ (E ∩{χ̂S = 1}) > 0 or E ∩{χ̂S = 1} = ∅.

In particular, ∂ H∞ ∈ U .

Proof. (2) �⇒ (1): Let U ⊆ M(H∞) be any open set with U ∩ E �= ∅. Let x ∈ U ∩ E . Then there is a Lebesgue measurable set
S ⊆ T with σ(S) > 0 such that

x ∈ {χ̂S = 1} ⊆ U ∩ M
(
L∞)

.

Hence ∅ �= E ∩ {χ̂S = 1} ⊆ E ∩ U . Suppose that for some f ∈ H∞ , f ≡ 0 on E ∩ U . Then f ≡ 0 on E ∩ {χ̂S = 1}, too. Now we
use that for any f ∈ H∞ \ {0}, Z( f ) ∩ ∂ H∞ has lifted Lebesgue measure 0. Our hypothesis that σ̂ (E ∩ {χS = 1}) > 0 now
implies that f is the zero function in H∞ . Hence E ∈ U .

(1) �⇒ (2) will be proven via contraposition. So suppose E ⊆ ∂ H∞ = M(L∞) satisfies E ∩ {χ̂S = 1} �= ∅, but

σ̂
(

E ∩ {χ̂S = 1}) = 0

for some measurable set S ⊆ T of positive Lebesgue measure. By Lemma 4.2, there is a non-constant f ∈ H∞ with f ≡ 0
on E ∩ {χ̂S = 1}. Hence E cannot be a strong uniqueness set for H∞ . �

Is it possible to give a description of the strong uniqueness sets E in ∂ H∞ using only properties of H∞ when viewed as
a set of functions defined on T?

For example let S be a measurable subset of T. Then S is a ‘strong uniqueness set’ for H∞|T if and only if σ(S ∩ I) > 0
for every open arc I ⊆ T with S ∩ I �= ∅. Which relations can one expect between S and E?

Next we compare the t-analytic sets for H∞ and H∞ + C .

Lemma 4.4. Let x ∈ M(H∞ + C). Denote the identity function on T by z. Then the k-hull k(x) of x is contained in a single fiber

Mλ = {
m ∈ M

(
H∞ + C

)
: m(z) = λ

}
,

|λ| = 1.

Proof. The assertion follows from the facts that k(x) is contained in a unique C(T)-level set

Eλ = {
m ∈ M

(
H∞ + C

)
: m( f ) = f (λ) for every f ∈ C(T)

}
which coincides with the fibers. �



444 R. Mortini / J. Math. Anal. Appl. 385 (2012) 439–446
We shall need several times the following lemma, whose first assertion is a special case of [5, Lemma 2.4].

Lemma 4.5. Let x ∈ M(H∞ + C) \ ∂ H∞ . Then the ideal J (x, H∞ + C) is algebraically generated by Blaschke products. Moreover, k(x)
is hull-kernel closed in H∞ .

Proof. Since J := J (x, H∞ + C) is generated by Blaschke products, we have that k(x) = ⋂
B∈ J Z(B). Accordingly, for every

y ∈ M(H∞) \ k(x) there exists a Blaschke product B with B ∈ J , hence B ≡ 0 on k(x), but B(y) �= 0. Thus k(x) is hull-kernel
closed in H∞ . �
Lemma 4.6. Let E ⊆ M(H∞) \ D be a t-analytic set for H∞ and let x ∈ E \ ∂ H∞ . Then E ⊆ k(x).

Proof. By Lemma 4.4, k(x) is contained in a single fiber. In particular, M(H∞ + C) \ k(x) �= ∅. So let y ∈ M(H∞ + C) \ k(x).
Since x /∈ ∂ H∞ , by Lemma 4.5, there is a Blaschke product B ∈ J (x, H∞ + C) such that B(y) �= 0. In particular B ≡ 0 on an
open set U in M(H∞ + C) with x ∈ U . Note that E ∩ U �= ∅. Choose an open set V in M(H∞) such that U = V ∩ M(H∞ + C).
Then B ≡ 0 on E ∩ V = E ∩ U . Since E is t-analytic for H∞ , we conclude that y /∈ E . Hence E ⊆ k(x). �
Corollary 4.7. Let E ⊆ M(H∞) \ D be a t-analytic set for H∞ . Then E either is entirely contained in the Shilov boundary or in
M(H∞ + C) \ ∂ H∞ .

Proof. Assume that there is x ∈ E \ ∂ H∞ . By the Observation 2.1, E is t-analytic. Hence, by Lemma 4.6, E ⊆ k(x). By [5],
k(x) ∩ ∂ H∞ = ∅. Thus E does not meet ∂ H∞ . �
Theorem 4.8. Let E be a set in M(H∞) \ D that does not meet the Shilov boundary of H∞ . Then E is t-analytic for H∞ if and only if
E is t-analytic for H∞ + C.

Proof. If E is t-analytic for H∞ + C , then it is easily seen that E is t-analytic for H∞ . Indeed, it suffices to observe that any
open set U in M(H∞) induces the open set U ∩ M(H∞ + C) in M(H∞ + C).

Conversely, let E ⊆ M(H∞ + C) be t-analytic for H∞ with E ∩ ∂ H∞ = ∅. Let f ∈ H∞ + C vanish identically on E ∩ Ω

for an open set Ω ⊆ M(H∞ + C) with E ∩ Ω �= ∅. Let x ∈ E . Since E ∩ ∂ H∞ = ∅ we may use Lemma 4.6 to conclude that
E ⊆ k(x). Moreover, by Lemma 4.4, k(x) is contained in a single fiber Mλ . Now on fibers, (H∞ + C)|Mλ = H∞|Mλ . Thus we
may choose F ∈ H∞ such that F = f on Mλ . Now for any open set W in M(H∞) with W ∩ M(H∞ + C) = Ω , we have
F ≡ 0 on W ∩ E . Since E is t-analytic for H∞ , F ≡ 0 on E and so does f . Hence E is t-analytic for H∞ + C . �

Recall that a point x ∈ E ⊆ X , X a topological space, is said to be an isolated point (for E), if there exists an open
neighborhood U of x such that U ∩ E = {x}.

Proposition 4.9. Let E be a subset of D. Suppose that E contains more than one point. Then the following assertions are equivalent:

(1) E is a strong uniqueness set for H∞;
(2) E is t-analytic for H∞;
(3) E does not contain any isolated point.

Proof. (1) �⇒ (2) trivial.
(2) �⇒ (3) Suppose to the contrary that z0 ∈ E is an isolated point. The function z − z0 then vanishes in a relative open

neighborhood of E , but not at any other point. Thus E is no longer a t-analytic set.
(3) �⇒ (1) This follows immediately from the fact that the zeros of non-constant holomorphic functions are discrete

(in D). �
We note that the implication (2) �⇒ (3) holds true in any function algebra; this is a special case of [2, Corollary 4.11].

Theorem 4.10. Let E be a t-analytic set for H∞ such that E ∩ D �= ∅. Then

E ⊆ ∂ H∞ ∪ E ∩ D.

Proof. Suppose contrariwise that there is some x ∈ E \ ∂ H∞ and x /∈ E ∩ D. Let z0 ∈ E ∩ D. Choose, as in Lemma 4.6, a
Blaschke product B such that B vanishes identically on a neighborhood U ∗ of x in M(H∞ + C). Let the open subset U of U∗
satisfy x ∈ U and U ∩ E ∩ D = ∅. We may also assume that B(z0) �= 0 (otherwise we just delete the zero z0). Let V ⊆ M(H∞)

be open with V ∩ M(H∞ + C) = U , z0 /∈ V and V ∩ E ∩ D = ∅. Note that E \ (E ∩ D) ⊆ M(H∞ + C). Then
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V ∩ E = V ∩ (E \ E ∩ D) = V ∩ (E \ E ∩ D) ∩ M
(

H∞ + C
)

= U ∩ (E \ E ∩ D) = (U ∩ E) \ E ∩ D = U ∩ E.

Hence B ≡ 0 on V ∩ E , but B(z0) �= 0. Accordingly, E is not t-analytic. �
As an immediate corollary we have the following corona-type theorem.

Corollary 4.11. Let E be a closed t-analytic set for H∞ with E ∩ D �= ∅ and E ∩ ∂ H∞ = ∅. Then E = E ∩ D.

Let us note that the set of non-closed t-analytic sets for H∞ is very huge. For example, in view of Observation 2.2 one
has that for all S ⊆ M(H∞ + C) the set D ∪ S is a strong uniqueness set for H∞ .

Theorem 4.12. Let E ⊆ M(H∞) and suppose that E ∩ D �= ∅ or E ⊆ ∂ H∞ . Then the following assertions are equivalent:

(1) E is a strong uniqueness set for H∞;
(2) E is t-analytic for H∞ and contains more than one point.

Proof. (1) �⇒ (2) is trivial. By Proposition 4.1, (2) �⇒ (1) whenever E ⊆ ∂ H∞ . Now suppose that E ∩ D �= ∅ and that
E contains more than one point. As previously mentioned, the t-analyticity of E implies that E ∩ D does not contain any
isolated point. Hence, by Proposition 4.9, E ∩ D is a strong uniqueness set. By Observation 2.1, this implies that E ∩ D is
in U , too. Consider now the set

S := E \ E ∩ D.

If S = ∅, then E ⊆ E ∩ D. Hence E ∩ D ⊆ E ⊆ E ∩ D. Since E ∩ D ∈ U , we have, by Observation 2.2, that E ∈ U .
Let us now assume that S �= ∅. By Theorem 4.10, S ⊆ ∂ H∞ . Note that S is not a singleton, since otherwise E would

contain an isolated point. This would contradict the fact that E is t-analytic.
We are going to show that S is t-analytic. Let U be an open set in M(H∞) with U ∩ S �= ∅ and let f ∈ H∞ be such that

f ≡ 0 on U ∩ S . By passing to a subset, we may assume that U ∩ E ∩ D = ∅, but still U ∩ S �= ∅. Hence U ∩ S = U ∩ E . Since
E is t-analytic, we get that f ≡ 0 on E . In particular, f ≡ 0 on S . Thus S is t-analytic. By Proposition 4.1, S is in U . By the
Observation 2.7, S ∪ E ∩ D ∈ U . Since E = S ∪ E ∩ D, we conclude that E ∈ U . �

Let F denote the class of subsets F of D that do not contain any isolated points, let Uc denote the class of those
strong uniqueness sets for H∞ that are closed. The following concluding theorems sum up the different situations dealt
with above.

Theorem 4.13. Let E ⊆ M(H∞) be closed. Then E ∈ Uc ∪ {∅} if and only if E = K ∪ F , where F ∈ F and where K ⊆ ∂ H∞ is a
closed set such that for every Lebesgue measurable set S ⊆ T with strictly positive Lebesgue measure either σ̂ (K ∩ {χ̂S = 1}) > 0 or
K ∩ {χ̂S = 1} = ∅.

Proof. Let E = K ∪ F , where K and F satisfy the conditions above. By Theorem 4.3, K ∈ U whenever K �= ∅. By Proposi-
tion 4.9, F ∈ U whenever F �= ∅. By the Observation 2.7, E ∈ U .

Conversely, let E ∈ Uc . We discuss two cases:
Case 1. E ∩ D �= ∅. Since strong uniqueness sets do not contain isolated points, E ∩ D ∈ F . Hence, by Proposition 4.9,

E ∩ D ∈ U . Moreover, by Observation 2.1, E ∩ D ∈ U . If E ∩ D = E , then we are done. So suppose that E ∩ D � E . By the
Observation 2.3, E \ E ∩ D ∈ U , and so again,

K := E \ E ∩ D ∈ U .

But by Theorem 4.10, K ⊆ ∂ H∞ . Hence we can conclude from Theorem 4.3 that K has the desired property. Since E = F ∪ K ,
where F = E ∩ D, we are done.

Case 2. E ∩ D = ∅. Corollary 4.7 implies that either E ⊆ ∂ H∞ , or E ∩ ∂ H∞ = ∅. We shall see that the hypotheses E ∈ U
implies that the second case does not occur. So suppose that E ⊆ M(H∞ + C) \ ∂ H∞ . Then, by Lemma 4.6, E ⊆ k(x) for
x ∈ E . Hence the hull-kernel closure in M(H∞) of E is contained in k(x), too (see Lemma 4.5). Since E is t-analytic, we
deduce that E cannot be a strong uniqueness set. Hence we must have that E ⊆ ∂ H∞ . Using Theorem 4.3 again, we see
that K := E has the property we wish. �
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Combining Theorems 4.3, 4.12 and 4.13, we get the following result.

Theorem 4.14. The class AD of closed t-analytic sets for H∞ that meet D is given by AD = A1 ∪ A2 , where

A1 = {{z0}: z0 ∈ D
}
,

and

A2 = {
K ∪ F : ∅ �= F ⊆ D, F ∈ F , K ⊆ ∂ H∞, K ∈ Uc or K = ∅}

.

Finally, a combination of Theorems 4.7, 4.8 and 4.12 yields:

Theorem 4.15. The class Acor of closed t-analytic sets for H∞ contained in the corona M(H∞+C) of H∞ is given by Acor = A3 ∪A4 ,
where

A3 = {
E: E t-analytic for H∞ + C

}
and

A4 = {
E: E ⊆ ∂ H∞, E ∈ Uc

}
.
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