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1. Introduction, definitions and preliminaries

Let H(U) denote the class of analytic functions in the open unit disk
U:={zeC: |z| <1}.
ForneN={1,2,3,...} and a e C, let
Hla,nl={f: feHand f(2) =a+anz" +ans12"" + -},
with Ho = H[0, 1] and H = H[1, 1]. Let A denote the class of all normalized analytic functions of the form

f@=z+ Zakz" (ze ).

k=2

Let f and F be members of H(U). The function f is said to be subordinate to F, or (equivalently) F is said to be
superordinate to f, if there exists a Schwarz function w analytic in U, with

w(0)=0 and |w(2)|<1,
such that

f@)=F(w(2).
In such a case, we write

f<F or f(z)<F(2).
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If the function F is univalent in U, then we have
f<F <= fO)=F@©) and f(U)cF().

Let H(z,¢) be analytic in U x U and let f(z) be analytic and univalent in U. Then the function H(z, ¢) is said to be
strongly subordinate to f(z), or f(z) is said to be strongly superordinate to H(z, {), written as

H(z,¢) << f(2),
if, for ¢ € U, H(z, ¢) as a function of z is subordinate to f(z). We note that

H(z,0) << f(z) <= H(,0)=f@©0) and HU xU)c f).

Definition 1.1. (See [8].) Let
$:CxUxU->C

and let h(z) be univalent in U. If p(z) is analytic in U and satisfies the following (second-order) differential subordination:
¢ (p(2).20'(2), 2%p"(2); 2, §) << h(2), (11)

then p(z) is called a solution of the strong differential subordination. The univalent function q(z) is called a dominant of
the solutions of the strong differential subordination or more simply a dominant if

p(2) <q(2)
for all p(z) satisfying (1.1). A dominant ¢(z) that satisfies

4(2) <q(2)
for all dominants q(z) of (1.1) is said to be the best dominant.

Recently, Oros [6] introduced the following notion of strong differential superordination as the dual concept of strong

differential subordination.
Definition 1.2. (See [5,6].) Let

9:CxUxT—>C
and let h(z) be analytic in U. If

p() and ¢(p(2).2p'(2).2%p"(2); 2, ¢)
are univalent in U for ¢ € U and satisfy the following (second-order) strong differential superordination:

h@) << ¢(p2),20"(2).2p" (2): 2.¢). (12)

then p(z) is called a solution of the strong differential superordination. An analytic function q(z) is called a subordinant of
the solution of the strong differential superordination or more simply a subordinant if q(z) < p(z) for all p(z) satisfying (1.2).
A univalent subordinant §(z) that satisfies

q(2) <42

for all subordinants q(z) of (1.2) is said to be the best subordinant.

We denote by Q the class of functions q that are analytic and injective on U\ E(q), where
E(@Q) = {g € dU: lim q(z) = oo},
z—&

and are such that q'(§) # 0 for & € U \ E(q). Further, let the subclass of Q for which q(0) =a be denoted by Q(a),
Q(0)= Qo and Q(1) = Qs.

Definition 1.3. (See [8].) Let §2 be a set in C, g € @ and n € N. The class of admissible functions ¥,[$2, q] consists of those
functions

UG xUxU—C
that satisfy the following admissibility condition:

Y(r,s, t;2,¢) ¢ 2
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whenever
t
r=q), s=k&q'(£) and 9’%(; —I—l) >k§)t{

We simply write ¥1[$2,q] as ¥[£2,q].

£q"(&)
q'§)

+1} (zeU; £ €dU\E(q); ¢ €U; k>n).

If
v:C?xUxU—C,
then the admissibility condition reduces to
v (q(6). keq'(£);2,¢) ¢ 2
when
(zeU; £ €dU\E(q); ¢ €U; k>n).
Definition 1.4. (See [6].) Let £2 be a set in C and q € H[a, n] with q'(z) # 0. The class of admissible functions ¥[£2, q]
consists of those functions
v:CxUxU—>C
that satisfy the following admissibility condition:
v(r,s,t;6,0) €2

whenever

z2q' (z t 1 zq” —
req. =229 and w(ti1)<toal®@ 1l GevigcovceT msnz1),
m S m q'(2)

In particular, we write W/[£2,q] as ¥'[£2,q].
If
/N C2xUxU—C,
then the admissibility condition reduces to

w(q<z), gl (Z);s,:> cQ

m

when
(zeU; E€dU\E(Q); ¢ €U; m=n>1).
For the above two classes of admissible functions, G.I. Oros and G. Oros [8] proved the following result.

Lemma 1.1. (See [8].) Let € W,[$2, q] with q(0) = a. If p € H][a, n] satisfies
v (p(2),2p'(2),2°p"(2);2,¢) € 2,

then
p(2) <q(2).

G.L Oros [6], on the other hand proved Lemma 1.2.

Lemma 1.2. (See [6].) Let Y € ¥;[$2, q] with q(0) =a. If p € Q(a) and
v(p(2),20'(2), 2°p" (2); 2, ¢)
is univalent in U for ¢ € U, then
2c{v(p@.20'(2).2%p"(2):2,¢): ze U, ¢ €U}
implies the following subordination relationship:
q(2) < p(2).
In this present investigation, by making use of the strong differential subordination results and the strong superordi-
nation results of G.I. Oros and G. Oros [6,8], we consider certain suitable classes of admissible functions and investigate
some strong differential subordination and strong differential superordination properties of analytic functions. New strong

differential sandwich-type results are also obtained. In recent years, several authors obtained many interesting results in
strong differential subordination and superordination [1-3,6-9].
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2. Subordination results

We first define the following class of admissible functions that are required in our first result.

857

Definition 2.1. Let 2 be a set in C and q € Q1 NH. The class of admissible function &[£2, q] consists of those functions
$:CxUxU—>C

that satisfy the admissibility condition:
d(u,v,w;z,¢) ¢ 2

whenever

u=q@), v=k

and

£q'(%)
q)

q‘{ w—2v+uv(l+2v)
N

uv

(@ #0),

q'§)

Theorem 2.1. Let ¢ € &[$2, q). If f € A satisfies

1

f(z

then

)

<q(2).

zf'(2)

Proof. Define the function p in U by
_f@
- '@

A simple calculation yields

P2

2f'(2) <1 N zf”(2)> _ 25222)).

f@

Further computations show that

“(

(@

f”(Z)>2< f@ )’_Zz ’
f@) \2r@) =P

f@ '@ (1 . Zf”(Z)> 23<f“<z>>2 (
'@ f@ @) \rwe

f@
sz”(Z)
2zp’(2) ,
(2 + @ (1-2p'(2)).

We now define the transformations from C3 to C by

s
u=r, v=-,
r

Let

2s
w=t+ T(l—s).

v(r,s,t;z,0)=¢Uu,v,w;z,¢) =¢<r, ;,H— ?(1 —9); Z, ;).

The proof will make use of Lemma 1.1. Using (2.2), (2.3), and (2.4), from (2.6) we obtain

(1+

v(p(2),20'(2),2°p" (2); 2.¢) = ¢(

Hence (2.1) becomes

v (p(2),2p'(2),2°p"(2);2,¢) € 2.
A computation using (2.5) yields

t

+1

_ w—2v+4uv(l+2v)
= v .

f@ #Zf'(»
2f'(2)" f(2)

zf"(2)
(@

)=

(@
'@

)

}>km{$q”(§) +1} (zeU: £ dU\E(q): ¢ €T k>1).

>;z,§>: zel, ;e@}c!),

f@)
72 f// (Z)

)';z,;).

(2.1)

(2.3)

(2.4)
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Thus the admissibility condition for ¢ € ®4[£2, q] in Definition 2.1 is equivalent to the admissibility condition for ¢ as
given in Definition 1.3. Hence ¢ € ¥[$2, q] and by Lemma 1.1

p(2) <q(2)
or, equivalently,
f@
zf'(2)

which evidently completes the proof of Theorem 2.1. O

<q(2),

If 2 #C is a simply connected domain, then £2 = h(U) for some conformal mapping h of U onto £2. In this case, the
class @5[h(U), q] is written as ®g[h, q]. The following result is an immediate consequence of Theorem 2.1.

Theorem 2.2. Let ¢ € &g[h, q]. If f € A satisfies
/ " 7 2 ’
¢< f@ zf'@) <1+ zf (Z)>’23<f (Z)> ( f@ ) ;Z&) <<h@). (2.8)

zZf'(2)" f(2) '@ '@ 22 f"(2)
then
f@
o 1P

Our next result in an extension of Theorem 2.1 to the case in which the behavior of ¢ on dU is not known.

Theorem 2.3. Let h and q be univalent in U with q(0) = 0, and set q,(z) = q(pz) and h,(z) = h(p2). Let ¢: CxUxU—C
satisfies one of the following conditions:

(i) ¢ € @s[h, q,] for some p € (0, 1), or
(i) there exists po € (0, 1) such that ¢ € @s[h,,q,] forall p € (po, 1).

If f € A satisfies (2.8), then
f(2)
zf'(2)

<q(2).

Proof. The proof of Theorem 2.3 is similar to that of a known result [4, Theorem 2.3d, p. 30] and so it is omitted here. O
Our next theorem yields the best dominant of the strong differential subordination (2.8).

Theorem 2.4. Let h be univalent in U, and ¢ : C3 x U x U — C. Suppose that the following differential equation

zq'(z 2zq'(z
q(),ZZQ//(Z)+ Q()
q(2) q(2)

has a solution q with q(0) = 1 and satisfies one of the following conditions:

) (q(Z), (1-29'(2): z, C) =h(z) (2.9)

(i) g € Q1 and ¢ € Pslh, ql,
(ii) q is univalentin U and ¢ € ®s[h, q,] for some p € (0, 1), or
(iii) q is univalent in U and there exists pg € (0, 1) such that ¢ € @s[h,, q,] for all p € (o, 1).

If f € A satisfies (2.8), then
f(2)
zf'(2)

and q is the best dominant.

<q(2),

Proof. Following the same arguments as in [4, Theorem 2.3e, p. 31], we deduce that q is a dominant from Theorems 2.2
and 2.3. Since q satisfies (2.9), it is also a solution of (2.8) and therefore g will be dominated by all dominants. Hence q is
the best dominant. O

We will apply Theorem 2.1 to a specific case for q(z) =1+ Mz, M > 0.
In the particular case q(z) =1+ Mz, M > 0, and in view of Definition 2.1, the class of admissible functions &1[£2, q],
denoted by &1[$2, M], is described below.
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Definition 2.2. Let £2 be a set in C and M > 0. The class of admissible functions @1[$2, M] consists of those functions
¢:C3 x U x U— C such that

kMe'? 2kMe'?

) —, L+ _

1+ Mei? 1+ Mei?

¢<1 + Me'? (1—kMe"): z, g) ¢ 0, (2.10)
whenever z€ U, § € R and R{Le~} > (k — 1)kM for all 6, ¢ € U and k > 1.

Corollary 2.5. Let ¢ € &[22, M]. If f € A satisfies
f@ zf'@ ( Zf”(Z)) 3<f”(2))2( f@ ) )
, -1 , ; Z, 2
¢<Zf’(z) o Utre )i\ o) \Zre) Pl C

f@
zf"(2)

then

1‘<M‘

For the special case 2 =q(U) ={w: |w — 1| < M}, the class ®1[£2, M] is simply denoted by &,[M].

Corollary 2.6. Let ¢ € ®1[M]. If f € A satisfies
f@ zf'@ ( Zf”(z)) 3<f”(z)>2< f@ ) ) ’
, —(1 , 12,8 ) =1 <M,
’¢(Zf’(2) o Trw )i \Fo) \z2rg) 7)) T

f@
zf"(2)

then

1‘<M.

Example 1. The functions
d1(u,v,w;z,¢):=u(v+1) and ¢o(u,v,w;z,¢):=acu(v+1)+ (1 —a)u

satisfy the admissibility condition (2.10) and hence Corollary 2.5, yields

f@

f(Z)f”(Z)> ’ ‘
1——"1]1-1 M -1 M.
’( F@2)? DR P S
f@f ”(Z)) f@ } ’ f@ ‘
1—-—= 1-— —1 M -1 M.
H“( o )T T @ |

Now, we introduce the following class of admissible function.

Definition 2.3. Let 2 be a set in C and q € Qp N "Hp. The class of admissible functions ®y[2, q] consists of those functions
$:C*xUxU—>C

that satisfy the admissibility condition:
P(q€), kEq'€) +q(6);2,0) ¢ 2 (zeU; £ €dU\E(Q); ¢€Us k>1). (211)

Theorem 2.7. Let ¢ € Py[$2,qland f € A If

{«b( f@ f(Z)f”(Z)>; o gd—}} ca (212)

zf'(2)’ (f(2))?

then
f(2)
zf'(2)

<q(2).

Proof. Define the function p by

_ @
PO= iy

(213)
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Clearly p € A, and a simple computation yields

1— % —20'(2) + p(@). (214)
Define the transformation from C2 x U x U to C by

u=r, v=s+r.
Let

V(s 2,0)=¢W,v;z,0) =T, s+1;2,0). (215)

The proof will make use of Lemma 1.1. Using (2.13) and (2.14), from (2.15), we obtain

(P, 20 @) 2.¢) = ¢<Z§f(zz)) - f((Jf,)(J;))(ZZ) .z ;).

(2.16)

Hence (2.12) becomes

V(p(2),2p'(2):2.¢) € 2.

From (2.15), we see that the admissibility condition for ¢ € ®y[$2,q] in Definition 2.3 is equivalent to the admissibility
condition for v as given in Definition 1.3. Hence y € ¥[$2, q] and by Lemma 1.1,

p(2) <q(2)
or, equivalently,

f@
zf'(2)

<q(2). O

We will denote by ®@y[h, q] the class @y[h(U), q], where h is the conformal mapping of U onto £2 # C. The following
result is an immediate consequence of Theorem 2.7, which we state without proof.

Theorem 2.8. Let ¢ € dy[h, ql. If f € A satisfies

f@ f@f"@
¢<Zf/(z)"l B (f/(z))z ’Z’§> <<h(Z), (217)
then
f@
2@ " 1. (218)

We extend Theorem 2.8 to the case where the behavior of g on dU is not known.

Theorem 2.9. Let £2 C C and let q be univalent in U with q(0) = 0. Let ¢ € ®yl[h, q,] for some p € (0, 1) where q,(z) = q(p2). If
f € Asatisfies (2.12), then (2.18) holds.

With q(z) =1+ Mz, we get the following:

Corollary 2.10. Let £2 be asetin C, q(z) =1+ Mz, M > 0, and ¢ : C*> x U x U — C satisfy
o(1+Me", 1+ k+1Me?;2,¢) ¢ 2
wheneverzeU,0 eR, ¢ eUandk > 1. Let f € A. If

f@ f@Of"@
,1— ) Z, £,
¢<Zf’(z) Fa? - ‘°>€

then

f@
zf'(2)

1’<M.
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In the special case £2 =q(U) = {w: |w — 1| < M}, Corollary 2.10 gives the following:
Let ¢:C2 x U x U — C satisfy

|¢(1+Me”, 1+ (k+1DMe?;2,¢) - 1| >M

whenever zeU, 0 R, £ €U and k > 1; if f € A satisfies

f@ f(Z)f”(Z)> ‘
- —1 M,
‘¢(Zf @ (f@)? =

then

f@
zf'(2)
With ¢ (u, v;z) =av + (1 — a)u, we get the following:

—1’<M.

Example 2. If f € A satisfies

f@f" @ f@
1-— 1-— —1 M,
H“( (F'@)? )“ “)zf’(z)} ‘ B

then

f@
zf'(2)

—1‘<M.

3. Superordination and sandwich-type results

861

In this section, we investigate the dual problem of strong differential subordination (that is, strong differential superor-

dination). For this purpose, the class of admissible functions is given in the following definition.

Definition 3.1. Let 2 be a set in C, ¢ € H with zq'(z) # 0. The class of admissible functions ®{[£2, q] consists of those

functions
$:CxUxU—>C

that satisfy the admissibility condition:
pu,v,w;§, 5)ef2

whenever

_ 2@
mq(z)

u=q(2), (9(2) #0, zq'(2) #0),

and

" {W 2v+uv(l +2v)} 1 ;){{ZQ”(z)
uv m q'(2)

Theorem 3.1. Let ¢ € ®{[$2,q].If f € A, Z?% € Q1 and

f@ zf'@ ( Zf”(2)> 3(f”(2))2( f@ ) )
) - 1 ) 9 &y
¢(Zf/(2) o UTre )i \Fe) \Zre ) Pt

is univalent in U, then
f@ zf'@ < Zf”(2)> 3<f”(2)>2< f@ ) ) }
, —(1 , :z): 2,
C{"’(zf'(z) o e )i\ o) \2re )t Pl

f@
zf'(2)

implies

q(z) <

+1} (zeU; £€dU; ceU; m=1).

(31)
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Proof. With p(z) = Z’;f(zz)) and

2
Y(r,s,t;2,¢) =¢<r, ;,t+ 75(1 —s);m) =¢,v,w;&,0),

Eqgs. (2.7) and (3.1) yield
2 {v(p@.20'(2),2°p"(2);2.¢): ze U, ¢ e T}.

Since

t w—=2v+4+uv(l+2v)
-+1= )
s uv

the admissibility condition for ¢ € @/[£2,q] in Definition 3.1 is equivalent to the admissibility condition for v as given in
Definition 1.4. Hence ¢ € ¥'[£2,q], and by Lemma 1.2

q(z) < p(2)
or

f@
zf'(2)

q(z) <

If 2 #C is a simply connected domain, then £2 = h(U) for some conformal mapping h of U onto £2 with &.[h(U), q]
as @/[h, q], Theorem 3.1 can be written in the following form.

Theorem 3.2. Let q € H, h be analytic in U and ¢ € ®([h,ql.If f € A, ijc,(fz)) € Q7 and

f@ zf'@ ( Zf”(z)> 3<f”(z)>2( f@ ) )
, —(1 , 3 Z,
¢<Zf’(2) o \tre ) o) \2re) iRt
is univalent in U, then

f@ #f'@ (. #'@\ s(f'@\( f@ Y.
h(z)«‘/’(zf/(z)’ f@ (H @) )’Z <f/(z)> (zzf%z)) e ¢> 53

implies
f@
zf'(2)’

q(2) <

Theorems 3.1 and 3.2 can only be used to obtain subordinants of differential superordination of the form (3.1) or (3.3).
The following theorem proves the existence of the best subordinant of (3.3) for an appropriate ¢.

Theorem 3.3. Let h be analytic in U and ¢ : C3 x U x U — C. Suppose that the differential equation

Zq/(z) 2 1 2Zq/(z) / . _
¢(q(2), @ 2797 (2) + @ (1—2q (Z)),z,é) =h(2) (34)
has a solution q € Q1. If ¢ € ®;[h,ql, f € A, % € Qpand

f@ zf'@ ( Zf”(2)> 3<f”(2)>2( f@ ) )
—(1
¢(Zf/(z)’ o T )i \Fe) \Zre) Pt

is univalent in U, then

f@ zf'(2) '@\ 5@\ ( f@ V.
h(z)«d’(zf’(z)’ f@ _<1+ @ )’Z (f/(2)> (zzmz)) e §>

implies

. f@
zf'(2)’

and q is the best subordinant.

q(2)
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Proof. The proof is similar to that of Theorem 2.4, and so it is being omitted here. O
By combining Theorems 2.2 and 3.2, we obtain the following sandwich-type theorem.

Corollary 3.4. Let hy and q1 be analytic functions in U, hy be univalent function in U, q; € Q1 with q1(0) =q2(0) =1 and ¢ €

@slha, 421 N Bylhi, g1l If f € A, F25 € HN Q1 and

f@ zf'(2) ( Zf”(Z)) 3(f”(2))2( f@ )' )
, -1 , ; Z,
¢<Zf/(2) o o ) o) 2w ) 2
is univalent in U, then

f@ '@ (. #'D) ('@ 2( f@) ) )
hl(z)«"’(zf’(z)’ f@ (H f’(z))’z<f’<z)> 2ig) nE) =@

implies

q1(z) < ?()) < q2(2).

Definition 3.2. Let 2 be a set in C and q € H. The class of admissible function &®},[£2,q] consists of those functions
¢:C? x U x U— C that satisfy the admissibility condition

¢< @), q“ .z, )e.Q (zeU: £cal: cel: m>1).

Now, we will give the dual result of Theorem 2.7 for differential superordination.

Theorem 3.5. Let ¢ € D},[2,q).If f € A, Z;% € Qo and ¢(Z{,<(Zz)), f(?,)(fz/)/)(f) : Z, ¢) is univalent in U, then
f@) f@f" @) ) —}
2 C ,1— 02,0 ):z€eU, ¢ el 3.5
{‘p(zf/(z) For ot ¢ 5:2)
implies
f(@)
z) < .
q(2) 2@

and

Proof. With p(z) = Zf (Z),
V(s z2,0)=¢,s+1,8,0) =90, v;§,0), (3.6)
from (2.16) and (3.6), we have
2c{v(p@.2p'(2);2€U, ¢ €)}.

From (3.6), we see that the admissibility condition for &},[£2, q] in Definition 3.2 is equivalent to the admissibility condition
for v as given in Definition 1.4. Hence v € ¥'[£2, q], and by Lemma 1.2,

q(z) < p(2)
or
f(2)
zf'(z)

Proceeding similarly as in the previous section, the following result is an immediate consequence of Theorem 3.5.

q(z) <

Theorem 3.6. Let q € Ho, let h be analytic in U and ¢ € ®}[h, q]. Let f € A If z’;((zz)) € Qo and ¢(Z§<fz)) 11— f(?)(f;))(zz) 12,0) is
univalent in U, then

f@ f@f"@
he <<¢<zf/(z>’1 T @2 ’”)
implies
f(2)

e
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Combining Theorems 2.8 and 3.6, we obtain the following sandwich-type theorem.

Corollary 3.7. Let hy and qq be analytic functions in U, hy be univalent function in U, q; € Qo with q1(0) =q2(0) =0 and ¢ €

@ylha, 21N @yTh1, g1l If f € A % € HoN Qg and

¢< f@ 1 f@f" @) ’§>

@ F@R -

is univalent in U, then

f(2) f@f" @
h1(z) << ¢<zf’(z)’1 - @) ,Z) << hy(2) (3.7)
implies
q1(2) < Zj;,((zz)) < q2(2).
References

[1] J.A. Antonino, S. Romaguera, Strong differential subordination to Briot-Bouquet differential equations, ]. Differential Equations 114 (1) (1994) 101-105.

[2] J.A. Antonino, Strong differential subordination and applications to univalency conditions, ]. Korean Math. Soc. 43 (2) (2006) 311-322.

[3] N.E. Cho, Oh. Sang Kwon, H.M. Srivastava, Strong differential subordination and superordination for multivalently meromorphic functions involving the
Liu-Srivastava operator, Integral Transforms Spec. Funct. 21 (8) (2010) 589-601.

[4] S.S. Miller, P.T. Mocanu, Differential Subordination: Theory and Applications, Ser. Monogr. Textbooks Pure Appl. Math., vol. 225, Marcel Dekker, New
York, Basel, 2000.

[5] S.S. Miller, P.T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl. 48 (10) (2003) 815-826.

[6] G.I Oros, Strong differential superordination, Acta Univ. Apulensis Math. Inform. 19 (2009) 101-106.

[7] G.I. Oros, First order strong differential superordination, Gen. Math. 15 (2-3) (2007) 77-87.

[8] G.I Oros, G. Oros, Strong differential subordination, Turkish J. Math. 33 (2009) 249-257.

[9] G.I Oros, G. Oros, First order linear strong differential subordination, Gen. Math. 15 (2-3) (2007) 98-107.



	Strong differential subordination and superordination of analytic functions
	1 Introduction, deﬁnitions and preliminaries
	2 Subordination results
	3 Superordination and sandwich-type results
	References


