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a b s t r a c t

We apply Zdun’s factorization theorem (see Zdun (2008) [3]) to give the conditions for
the existence and the form of continuous and orientation-preserving iterative roots of
homeomorphisms of the circle with a rational rotation number. Our theorem generalizes
the previous results given by Jarczyk (2003) in [2], Zdun (2008) in [3] and Solarz (2003,
2009) in [4] and [5].
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1. Introduction

In this paper we prove the theorem concerning the existence of continuous and orientation-preserving solutions of the
following functional equation

Gm(z) = F(z), z ∈ S1 := {z ∈ C : |z| = 1}, (1)

where F : S1 → S1 is a given orientation-preserving homeomorphismwith fixed or periodic points, Gm denotesm-th iterate
of G andm ≥ 2 is an integer. Every solution of (1) is called the iterative root od F andm is said to be the order of iterative root.

Recall also that x ∈ X is a periodic point of order n ∈ N, n > 1 of a mapping f : X → X if

f n(x) = x and f k(x) ≠ x for k ∈ {1, . . . , n − 1}.

If f (x) = x then x is said to be a fixed point of f . The set of all periodic (fixed) points of f will be denoted by Per f (Fix f ).
The theorem generalizes (see [1]) the results obtained and method used for finding solutions of (1) in some particular

cases i.e., Fix F = S1 (see [2]), ∅ ≠ Fix F ≠ S1 (see [3]), Per F = S1 (see [4]), ∅ ≠ Per F ≠ S1 (see [5]).
We give the necessary and sufficient conditions under which there exist continuous and orientation-preserving iterative

roots of an arbitrary orientation-preserving homeomorphism F : S1 → S1 such that Per F ∪ Fix F ≠ ∅. We also give the
description of these roots. It is worth pointing that in contrast to real homeomorphisms (see [6]), there may exist iterative
roots for circle mappings with periodic points.

2. Preliminaries

We start with recalling some useful facts and notions. Firstly, set Zn := {0, 1, . . . , n − 1} and Z∗
n := {1, . . . , n − 1} for a

suitable natural n.
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Let u, w ∈ S1 and u ≠ w, then u = e2π it1 and w = e2π it2 for some t1, t2 ∈ R such that t1 < t2 < t1 + 1. Put
−−−→
(u, w) := {e2π it , t ∈ (t1, t2)},

−−−→
[u, w] :=

−−−→
(u, w) ∪ {u, w},

−−−→
[u, w) :=

−−−→
(u, w) ∪ {u}.

If u = w we set
−−−→
(u, u) = S1 \ {u}. We call these sets arcs.

For every homeomorphism F : S1 → S1 there exists a unique (up to translation by an integer) homeomorphism
f : R → R, called the lift of F , such that

F

e2π ix

= e2π if (x)

and

f (x + 1) = f (x) + k

for all x ∈ R, where k ∈ {−1, 1}. We call F orientation-preserving if f is strictly increasing, which is equivalent to the fact
that k = 1. Moreover, for every continuous function G : I → J , where I = {e2π it , t ∈ [a, b]} and J = {e2π it , t ∈ [c, d]} there
exists a unique continuous function g : [a, b] → [c, d] such that

G

e2π ix

= e2π ig(x), x ∈ [a, b].

In this case we also call g the lift of G and we say that G preserves the orientation if g is strictly increasing.
Now assume that F is an orientation-preserving homeomorphism, then the limit

α(F) := lim
n→∞

f n(x)
n

(mod 1), x ∈ R

always exists and does not depend on the choice of x and f . This number is called the rotation number of F (see [7]). It is
known that α(F) is a rational number if and only if F has a periodic or fixed point (see for example [7]). If F : S1 → S1
is an orientation-preserving homeomorphism such that α(F) =

q
n , where q, n are positive integers with 0 < q < n and

gcd(q, n) = 1, then Per F contains only periodic points of order n (see [5,8]). Moreover, there exists a unique number p ∈ Z∗
n

satisfying pq = 1(mod n). This number will be called the characteristic number of F and denoted char F := p (see [3]). If
Fix F ≠ ∅, then α(F) = 0 and we define char F := 1.

The following result comes from [9] or [5].

Lemma 1. If F : S1 → S1 is an orientation-preserving homeomorphism with periodic points of order n, then for every z ∈ Per F ,

Arg
F kchar F (z)

z
< Arg

F (k+1)char F (z)
z

, k ∈ Zn−1

and

F [Ik] = I(k+q)(mod n), k ∈ Zn,

where q = nα(F) and

Id = Id(z) :=
−−−−−−−−−−−−−−−−−→
F dchar F (z), F (d+1)char F (z)


, d ∈ Zn. (2)

The starting point for our research was the so called factorization theorem proved by Zdun (see Theorem 5, [3]). In view
of it, every orientation-preserving homeomorphism F : S1 → S1 possessing periodic points of order n is of the form

F(z) =


T q(F n(z)), z ∈

−−−−−−−−−→
z0, F char F (z0)


,

T q(z), z ∈ S1 \
−−−−−−−−−→
z0, F char F (z0)


,

(3)

where z0 ∈ Per F , q = nα(F) and T : S1 → S1 is an orientation-preserving homeomorphism such that Per T = S1, α(T ) =
1
n

and T [Id] = I(d+1)(mod n) for d ∈ Zn, where Id = Id(z0) for d ∈ Zn are defined by (2). The function T = Tz0(F) is unique up to a
periodic point of F and it is called the Babbage function of F (see [3]). Let us notice that if Per F = S1, we get Tz0(F) = F char F

for every z0 ∈ Per F , whereas if F is such that Fix F ≠ ∅we have
−−−−−−−−−→
z0, F char F (z0)


= S1 and we assume Tz0(F) = idS1 for every

z0 ∈ Fix F .
In view of (3) and Lemma 1 we have the following property (see [3]).

Theorem 1. Let F : S1 → S1 be an orientation-preserving homeomorphismwith periodic points of order n, z ∈ Per F , T = Tz(F)
be the Babbage function of F and let {Id}d∈Zn be the family defined in (2). Then

F k+jn
|Id

= Tα(F)nk
◦


T d

◦ (F n)j+1
◦ T−d

|Id
, if − dchar F(mod n) ≤ k − 1,

T d
◦ (F n)j ◦ T−d

|Id
, if − dchar F(mod n) > k − 1,

for d, k ∈ Zn and j ∈ N.
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We end this section by the following remark.

Remark 1. Let q, n, q′, n′
∈ N be such that 0 ≤ q < n, gcd(q, n) = 1 and 0 ≤ q′ < n′, gcd(q′, n′) = 1 and let

m
q′

n′
−

q
n

∈ Z (4)

for some integer m ≥ 2. Then there exists an integer l ≥ 1 such that n′
= nl, l|m, q′ m

l = q(mod n). If moreover p ∈ Z∗
n and

p′
∈ Z∗

n′ are such that pq = 1(mod n) and p′q′
= 1(mod n′), then p′

=
m
l p(mod n).

Proof. Assume that (4) holds for some integer m ≥ 2. If q = 0, then n = 1, Z∗
n = ∅ and m q′

n′ ∈ Z, thus n′
= l and since

gcd(q′, n′) = 1 we have l|m. Notice that q′ m
n′ = 0(mod 1).

Now let q ≠ 0, then n > 1. From (4) we get q′
≠ 0 and

mnq′
− n′q = knn′ (5)

for some integer k. Hence n(mq′
− kn′) = n′q and since gcd(q, n) = 1 we obtain n|n′. Put l :=

n′

n , then (5) yields
mq′

= (kn + q)l and in consequence q′ m
l = q(mod n). Moreover, as gcd(q′, l) = 1 we also have l|m. Let p ∈ Z∗

n and
p′

∈ Z∗

n′ be such that pq = 1(mod n) and p′q′
= 1(mod n′). Clearly p′q′

= 1(mod n). The condition q′ m
l = q(mod n) now

implies pqq′ m
l = qq′p′(mod n) which gives m

l p = p′(mod n) as gcd(qq′, n) = 1. �

3. Main results

We begin with some properties of homeomorphisms satisfying (1). The following lemma is a consequence of Eq. (1) and
Remark 1.

Lemma 2. Let F : S1 → S1 and G : S1 → S1 be orientation-preserving homeomorphisms satisfying (1) for some integer m ≥ 2
and such that α(F) =

q
n and α(G) =

q′

n′ where 0 ≤ q < n, 0 ≤ q′ < n′ and gcd(q, n) = gcd(q′, n′) = 1. Then

(i) n′
= nl and m

l := m′
∈ Z for some unique integer l ≥ 1,

(ii) q′m′
= q(mod n),

(iii) charG = m′char F(mod n),
(iv) (Gn′

)m
′

= F n.

Proof. Notice that (1) implies mα(G) = α(F)(mod 1), i.e., (4) holds true. From Remark 1 we have (i) and (ii). If q = 0, then
n = 1, char F = 1 and (iii) is obvious. If q ≠ 0, then taking p := char F and p′

:= charG we get (iii) from Remark 1. Finally,
(iv) follows from (1) and (i). �

The following lemma gives the rest of the necessary conditions for (1) to hold.

Lemma 3. Let F : S1 → S1 and G : S1 → S1 be orientation-preserving homeomorphisms satisfying (1) for some integer m ≥ 2
and such that α(F) =

q
n and α(G) =

q′

n′ where 0 ≤ q < n, 0 ≤ q′ < n′ and gcd(q, n) = gcd(q′, n′) = 1. Then for

every z ∈ Per F ∪ Fix F there exists a partition of
−−−−−−−−→
z, F char F (z)


onto l :=

n′

n pairwise disjoint, consecutive closed-open arcs
J0, J1, . . . , Jl−1 such that

F n
[Jk] = Jk, k ∈ Zl

and if l > 1 there exist orientation-preserving homeomorphisms Vk : Jk → Jk+1, k ∈ Zl−1 satisfying

F n
|Jk+1

◦ Vk = Vk ◦ F n
|Jk , k ∈ Zl−1.

Proof. Fix z ∈ Per F ∪ Fix F (one of these sets must be empty). If n = n′ set J0 =
−−−−−−−−→
z, F char F (z)


, then F n

[J0] = J0. Let us notice

that
−−−−−−−−→
z, F char F (z)


= S1 if n = 1. If n′ > n, then l > 1 and we define

Jk =
−−−−−−−−−−−−−−−−−→
GkcharG(z),G(k+1)charG(z)


, k ∈ Zl.

This and Lemma 1 imply that J0, . . . , Jl−1 are disjoint and consecutive arcs. Moreover, by Lemma 2(iii) we get lcharG =

mchar F(mod n′), hence and by (1) we have

l−1
k=0

Jk =
−−−−−−−−→
z,GlcharG(z)


=

−−−−−−−−−→
z,Gmchar F (z)


=

−−−−−−−−→
z, F char F (z)


. (6)
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Since PerG = Per F ∪ Fix F we have z ∈ PerG and GkcharG(z) ∈ PerG for k ∈ Zl+1. Thus F n

GkcharG(z)


= GkcharG(z), k ∈

Zl+1 and in consequence

F n
[Jk] =

−−−−−−−−−−−−−−−−−−−−−−−−→
F n 

GkcharG(z)

, F n 

G(k+1)charG(z)


= Jk, k ∈ Zl.

Now let Tz(G) be the Babbage homeomorphismofG. Fix k ∈ Zl−1 and putVk := Tz(G)|Jk . Then by Theorem1,Vk : Jk → Jk+1
satisfies

Gn′

|Jk+1
◦ Vk = Vk ◦ Gn′

|Jk .

Hence
Gn′

m′

|Jk+1
◦ Vk = Vk ◦


Gn′

m′

|Jk
,

where m′
=

m
l , and in view of Lemma 2(iv) we have

F n
|Jk+1

◦ Vk = Vk ◦ F n
|Jk . �

Before the main theorem let us recall the following result (see [5]).

Lemma 4. Let u, w ∈ S1, u ≠ w and I :=
−−−→
[u, w]. For every integer m ≥ 2 and every orientation-preserving homeomorphism

F : I → I with Fix F ≠ ∅ there exist infinitely many orientation-preserving homeomorphisms G : I → I satisfying (1) and such
that FixG ≠ ∅.

From Corollary 3 and Lemma 3 in [10] we also have

Lemma 5. If F : S1 → S1 is an orientation-preserving homeomorphism with periodic points of order n > 1, z ∈

Per F , {z, F(z), . . . , F n−1(z)} = {z0, z1, . . . , zn−1}, where z0 = z and

Arg
zd
z0

< Arg
zd+1

z0
< 2π, d ∈ Zn−1

and F(z0) = zq, then α(F) =
q
n .

Theorem 2. Let m ≥ 2 and l ≥ 1 be integers and let F : S1 → S1 be an orientation-preserving homeomorphism such that
α(F) =

q
n , where 0 ≤ q < n and gcd(q, n) = 1. F has continuous and orientation-preserving iterative root of order m with

periodic points of order ln if and only if the following conditions are fulfilled:

(i) m
l =: m′

∈ Z and there is q′
∈ Znl such that gcd(q′, ln) = 1 and q′m′

= q(mod n);

(ii) for some z0 ∈ Per F there is a partition of
−−−−−−−−−→
z0, F char F (z0)


onto l consecutive disjoint arcs J0, . . . , Jl−1 such that F n

[Ji] =

Ji, i ∈ Zl and if l > 1, then there exist orientation-preserving homeomorphisms Vi : Ji → Ji+1, i ∈ Zl−1 satisfying

F n
|Ji+1

= Vi ◦ F n
|Ji ◦ V−1

i , i ∈ Zl−1. (7)

For any z0 ∈ Per F ∪ Fix F ,m, l, q′, arcs J0, . . . , Jl−1 and homeomorphisms Vi : Ji → Ji+1, i ∈ Zl−1 satisfying (7) the iterative root
G : S1 → S1 of F is of the form:

G(z) :=


V q′

(G0(z)), z ∈ J0,
V q′

(z), z ∈ S1 \ J0,
(8)

where G0 : J0 → J0 is an orientation-preserving homeomorphism such that FixG0 ≠ ∅ and Gm′

0 = F n
|J0

and V = Ψ char F if l = 1
or

V (z) :=


Vi(z), z ∈ Ji, i ∈ Zl−1,

Vl−1(z) := Ψ char F
◦ V−1

0 ◦ · · · ◦ V−1
l−2(z), z ∈ Jl−1,

Ψ dchar F
◦ Vi ◦ Ψ −dchar F (z), z ∈ F dchar F

[Ji], i ∈ Zl, d ∈ Z∗

n

(9)

if l > 1, where Ψ : S1 → S1 is given by

Ψ (z) := T q
◦ T d

◦ G
βj,d
j ◦ T−d(z), z ∈ F dchar F

[Jj], d ∈ Zn, j ∈ Zl, (10)

where

Gj := Vj ◦ Gj−1 ◦ V−1
j , j ∈ Z∗

l , (11)
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T = Tz0(F) denotes the Babbage homeomorphism of F and

βi,d :=



m′
−

m
nl


− 1, if d = 0, i′i ≤ m −

m
nl


nl − 1,

m′
−

m
nl


, if d = 0, i′i > m −

m
nl


nl − 1,

−

m
nl


− 1, if d ∈ Z∗

n, i′i+dl ≤ m −

m
nl


nl − 1,

−

m
nl


, if d ∈ Z∗

n, i′i+dl > m −

m
nl


nl − 1

(12)

for i ∈ Zl with i′k ∈ Znl uniquely determined by (k + i′kq
′)(mod nl) = 0 for k ∈ Znl.

Moreover, every orientation-preserving iterative root of order mof F with periodic points of order nl (if exists)may be expressed
by (8)–(12).

Proof. Clearly, if Eq. (1) holds true then (i) follows from conditions (i) and (ii) of Lemma 2 and (ii) follows from Lemma 3.
Now assume that m, l ∈ Z,m ≥ 2, l ≥ 1m′

=
m
l and F : S1 → S1 is an orientation-preserving homeomorphism such

that α(F) =
q
n , where 0 ≤ q < n and gcd(q, n) = 1. Let conditions (i) and (ii) of Theorem 1 be fulfilled. We give the proof

only for the case l > 1, the case l = 1 was proved in [5] (let us mention that if l = 1 condition (ii) is not the case and (i) is
equivalent to the fact that gcd(m, n) = 1). Notice that as l > 1 we have nl > 1 and therefore q′ > 0. The proof is divided
into four steps.

Firstly, we show that the function Ψ given by (10)–(12) is an orientation-preserving homeomorphism such that α(Ψ ) =
q
n and Ψ n

= idS1 . To see this set, if n > 1,

Jj+dl := F dchar F
[Jj], d ∈ Z∗

n, j ∈ Zl. (13)

Since F preserves the orientation, Jj for j ∈ Znl are pairwise disjoint and consecutive arcs. Moreover,

F char F
[Jj+(n−1)l] = F char F 

F (n−1)char F
[Jj]


= Jj, j ∈ Zl (14)

and

F n
[Jj+dl] = F n 

F dchar F
[Jj]


= F dchar F 

F n
[Jj]


= F dchar F

[Jj] = Jj+dl (15)

for d ∈ Z∗
n and j ∈ Zl. Let z1, z2, . . . , znl−1 be such that Jk = [zk, zk+1) for k ∈ Znl−1. From (15) since F preserves the

orientation we have F n
[zk] = zk for k ∈ Znl, thus zk for k ∈ Znl are periodic or fixed (if n = 1) points of F . Hence and by (13)

and (14) we get

z(k+l)(mod nl) = F char F
[zk], k ∈ Znl

and as a consequence

F [zk] = F qchar F
[zk] = z(k+ql)(mod nl), k ∈ Znl.

This and the fact that F preserves the orientation yield

F [Jk] = J(k+ql)(mod nl), k ∈ Znl. (16)

Now assume that T = Tz0(F), then from (3) one can obtain

T q(z) =


F 1−n(z), z ∈

−−−→
[z0, zl),

F(z), z ∈ S1 \
−−−→
[z0, zl),

hence in view of (16),

T q
[Jk] = F [Jk] = J(k+ql)(mod nl), k ∈ Znl.

This and the equalities T = T qchar F and qchar F = 1(mod n) give

T [Jk] = T qchar F
[Jk] = J(k+qlchar F)(mod nl) = J(k+l)(mod nl), k ∈ Znl. (17)

On the other hand, if G0 : J0 → J0 is an orientation-preserving homeomorphism such that FixG0 ≠ ∅ and Gm′

0 = F n
|J0
, then

by (11),

Gj[Jj] = Jj, j ∈ Zl. (18)
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Finally, by (10), (17) and (18) we get

Ψ [Jj+dl] = T q
◦ T d

◦ G
βj,d
j ◦ T−d

[Jj+dl]

= T q
◦ T d

◦ G
βj,d
j [Jj] = T q

◦ T d
[Jj]

= J(j+(q+d)l)(mod nl), j ∈ Zl, d ∈ Zn.

Thus

Ψ [Jk] = J(k+ql)(mod nl), k ∈ Znl. (19)

Let us notice that as a composition of orientation-preserving homeomorphisms, Ψ|Jk is an orientation-preserving
homeomorphism. Hence Ψ : S1 → S1 is an orientation-preserving homeomorphism.

To show that α(Ψ ) =
q
n observe that from (19) and (16) it follows that

F k(z0) = Ψ k(z0), k ∈ Z,

so by the definition of the rotation number α(Ψ ) = α(F) =
q
n and hence charΨ = char F .

Now we are in the position to show that Ψ n
= idS1 . Fix j ∈ Zl and d ∈ Zn. From (19), (10) and (17), in view of the fact

that T p
= T p(mod n) for p ∈ N, we obtain

Ψ n
|Jj+dl

= (T q
◦ T d+(n−1)q

◦ G
βk,(j+(n−1)q)(mod n)
j ◦ T−(d+(n−1)q)) ◦ · · · ◦ (T q

◦ T d+q
◦ G

βj,(d+q)(mod n)
j ◦ T−(d+q))

◦ (T q
◦ T d

◦ G
βj,d
j ◦ T−d

|Jj+dl
)

= T q
◦ T d+(n−1)q

◦ G
βj,(d+(n−1)q)(mod n)+···+βj,d
j ◦ T−d

|Jj+dl
.

Moreover, since gcd(q, n) = 1 we get

{d, (d + q)(mod n), . . . , (d + (n − 1)q)(mod n)} = {0, 1, . . . , n − 1}.

We thus have

Ψ n
|Jj+dl

= T q
◦ T d+(n−1)q

◦ Gβj,n−1+···+βj,0 ◦ T−d
|Jj+dl

. (20)

We finish the proof of this step by showing βj,n−1 + · · · + βj,0 = 0. In order to do this we examine the properties of the
mapping Znl ∋ k −→ i′k ∈ Znl defined by (k + i′kq

′)(mod nl) = 0 for k ∈ Znl. As q′ > 0 there is a unique p′
∈ Z∗

nl such
that q′p′

= 1(mod nl). Hence i′k = −p′k(mod nl) for k ∈ Znl. If we had i′k1 = i′k2 for some distinct k1, k2 ∈ Znl we would
get k1 − k2 = cnl for some integer c ≠ 0, a contradiction. Thus the mapping is an injection, and in consequence a bijection.
Moreover,

i′i+tl = −p′(i + tl)(mod nl) = −p′i − p′tl(mod nl), t ∈ Zn, i ∈ Zl. (21)

Now turn to the definition (12) and put b :=
m
nl


and c := m′

− bn, then b ≥ 0, c ∈ Zn andm−
m
nl


nl = cl. On the other

hand, by (21) we get that Ai := {i+ tl : t ∈ Zn} is mapped onto A−p′i(mod l) for i ∈ Zl. Thus i′k ≤ cl− 1 for exactly c elements
k ∈ Ai for i ∈ Zl. Consider two cases
(a) i′j ≤ cl − 1, then by (12),

βj,n−1 + · · · + βj,0 = (n − c)(−b) + (c − 1)(−b − 1) + m′
− b − 1 = 0.

(b) i′j > cl − 1, then again by (12),

βj,n−1 + · · · + βj,0 = (n − c − 1)(−b) + c(−b − 1) + m′
− b = 0.

This finishes the proof that Ψ n
= idS1 .

In the next step we show that V l
= Ψ char F . Immediately from (9) we get that V is an orientation-preserving

homeomorphism such that

V [Jk] = J(k+1)(mod nl), k ∈ Znl. (22)

Fix j ∈ Zl, d ∈ Zn and z ∈ Jj+dl, then since Ψ n
= idS1 we get

V l(z) = Ψ (d+1)char F
◦ Vj−1 ◦ Ψ −(d+1)char F

◦ · · · ◦ Ψ (d+1)char F
◦ V0 ◦ Ψ −(d+1)char F

◦ Ψ dchar F
◦ Vl−1 ◦ Ψ −dchar F

◦Ψ dchar F
◦ Vl−2 ◦ Ψ −dchar F

◦ · · · ◦ Ψ dchar F
◦ Vj+1 ◦ Ψ −dchar F

◦ Ψ dchar F
◦ Vj ◦ Ψ −dchar F (z)

= Ψ (d+1)char F
◦ Vj−1 ◦ · · · ◦ V0 ◦ Ψ −char F

◦ Vl−1 ◦ Vl−2 ◦ · · · ◦ Vj+1 ◦ Vj ◦ Ψ −dchar F (z)

= Ψ (d+1)char F
◦ Vj−1 ◦ · · · ◦ V0 ◦ Ψ −char F

◦ Ψ char F
◦ V−1

0 ◦ · · · ◦ V−1
l−2 ◦ Vl−2

◦ · · · ◦ Vj+1 ◦ Vj ◦ Ψ −dchar F (z) = Ψ (d+1)char F
◦ Ψ −dchar F (z) = Ψ char F (z).
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In the third step we show that the function G given by (8) satisfies (1). Since V l
= Ψ char F and Ψ n

= idS1 we get
V nl

= Ψ nchar F
= idS1 . Moreover, in view of (22) and (8),

G(zk) = z(k+q′)(mod nl), k ∈ Znl,

where z0, z1, z2, . . . , znl−1 are such that Jk = [zk, zk+1) for k ∈ Znl−1. As gcd(q′, nl) = 1 we get that G has periodic points of
order nl. Lemma 5 implies now that α(G) =

q′

nl . Thus V = Tz0(G) is the Babbage homeomorphism of G.
Equations V l

= Ψ char F , Ψ n
= idS1 and equality qchar F = 1(mod n) yield also V lq

= Ψ qchar F
= Ψ , which together with

(10) result in

V lq
|Jj+dl

= T q
◦ T d

◦ G
βj,d
j ◦ T−d

|Jj+dl
, d ∈ Zn, j ∈ Zl. (23)

In virtue of the fact that T p
= T p(mod n) for p ∈ Z Eq. (23) is equivalent to

V lq
|J(j+pl)(mod nl)

= T q
◦ T p

◦ G
βj,p(mod n)
j ◦ T−p

|J(j+pl)(mod nl)
, p ∈ N, j ∈ Zl. (24)

Thus

V klq
|Jj

= T q
◦ T (k−1)q

◦ G
βj,q(k−1)(mod n)
j ◦ T−((k−1)q)

◦ · · · ◦ T q
◦ T q

◦ G
βj,q(mod n)
j ◦ T−q

◦ T q
◦ G

βj,0
j

= T kq
◦ G

(βj,q(k−1)(mod n)+βj,q(k−2)(mod n)+···+βj,q+βj,0)

j ,

which gives

T kq
|Jj

= V klq
◦ G

−(βj,q(k−1)(mod n)+βj,q(k−2)(mod n)+···+βj,q+βj,0)

j , (25)

for k ∈ {1, . . . , n} and j ∈ Zl. Now if n > 1, fix d ∈ Z∗
n and j ∈ Zl. Since gcd(q, n) = 1 there is a unique t ∈ Z∗

n such that
tq = d(mod n). Hence by (24) we have

V lq
|Jj+dl

= V lq
|Jj+ltq(mod nl)

= T q
◦ T tq

◦ G
βj,tq(mod n)
j ◦ T−tq

|Jj+ltq(mod nl)
.

By substituting (25) twice to the above equation we obtain

V lq
|Jj+dl

= T q
◦ (V tlq

◦ G
−(βj,q(t−1)(mod n)+···+βj,q+βj,0)

j ) ◦ G
βj,tq(mod n)
j ◦ (G

(βj,q(t−1)(mod n)+···+βj,q+βj,0)

j ◦ V−tlq
|Jj+dl

).

Thus

T q
|Jj+dl

= V lq
◦ V tlq

◦ G
−βj,tq(mod n)
j ◦ V−tlq

|Jj+dl

and

T q
|Jj+dl

= V lq
◦ V dl

◦ G
−βj,d
j ◦ V−dl

|Jj+dl
, (26)

as tql = dl(mod nl) and V tql
= V dl. In view of (11) we finally obtain

T q
|Jj+dl

= V lq
◦ V j+dl

◦ G
−βj,d
0 ◦ V−(j+dl)

|Jj+dl
. (27)

Now notice that since T is a Babbage homeomorphism of F and α(F) =
q
n , then by (27) and (3) we get

F|Jj+dl = V lq
◦


V j

◦ G
−βj,0
0 ◦ V−j

◦ F n
|Jj for j ∈ Zl,

V j+dl
◦ G

−βj,d
0 ◦ V−(j+dl)

|Jj+dl
for j ∈ Zl, d ∈ Z∗

n.

This, (7) and the facts that V|Jj = Vj, j ∈ Zl and Gm′

0 = F n
|J0

yield

F|Jj+dl = V lq
◦

V j
◦ G

−βj,0+m′

0 ◦ V−j
|Jj

for j ∈ Zl,

V j+dl
◦ G

−βj,d
0 ◦ V−(j+dl)

|Jj+dl
for j ∈ Zl, d ∈ Z∗

n.
(28)

We may write m = i + bnl, where b =
m
nl


and i ∈ Znl, hence m′q′

= q(mod n) and q′i = q′(i + bnl)(mod nl) give
q′i = ql(mod nl) and in consequence

V ql
= V q′i. (29)
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Furthermore, according to (12),

−βj,0 + m′
=


b + 1, i′j ≤ i − 1,
b, i′j > i − 1

for j ∈ Zl and

−βj,d =


b + 1, i′j+dl ≤ i − 1,
b, i′j+dl > i − 1

for j ∈ Zl and d ∈ Z∗
n . Putting these and (29) to (28) we have

F|Jk = V q′ i
◦


V k

◦ Gb+1
0 ◦ V−k

|Jk
, i′k ≤ i − 1,

V k
◦ Gb

0 ◦ V−k
|Jk

, i′k > i − 1
(30)

for every k ∈ Znl.
On the other hand, by Theorem 1 we obtain for all k ∈ Znl.

Gi+bnl
|Jk

= V q′ i
◦


V k

◦ Gb+1
0 ◦ V−k

|Jk
, if − kp′(mod nl) ≤ i − 1,

V k
◦ Gb

0 ◦ V−k
|Jk

, if − kp′(mod nl) > i − 1,
(31)

where p′
= charG is such that q′p′

= 1(mod nl), Recall that i′k = −p′k(mod nl) for k ∈ Znl, thus (30) and (31) result in
Gm

= F and the proof of the third step is completed.
What is left is to show that every orientation-preserving iterative root of order m of F with periodic points of order

nl (if exists) may be expressed by (8)–(12). Suppose that F ,G are orientation-preserving homeomorphisms satisfying (1)
for some integer m ≥ 2 and such that α(F) =

q
n , α(G) =

q′

n′ , where gcd(q, n) = gcd(q′, n′) = 1. Let moreover
z0 ∈ Per F = PerG, V = Tz0(G), T = Tz0(F). By (i) of Lemma 2, n′

= nl for some integer l. Put

Jk =
−−−−−−−−−−−−−−−−−−→
GkcharG(z0),G(k+1)charG(z0)


, k ∈ Z∗

nl,

then we get (6) with z = z0. Moreover, by Lemma 2(iii) and (1) we obtain

Jj+dl =
−−−−−−−−−−−−−−−−−−−−−−−→
G(j+dl)charG(z0),G(j+dl+1)charG(z0)


= GdlcharG


−−−−−−−−−−−−−−−−−−→
GjcharG(z0),G(j+1)charG(z0)


= GdlcharG 

Jj


= Gmdchar F 
Jj


= F dchar F
[Jj], d ∈ Z∗

n, j ∈ Zl.

Now let Gj := Gn′

|Jj
and Vj := V|Jj for j ∈ Zl, then from Lemma 2(iv) we get

Gnl
j

m′

= F n
|Jj , j ∈ Zl, (32)

where m′
=

m
l . By Theorem 1 we also get that Vj : Jj → Jj+1 for j ∈ Zl−1 satisfy

Gn′

|Jj+1
◦ Vj = Vj ◦ Gn′

|Jj , j ∈ Zl−1,

which is equivalent to (11). By Theorem 5 from [3], functions G and F are of the form (8) and (3), respectively. Write
m = i + bnl, where b =

m
nl


and i ∈ Znl, then Theorem 1 gives (31) with p′

= charG. Put i′k := −kp′(mod nl) for
k ∈ Znl and let βj,d for j ∈ Zl and d ∈ Zn be defined by (12). As (1) is satisfied, (3), (31) and (11) give

T q
◦ F n

|Jj = V q′ i
◦ G

−βj,0+m′

j , j ∈ Zl (33)

and

T q
|Jj+dl

= V q′i
◦ V dl

◦ G
−βj,d
j ◦ V−dl

|Jj+dl
, j ∈ Zl, d ∈ Z∗

n. (34)

In view of (32), Eqs. (33) and (34) my be written as

T q
|Jj+dl

= V q′i
◦ V dl

◦ G
−βj,d
j ◦ V−dl

|Jj+dl
, j ∈ Zl, d ∈ Zn. (35)

From Lemma 2(ii) we get mq′
= ql(mod nl) thus q′i = ql(mod nl) and we have (29), which together with (35) give (26) for

j ∈ Zl, d ∈ Zn. If n > 1, for every d ∈ Zn there is a unique t ∈ Zn such that tq = d(mod n). Hence by (26),

T q
|Jj+tql(mod nl)

= V ql
◦ V tql

◦ G
−βj,tq(mod n)
j ◦ V−tql

|Jj+tql(mod nl)
(36)
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for j ∈ Zl and t ∈ Z∗
n . This implies

T kq
|Jj

= V ql
◦ V (k−1)ql

◦ G
−βj,(k−1)q(mod n)
j ◦ V−(k−1)ql

◦ · · · ◦ V ql
◦ V ql

◦ G
−βj,q(mod n)
j ◦ V−ql

◦ V ql
◦ G

−βj,0
j

= V kql
◦ G

−(βj,(k−1)q(mod n)+···+βj,q(mod n)+βj,0)

j , j ∈ Zl

and as a result

V kql
|Jj

= T kq
◦ G

βj,(k−1)q(mod n)+···+βj,q(mod n)+βj,0
j , j ∈ Zl (37)

for k ∈ Zn. Putting (37) with k = t into (36) we get

T q
|Jj+tql(mod nl)

= V ql
◦ T tq

◦ G
−βj,tq(mod n)
j ◦ T−tq

|Jj+tql(mod nl)
, j ∈ Zl, t ∈ Zn

which yields (23), with tq = d(mod n). Let Ψ be defined by (10), then Ψ is an orientation-preserving homeomorphism
such that Ψ n

= idS1 , α(Ψ ) =
q
n and charΨ = char F (see the first step of this proof). By (10) we obtain V ql

= Ψ , thus
V qlchar F

= Ψ char F which yields

V l
= Ψ char F , (38)

as qlchar F = l(mod nl) and V nl
= idS1 . From (38) we have

V ◦ Ψ char F
= Ψ char F

◦ V .

This and the fact that Vj = V|Jj for j ∈ Zl give (9). �
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