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a b s t r a c t

We use Morse theory to study impulsive problems. First we consider asymptotically
piecewise linear problems with superlinear impulses, and prove a new existence result
for this class of problems using the saddle point theorem. Next we compute the critical
groups at zero when the impulses are asymptotically linear near zero, in particular, we
identify an important resonance set for this problem. As an application, we finally obtain
a nontrivial solution for asymptotically piecewise linear problems with impulses that are
asymptotically linear at zero and superlinear at infinity. Our results here are based on the
simple observation that the underlying Sobolev space naturally splits into a certain finite
dimensional subspace where all the impulses take place and its orthogonal complement
that is free of impulsive effects.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Impulsive problems arise naturally in studies of evolutionary processes that involve abrupt changes in the state of the
system, triggered by instantaneous perturbations called impulses. Examples include games where players can affect the
game only at discrete instants (see Chikrii, Matychyn, and Chikrii [3]), two person zero sum gameswith separated impulsive
dynamics (see Crück, Quincampoix, and Saint-Pierre [5]), pulse vaccination strategy (see Stone, Shulgin, and Agur [11]),
and optimal impulsive harvesting (see Zhang, Shuai, and Wang [14]). Classical approaches to such problems include fixed
point theory (see, e.g., Lin and Jiang [8]) and the method of upper and lower solutions (see, e.g., Liu and Guo [9]). More
recently, variational methods have been widely used to study impulsive problems (see, e.g., Tian and Ge [12], Nieto and
O’Regan [10], Zhou and Li [16], Zhang and Yuan [15], Zhang and Li [13], Bai and Dai [1], Han andWang [7], and Gong, Zhang,
and Tang [6]).

In this paper we use Morse theory to study impulsive problems. First we consider asymptotically piecewise linear
problems with superlinear impulses. Although asymptotically piecewise linear nonlinearities are quite natural in this
setting, they donot seem tohave been studied in the literature.Wewill prove a newexistence result for this class of problems
using the saddle point theorem. Next we compute the critical groups at zero when the impulses are asymptotically linear
near zero. In particular, wewill identify an important resonance set for this problem. The effect of impulses on critical groups
has not been studied previously, to the best of our knowledge. As an application, we finally obtain a nontrivial solution for
asymptotically piecewise linear problems with impulses that are asymptotically linear at zero and superlinear at infinity.
Our results here are based on the simple observation that the underlying Sobolev space naturally splits into a certain finite
dimensional subspace where all the impulses take place and its orthogonal complement that is free of impulsive effects.
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Letm be a positive integer, let 0 = x0 < x1 < · · · < xm < xm+1 = 1, and consider the impulsive problem
−u′′

= f (x, u), x ∈ (0, 1) \ {x1, . . . , xm}

u(0) = u(1) = 0, u(x+

j ) = u(x−

j ), j = 1, . . . ,m
u′(x+

j ) = u′(x−

j ) − ıj(u(xj)), j = 1, . . . ,m,

(1.1)

where f is a Carathéodory function on (0, 1) × R,

u(x±

j ) = lim
x→xj
x≷xj

u(x), u′(x±

j ) = lim
x→xj
x≷xj

u′(x),

and ıj are continuous functions on R. Denoting by H1
0 (0, 1) the usual Sobolev space with the inner product

(u, v) =

 1

0
u′v′,

a weak solution of (1.1) is a function u ∈ H1
0 (0, 1) such that 1

0
u′v′

=

 1

0
f (x, u) v +

m
j=1

ıj(u(xj)) v(xj) ∀v ∈ H1
0 (0, 1).

Noting that H1
0 (0, 1) is continuously embedded in C[0, 1], we see that weak solutions coincide with the critical points of the

C1-functional

Φ(u) =
1
2

 1

0
(u′)2 −

 1

0
F(x, u) −

m
j=1

Ij(u(xj)), u ∈ H = H1
0 (0, 1),

where

F(x, t) =

 t

0
f (x, s) ds, Ij(t) =

 t

0
ıj(s) ds

are the primitives of f and ıj, respectively.
The closed linear subspace

N =

u ∈ H : u(xj) = 0, j = 1, . . . ,m


is important here since each Ij(0) = 0. For j = 1, . . . ,m, the mapping H → R, u → u(xj) is a bounded linear functional on
H and hence there is a unique wj ∈ H such that u(xj) =


u, wj


by the Riesz–Frechet representation theorem. In fact,

wj(x) =


(1 − xj) x, 0 ≤ x ≤ xj
xj (1 − x), xj ≤ x ≤ 1. (1.2)

Since xj are distinct, wj are linearly independent, so N is the orthogonal complement of them-dimensional subspaceM that
they span. Hence we have the orthogonal decomposition

H = N ⊕ M, u = v + w,

and

Φ(u) =
1
2

 1

0


(v′)2 + (w′)2


−

 1

0
F(x, u) −

m
j=1

Ij(w(xj)). (1.3)

We will make use of this splitting throughout the paper.
By (1.2), each w ∈ M is affine on the subintervals [xj−1, xj]. Since the space of continuous functions on [0, 1] that are

affine on these subintervals and vanish at the endpoints is also m-dimensional, it follows that M is precisely this subspace.
Then we also have

max
x∈[0,1]

|w(x)| = max
j=1,...,m

|w(xj)| ∀w ∈ M,

and this is an equivalent norm on this finite dimensional space.
The subspace N has the decomposition

N =

m+1
j=1

Nj, v =

m+1
j=1

vj
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where Nj = H1
0 (xj−1, xj), vj = χj v, and

χj(x) =


1, x ∈ (xj−1, xj)
0, x ∈ (0, 1) \ (xj−1, xj)

is the characteristic function of the subinterval (xj−1, xj). Combining this with (1.3) gives

Φ(u) =
1
2


m+1
j=1

 xj

xj−1

(v′

j)
2
+

 1

0
(w′)2


−

 1

0
F(x, u) −

m
j=1

Ij(w(xj)). (1.4)

We will make use of this splitting in the next section.

2. Asymptotically piecewise linear problems with superlinear impulses

In this section we assume that f is asymptotically piecewise linear in the sense that

f (x, t) =

m+1
j=1

aj χj(x) t + g(x, t) (2.1)

where a1, . . . , am+1 ∈ R and g satisfies

|g(x, t)| ≤ C

|t|r−1

+ 1


for a.e. x ∈ (0, 1) and all t ∈ R (2.2)

for some r ∈ (1, 2) and a generic positive constant C . For the sake of simplicity we will only consider the nonresonant case
where, for all j, aj is not in the set

σj =


λ
j
k =

k2π2

(xj − xj−1)2
: k = 1, 2, . . .


of eigenvalues of the problem

−u′′
= λ u, x ∈ (xj−1, xj)

u(xj−1) = u(xj) = 0.

Regarding the impulses we assume the superlinearity conditions

t ıj(t) ≥ c |t|µ − C ∀t ∈ R, j = 1, . . . ,m (2.3)

for some µ > 2 and c > 0. The main result of this section is the following.

Theorem 2.1. If (2.1)–(2.3) hold, and aj ∉ σj for j = 1, . . . ,m + 1, then problem (1.1) has a solution.

By (2.1) and (2.2),

F(x, t) =

m+1
j=1

1
2
aj χj(x) t2 + G(x, t)

where G(x, t) =
 t
0 g(x, s) ds satisfies

|G(x, t)| ≤ C

|t|r + 1


for a.e. x ∈ (0, 1) and all t ∈ R. (2.4)

Combining this with (1.4) gives

Φ(u) =
1
2


m+1
j=1

 xj

xj−1


(v′

j)
2
− aj v2

j


+

 1

0
(w′)2 −

m+1
j=1

aj

 xj

xj−1

w2


−

m+1
j=1

aj

 xj

xj−1

vj w −

 1

0
G(x, u) −

m
j=1

Ij(w(xj)).

By (2.3),

Ij(t) ≥ c̃ |t|µ − C ∀t ∈ R, j = 1, . . . ,m (2.5)

for some c̃ > 0.
Let J0 be the set of those j for which aj < λ

j
1 and let J1 = {1, . . . ,m + 1} \ J0. For each j ∈ J1, λ

j
dj

< aj < λ
j
dj+1 for some

dj ≥ 1, and we have the decomposition

Nj = N+

j ⊕ N−

j , vj = v+

j + v−

j



R.P. Agarwal et al. / J. Math. Anal. Appl. 409 (2014) 752–759 755

whereN−

j is the dj-dimensional subspace spanned by the eigenfunctions ofλj
1, . . . , λ

j
dj
andN+

j is its orthogonal complement.
Then

Φ(u) =
1
2


j∈J0

 xj

xj−1


(v′

j)
2
− aj v2

j


+


j∈J1

 xj

xj−1


(v+

j
′
)2 − aj (v+

j )2

+


j∈J1

 xj

xj−1


(v−

j
′
)2 − aj (v−

j )2


+

 1

0
(w′)2 −

m+1
j=1

aj

 xj

xj−1

w2


−

m+1
j=1

aj

 xj

xj−1

vj w −

 1

0
G(x, u) −

m
j=1

Ij(w(xj))

for

u =


j∈J0

vj +

j∈J1

(v+

j + v−

j ) + w ∈


j∈J0

Nj ⊕

j∈J1

(N+

j ⊕ N−

j ) ⊕ M. (2.6)

We have xj

xj−1

(v′

j)
2

≥ λ
j
1

 xj

xj−1

v2
j , j ∈ J0, xj

xj−1

(v+

j
′
)2 ≥ λ

j
dj+1

 xj

xj−1

(v+

j )2,

 xj

xj−1

(v−

j
′
)2 ≤ λ

j
dj

 xj

xj−1

(v−

j )2, j ∈ J1,

so  xj

xj−1


(v′

j)
2
− aj v2

j


≥ cj

vj
2 , j ∈ J0, (2.7) xj

xj−1


(v+

j
′
)2 − aj (v+

j )2


≥ c+

j

v+

j

2 , xj

xj−1


(v−

j
′
)2 − aj (v−

j )2


≤ −c−

j

v−

j

2 , j ∈ J1 (2.8)

where the constants

cj = 1 −
max


aj, 0


λ
j
1

, j ∈ J0,

c+

j = 1 −
aj

λ
j
dj+1

, c−

j =
aj
λ
j
dj

− 1, j ∈ J1

are all positive.
Recall that Φ satisfies the Palais–Smale compactness condition (PS) if every sequence (un) in H such that (Φ(un)) is

bounded and Φ ′(un) → 0, called a (PS) sequence, has a convergent subsequence.

Lemma 2.2. If (2.1)–(2.3) hold, and aj ∉ σj for j = 1, . . . ,m + 1, then every sequence (un) in H such that Φ ′(un) → 0 has a
convergent subsequence, in particular, Φ satisfies the (PS) condition.

Proof. By a standard argument it suffices to show that (un) is bounded. Referring to the decomposition (2.6), write

un =


j∈J0

vnj +

j∈J1

(v+

nj + v−

nj ) + wn

and set

ūn =


j∈J0

vnj +

j∈J1

(v+

nj − v−

nj ) − wn.

Then 
Φ ′(un), ūn


=


j∈J0

 xj

xj−1


(v′

nj)
2
− aj (vnj)

2
+


j∈J1

 xj

xj−1


(v+

nj
′
)2 − aj (v+

nj )
2

−

(v−

nj
′
)2 − aj (v−

nj )
2

−

 1

0
(w′

n)
2
+

m+1
j=1

aj

 xj

xj−1

w2
n + 2


j∈J1

aj

 xj

xj−1

v−

nj wn −

 1

0
g(x, un) ūn +

m
j=1

ıj(wn(xj)) wn(xj).
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Since Φ ′(un) → 0, this together with (2.7), (2.8), (2.2), and (2.3) gives
j∈J0

cj
vnj

2 +


j∈J1


c+

j

v+

nj

2 + c−

j

v−

nj

2+ c
m
j=1

|wn(xj)|µ

≤ C


∥wn∥

2
+


j∈J1

v−

nj

 ∥wn∥ + ∥un∥
r−1

∥ūn∥ + ∥ūn∥ + 1


.

Since maxj |w(xj)| defines an equivalent norm onM, µ > 2, ∥ūn∥ = ∥un∥, and r < 2, boundedness of

∥un∥
2

=


j∈J0

vnj
2 +


j∈J1

v+

nj

2 +
v−

nj

2+ ∥wn∥
2

follows. �

We are now ready to give the following.

Proof of Theorem 2.1. We apply the saddle point theorem to the splitting

H =


j∈J1

N−

j ⊕ M


⊕


j∈J0

Nj ⊕

j∈J1

N+

j


=: H1 ⊕ H2.

By Lemma 2.2, Φ satisfies the (PS) condition. For u =


j∈J1
v−

j + w ∈ H1,

Φ(u) =
1
2


j∈J1

 xj

xj−1


(v−

j
′
)2 − aj (v−

j )2

+

 1

0
(w′)2 −

m+1
j=1

aj

 xj

xj−1

w2



−


j∈J1

aj

 xj

xj−1

v−

j w −

 1

0
G(x, u) −

m
j=1

Ij(w(xj))

≤ −
1
2


j∈J1

c−

j

v−

j

2 − c̃
m
j=1

|w(xj)|µ + C


∥w∥

2
+


j∈J1

v−

j

 ∥w∥ + ∥u∥r
+ 1


by (2.8), (2.4), and (2.5). Since maxj |w(xj)| is an equivalent norm onM, µ > 2, and r < 2, it follows that Φ(u) → −∞ as

∥u∥2
=


j∈J1

v−

j

2 + ∥w∥
2

→ ∞.

On the other hand, for u =


j∈J0
vj +


j∈J1

v+

j ∈ H2,

Φ(u) =
1
2


j∈J0

 xj

xj−1


(v′

j)
2
− aj v2

j


+


j∈J1

 xj

xj−1


(v+

j
′
)2 − aj (v+

j )2


−

 1

0
G(x, u)

≥
1
2


j∈J0

cj
vj
2 +


j∈J1

c+

j

v+

j

2− C

∥u∥r

+ 1


by (2.7), (2.8), and (2.4). Since r < 2, it follows that Φ is bounded from below on H2. Thus, Φ has a critical point by the
saddle point theorem. �

3. Critical groups at zero for asymptotically linear impulses

Now assume that f (·, 0) = 0 and ıj(0) = 0, j = 1, . . . ,m, so that u = 0 is a solution of problem (1.1), and recall that the
critical groups of Φ at zero are defined by

Cq(Φ, 0) = Hq(Φ
0
∩ U, Φ0

∩ U \ {0}), q ≥ 0, (3.1)

whereΦ0
= {u ∈ H : Φ(u) ≤ 0} ,U is any neighborhood of 0, andH∗(·, ·) are the relative singular homology groups. In this

section we compute them when

f (x, t) = o(t) as t → 0, uniformly a.e. (3.2)

and

ıj(t) = bj t + hj(t), j = 1, . . . ,m (3.3)
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where b1, . . . , bm ∈ R are such that the asymptotic problem
−u′′

= 0, x ∈ (0, 1) \ {x1, . . . , xm}

u(0) = u(1) = 0, u(x+

j ) = u(x−

j ), j = 1, . . . ,m
u′(x+

j ) = u′(x−

j ) − bj u(xj), j = 1, . . . ,m
(3.4)

has only the trivial solution and
hj(t) = o(t) as t → 0, j = 1, . . . ,m. (3.5)

Let B be the set of those points b = (b1, . . . , bm) ∈ Rm for which problem (3.4) has a nontrivial solution.Wewill call B the
resonance set for this problem. Clearly, the solution set of the equations on the first two lines of (3.4) is precisely the subspace
M . Since {w1, . . . , wm}, wherewj is given by (1.2), is a basis ofM , it follows that b ∈ B if and only if there are c1, . . . , cm ∈ R,
not all zero, such that u =

m
k=1 ck wk satisfies the equations on the third line of (3.4). Sincew′

k(x
+

j )−w′

k(x
−

j ) = −δjk, where
δjj = 1 and δjk = 0 for j ≠ k, this is equivalent to

m
k=1


wk(xj) bj − δjk


ck = 0, j = 1, . . . ,m.

So
B =


b ∈ Rm

: det

wk(xj) bj − δjk


= 0


.

This resonance set will play an important role in what follows.
First we show that the higher-order terms of Φ can be deformed away without changing the critical groups when b ∉ B.

Let

Φ0(u) =
1
2

 1

0


(v′)2 + (w′)2


−

m
j=1

bj w(xj)2


, u = v + w ∈ N ⊕ M

be the functional associated with (3.4).

Lemma 3.1. If (3.2), (3.3), and (3.5) hold, and b ∉ B, then zero is an isolated critical point of Φ and

Cq(Φ, 0) ≈ Cq(Φ0, 0) ∀q.

Proof. Recall that critical groups are invariant under homotopies that preserve the isolatedness of the critical point (see
Chang and Ghoussoub [2] or Corvellec and Hantoute [4]). Consider the homotopy

Φτ (u) = (1 − τ) Φ(u) + τ Φ0(u)

=
1
2

 1

0
(u′)2 −

m
j=1

bj u(xj)2


− (1 − τ)

 1

0
F(x, u) +

m
j=1

Hj(u(xj))


, u ∈ H, τ ∈ [0, 1]

where Hj(t) =
 t
0 hj(s) ds. We will show that zero is the only critical point of Φτ for all τ ∈ [0, 1] in a sufficiently small

neighborhood.
If not, there are sequences (τn) ⊂ [0, 1] and (un) ⊂ H \ {0} such that Φ ′

τn
(un) = 0 and ρn := ∥un∥ → 0. So, for all y ∈ H , 1

0
u′

n y
′
−

m
j=1

bj un(xj) y(xj) − (1 − τn)

 1

0
f (x, un) y +

m
j=1

hj(un(xj)) y(xj)


= 0.

Dividing by ρn, settingun := un/ρn, and using (3.2) and (3.5) give 1

0
u′

n y
′
−

m
j=1

bjun(xj) y(xj) = o(1). (3.6)

Since (un) is bounded in H , a renamed subsequence converges to someuweakly in H and uniformly on [0, 1], so passing to
the limit in (3.6) gives 1

0
u′y′

−

m
j=1

bju(xj) y(xj) = 0.

Taking y =un in (3.6), using ∥un∥ = 1, and passing to the limit give
m
j=1

bju(xj)2 = 1,

sou ≠ 0. Thus,u is a nontrivial solution of (3.4), contradicting the assumption that b ∉ B. �
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Next we show that the critical groups of Φ0 are the same as those of its restriction to the finite dimensional subspaceM .
Set Φb := Φ0|M , so

Φb(w) =
1
2

 1

0
(w′)2 −

m
j=1

bj w(xj)2


, w ∈ M.

Lemma 3.2. We have

Cq(Φ0, 0) ≈ Cq(Φb, 0) ∀q.

Proof. Taking U = H in the definition (3.1) for Φ0 gives

Cq(Φ0, 0) = Hq(Φ
0
0 , Φ0

0 \ {0}).

Consider the deformation

η(u, t) = (1 − t) v + w, u = v + w ∈ N ⊕ M, t ∈ [0, 1].

We have

Φ0(η(u, t)) =
1
2

 1

0


(1 − t)2 (v′)2 + (w′)2


−

m
j=1

bj w(xj)2


≤ Φ0(u),

so η|
Φ0
0×[0,1] (resp. η|(Φ0

0\{0})×[0,1]) is a strong deformation retraction of Φ0
0 (resp. Φ0

0 \ {0}) onto Φ0
0 ∩ M = Φ0

b (resp.

(Φ0
0 \ {0}) ∩ M = Φ0

b \ {0}). Thus,

Cq(Φ0, 0) ≈ Hq(Φ
0
b , Φ0

b \ {0}) = Cq(Φb, 0). �

The functional Φb is of class C2, and its Hessian at zero is given by

(Φ ′′

b (0) y, z) =

 1

0
y′z ′

−

m
j=1

bj y(xj) z(xj), y, z ∈ M.

So the assumption that problem (3.4) has only the trivial solution implies that zero is a nondegenerate critical point of Φb.
Let m0 denote its Morse index. Since dimM = m, 0 ≤ m0 ≤ m. With respect to the basis {w1, . . . , wm} of M, Φ ′′

b (0) is
represented by them × mmatrix


(Φ ′′

b (0) wj, wk)

, which is symmetric and nonsingular, andm0 is the number of negative

eigenvalues of this matrix. Combining this with Lemmas 3.1 and 3.2 now gives the following.

Theorem 3.3. If (3.2), (3.3), and (3.5) hold, and b ∉ B, then

Cq(Φ, 0) = δqm0 G,

where G is the coefficient group. In particular, Cq(Φ, 0) = 0 for all q > m.

We close this section with the observation that the critical groups of Φb are constant in each path-component of Rm
\ B.

Indeed, if p ∈ C([0, 1], Rm
\ B), take any bounded neighborhood U of 0 in M and consider the homotopy

[0, 1] → C1(U), t → Φp(t)

U .

Since zero is the only critical point of Φp(t) for all t ∈ [0, 1], it follows that C∗(Φp(t), 0) are independent of t .

4. An application

In this section we give an application of Theorem 3.3.

Theorem 4.1. Assume that (2.1)–(2.3), (3.2), (3.3), and (3.5) hold, aj ∉ σj for j = 1, . . . ,m + 1, and b ∉ B. If

aj0 > λ
j0
1 (4.1)

for some j0, or 1

0
(w′

0)
2

≥

m
j=1

bj w0(xj)2 (4.2)

for some w0 ∈ M \ {0}, then problem (1.1) has a nontrivial solution.
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Proof. In the proof of Theorem 2.1, the saddle point theorem actually gives a critical point uwith Ck(Φ, u) ≠ 0 where

k = dimH1 =


j∈J1

dimN−

j + dimM =


j∈J1

dj + m.

If (4.1) holds, then j0 ∈ J1 and hence k ≥ dj0 + m > m, and if (4.2) holds, then (Φ ′′

b (0) w0, w0) ≥ 0 and hence m0 < m ≤ k.
In either case, Ck(Φ, 0) = 0 by Theorem 3.3, so u ≠ 0. �

Corollary 4.2. Assume that (2.1)–(2.3), (3.2), (3.3), and (3.5) hold, aj ∉ σj for j = 1, . . . ,m + 1, and b ∉ B. If

bj0 ≤
xj0+1 − xj0−1

(xj0+1 − xj0)(xj0 − xj0−1)
(4.3)

for some j0, then problem (1.1) has a nontrivial solution.

Proof. Take w0 to be the function inM for which w0(xj) = δjj0 . �

When the points xj are equally spaced, λj
k = k2 (m + 1)2 π2

=: λk and σj = {λk : k = 1, 2, . . .} =: σ for all j, and the
right-hand side of (4.3) reduces to 2 (m + 1), so we have the following.

Corollary 4.3. Let xj = j/(m + 1), j = 1, . . . ,m and assume that (2.1)–(2.3), (3.2), (3.3), and (3.5) hold, aj ∉ σ for
j = 1, . . . ,m + 1, and b ∉ B. If

max
j

aj > (m + 1)2 π2,

or

min
j

bj ≤ 2 (m + 1),

then problem (1.1) has a nontrivial solution.

We close with an example.

Example 4.4. Our results apply to the problem
−u′′

=

m+1
j=1

aj χj(x)
u3

+ u2

u2 + 1
, x ∈ (0, 1) \ {x1, . . . , xm}

u(0) = u(1) = 0, u(x+

j ) = u(x−

j ), j = 1, . . . ,m
u′(x+

j ) = u′(x−

j ) − u3(xj) − u2(xj) − bj u(xj), j = 1, . . . ,m.
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