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In this paper, we consider a family of Markov bridges with jumps constructed from
truncated stable processes. These Markov bridges depend on a small parameter
� > 0, and have fixed initial and terminal positions. We propose a new method to
prove a large deviation principle for this family of bridges based on compact level
sets, change of measures, duality and various global and local estimates of transition
densities for truncated stable processes.
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1. Markov bridges with jumps

In this section, let us recall the construction of one dimensional Markov bridges with jumps defined
through Lévy processes in the sense of [6]. We first specify the family of Lévy processes considered throughout
this paper.

1.1. Truncated stable processes

Suppose that j(u) ∈ C∞
0 (R) is a deterministic and symmetric function such that 0 � j(u) � 1, supp(j) =

{u: |u| � c} and j(u) ≡ 1 in {u: |u| � c/2} for some 0 < c < +∞. On some probability space (Ω,F ,P),
we consider a family of one dimensional symmetric Lévy processes {ξ�t }t�0 depending on a small parameter
� > 0 whose generator is

L�ϕ(x) = 1
�

∫
R

[
ϕ(x + �u) − ϕ(x) − �uϕ′(x)

]
g(u) du

for ϕ ∈ C∞
0 (R) and each fixed �, where g(u) = j(u)|u|−1−α with α ∈ (1, 2). The processes {ξ�t }t�0 are called

truncated stable processes (see [8] and [10]). For each � > 0, it follows from the Lévy–Khintchine formula
that the characteristic function of ξ�t is
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E
[
e−i·x·ξ�

t /�
]

= e−tV (x)/�, x ∈ R and t � 0, (1.1)

with V (x) = −
∫
R
[e−i·x·u − 1 + i · x · u]g(u) du.

We can realize {ξ�t }t�0 as the coordinate process on the sample space D[0,∞) consisting of all functions
from [0,∞) to R which are right continuous with left limits. In this setting, we write the coordinate process
as ξt(ω) = ω(t), and the law of {ξ�t }t�0 on D[0,∞) as P�. More precisely, for any measurable A ⊆ D[0,∞),

P�{ξ ∈ A} = P
{
ξ� ∈ A

}
. (1.2)

Throughout this paper, we do not distinguish the coordinate process {ξt}t�0 under P� and the process
{ξ�t }t�0 under P since they have the same law on D[0,∞).

Under P�, the law of the coordinate process {ξt}t�0 when started at a ∈ R is denoted as P�
a, namely,

P�

a{ξ ∈ A} = P�{ξ ∈ A | ξ0 = a} = P
{
ξ� ∈ A

∣∣ ξ�0 = a
}

=: Pa

{
ξ� ∈ A

}
. (1.3)

Let {Ft}t�0 be the natural filtration of the coordinate process {ξt}t�0. The truncated stable processes
{ξ�t }t�0 under P have transition semigroups {P �

t }t�0 and transition densities pt(x, y, �) > 0 with respect
to the Lebesgue measure dx (cf. [10]). In this case, the processes {ξ�t }t�0 do not have jumps at fixed times:
Pa{ξ�t = ξ�t−} = 1 for any t > 0; see [6] and the references therein.

1.2. Markov bridges

Based on the truncated stable processes {ξ�t }t�0 under P (or equivalently {ξt}t�0 under P�), a family of
Markov bridge laws on D[0,∞) can be constructed in the sense of [6]. Fixed a, b ∈ R, it is easy to check
that p1−t(ξ�t , b, �) is a positive martingale under Pa. Thus

Q�

a,b(A) :=
∫
A

p1−t

(
ξ�t , b, �

)
dPa, A ∈ Ft, 0 � t < 1, (1.4)

defines a family of finitely additive set functions on the algebra G =
⋃

0�t<1 Ft such that each restriction
Q�

a,b|Ft
is σ-additive. It has been proved (cf. Proposition 1 in [6]) that Q�

a,b/p1(a, b, �) extends to a probability
measure on F1− which is the σ-algebra generated by G. We use P�

a,b to denote such a law Q�

a,b/p1(a, b, �).
On the space (D[0,∞),F1− ,P�

a,b), the coordinate process {ξt}0�t<1 restricted on 0 � t < 1 is a non-
homogeneous strong Markov process with transition densities

pb,1
(
z, s; z′, t; �

)
= pt−s(z, z′, �)p1−t(z′, b, �)

p1−s(z, b, �)
, 0 < s < t < 1, z, z′ ∈ R.

The coordinate process {ξt}0�t<1 now starts from a and ends with b at t = 1−, namely

P�

a,b{ξ0 = a, ξ1− = b} = 1. (1.5)

Furthermore, {P�

a,b}b∈R is a regular version of the family of conditional probability distributions P�
a{· |

ξ1− = b} = P�{· | ξ0 = a, ξ1− = b}, b ∈ R. Equivalently, in the spirit of (1.3), it is a regular version of
Pa{· | ξ�1− = b} = P{· | ξ�0 = a, ξ�1− = b}, b ∈ R.

The aim of this paper is to study large deviations of the family of laws {P�

a,b}�>0 as � → 0 for two
fixed numbers a, b ∈ R. Previously, large deviations were obtained for various families of bridge processes
having continuous trajectories, such as Brownian bridges and diffusion bridges. Section 2 contains a more
detailed summary. In this paper, a new method is proposed to study large deviations of bridges, whose
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main ingredient is to consider compact level sets instead of closed sets. Because of the appearance of jumps,
several technical difficulties arise in the study of large deviations of these bridges (see Section 2 for several
specific difficulties). This paper is the first one to deal with large deviations of bridges with jumps. The
main result of this paper is formulated in Section 2, whose proof is included in Section 3.

2. The main result

Since the laws {P�

a,b}�>0 are on (D[0,∞),F1−), it is natural to consider the coordinate process {ξt}0�t<1

restricted on 0 � t < 1, and the sample space restricted on 0 � t < 1. More specifically, the following space
is considered:

Da,b[0, 1) =
{
φ : [0, 1) → R, right continuous with left limits, φ(0) = a and φ

(
1−

)
= b

}
.

This space is equipped with the uniform topology ‖ · ‖ = sup0�t<1 | · |. We actually focus on the laws
{P�

a,b}�>0 restricted on the space (Da,b[0, 1),B) where B is the Borel σ-algebra generated by open sets in
Da,b[0, 1). For any set A ∈ B, it is obvious that A ∈ F1− and we understand P�

a,b{ξ ∈ A} as P�

a,b{A}.
In order to formulate large deviations of the laws {P�

a,b}�>0, we define a rate function

Sa,b(φ) =
1∫

0

L
(
φ′(t)

)
dt− d(a, b) (2.1)

for absolutely continuous φ (otherwise = ∞), where L(x) is the Legendre transformation of H(y) =
∫
R
(eyu−

1 − yu)g(u) du, namely,

L(x) = sup
y∈R

[
xy −H(y)

]
, (2.2)

and d(a, b) represents the distance between a and b which is defined as

d(a, b) = inf
{ 1∫

0

L
(
φ′(t)

)
dt: φ(0) = a and φ

(
1−

)
= b

}
.

This d(a, b) was introduced in [10] in the study of estimates of transition densities for jump processes. We
now formulate a large deviation principle of {P�

a,b}�>0 as the following theorem.

Theorem 2.1. Sa,b is a good rate function, namely, it is lower semi-continuous and the level set {φ ∈
Da,b[0, 1): Sa,b(φ) � s} is compact for each s > 0. Furthermore,

(1) for any Borel measurable and open set O ⊆ Da,b[0, 1),

lim inf
�→0+

� logP�

a,b{O} � − inf
φ∈O

Sa,b(φ); (2.3)

(2) for any Borel measurable and closed set F ⊆ Da,b[0, 1),

lim sup
�→0+

� logP�

a,b{F} � − inf
φ∈F

Sa,b(φ). (2.4)
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Remark 2.1. It follows from Theorem 2.1 that the most probable trajectory of the coordinate process
{ξt}0�t<1 under P�

a,b as � → 0 is φ0 such that Sa,b(φ0) = 0. Since H(y) is convex and the Legendre trans-
formation preserves convexity, the function L(x) is also convex. Thus there is at most one such trajectory.
What is more, the existence of such φ0 comes from the lower semi-continuity of Sa,b(φ). The problem of
searching the most probable trajectory is related to the principle of least action in a mechanical system;
see Section 1.2 in [12]. It also has connections with Monge’s problem as well if the initial and terminal
probability distributions are more regular instead of Dirac measures; see [13,17] and the references therein.

Remark 2.2. For families of bridges without jumps, there are known results regarding the large deviation
principles. In [9], a large deviation principle for a family of Brownian bridges on a Riemannian manifold was
derived based on a Girsanov transformation involving minimal heat kernels on the manifold. Large deviations
for Brownian bridges in Hölder norm were presented in [1] by using arguments of abstract Wiener spaces.
For time-homogeneous diffusion bridges constructed in [15] and [16], large deviations were obtained as well
relying on techniques of the analysis of arbitrarily small partitions of [0, 1]. All of these approaches are to
prove the lower bound (2.3) and the upper bound (2.4) directly which results in a number of technical
difficulties (for instance, see the elaborate and technical proof of Lemma 2.4 in [9]). The method used in
this paper is to prove these bounds indirectly (especially for the upper bound) based on suitable equivalent
forms of large deviations (cf. Lemma 3.1). This seems to be more intuitive and promising. For this reason, in
[19] large deviations of a family of time-inhomogeneous diffusion bridges and Bernstein bridges are studied
in terms of this method.

Remark 2.3. Because of the appearance of jumps of the coordinate process {ξt}0�t<1 under P�

a,b, several
technical difficulties arise in deriving large deviation principles. For instance, we no longer have an explicit
form of L(x) in the rate function Sa,b(φ). The global and local estimates of the transition densities pt(x, y, �)
are also more complicated than the ones associated with diffusion processes. We overcome these technical
difficulties by large deviations for the family of the original truncated stable processes {ξ�t }t�0 under Pa,
and several results regarding the estimates of pt(x, y, �) in [10]. If the original Lévy processes {ξ�t }t�0 have
diffusion and drift components, then the corresponding bridges can be also constructed (in the sense of [6] or
[14]) and similar large deviations are also expected. Although large deviations for these more general Lévy
processes {ξ�t }t�0 can be explicitly formulated, the large deviations for the corresponding bridges cannot
be similarly obtained as in this paper due to the lack of appropriate estimates of the transition densities
pt(x, y, �).

Remark 2.4. Another different construction of bridges {ζ�t }0�t�1 based on the truncated stable processes
{ξ�t }0�t�1 is discussed in [14] in the framework of quantum mechanics. There, � > 0 is the Planck constant.
This fact is the reason that we chose � as our parameter throughout the paper. The bridges {ζ�t }0�t�1 have
fix initial (π0) and terminal (π1) distributions, and solve in the weak sense the stochastic integro-differential
equations

dζ�t =
∫
R

u

(
μ�(du, dt) − η�(t, ζ�t− + u)

η�(t, ζ�t−)
g(u) du dt

)
+
∫
R

u
η�(t, ζ�t− + u) − η�(t, ζ�t−)

η�(t, ζ�t−)
g(u) du dt

where η�(t, x) is the solution to ∂η�

∂t (t, x) = −L�η�(t, x) for 0 � t < 1 subject to a terminal condition
η�(1, x) = η(x), and η(x) is determined by the measures π0 and π1 in some sense. If η∗,�(t, x) is the solution
to ∂η∗,�

∂t (t, x) = L�η∗,�(t, x) for 0 < t � 1 and η∗,�(0, x) = η∗(x) (which is also determined by π0 and π1),
then the law of ζ�t was proved to take the form η�(t, x)η∗,�(t, x) dx. An advantage of this construction is
that the bridges can be built on some Lévy processes which may not be absolutely continuous with respect
to the Lebesgue measure, and the resulting bridges have the nice Bernstein property (see [2,11,5]). But the
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sacrifice is that the marginal distributions π0 and π1 should be more regular than Dirac measures, which is
the reason that we did not employ this construction in this paper.

3. Proof of Theorem 2.1

The first step of the proof is to shift large deviations from {P�

a,b}�>0 to the original truncated stable
processes {ξ�t }0�t<1 under P with the help of (1.4). To this end, we rewrite (1.4) in a more concrete way
as, for any A ∈ Ft with 0 � t < 1,

P�

a,b{A} = 1
p1(a, b, �)

∫
A

p1−t

(
ξ�t , b, �

)
dPa = 1

p1(a, b, �)

∫
A

p1−t(ξt, b, �) dP�

a (3.1)

where the second identity is from (1.3). Because of the singularity of p1−t(x, y, �) at t = 1, we thus break
the time interval [0, 1) into two parts [0, t] and [t, 1), and then send t → 1−.

Let Da[0, t] be the space of all right continuous functions on [0, t] with left limits such that the value at
0 is a. This space is endowed with the uniform topology. The distance between a point φ ∈ Da[0, t] and a
set E ⊆ Da[0, t] is denoted as dist(φ,E) := infφ′∈E sup0�s�t |φ′(s) − φ(s)|. We first verify that the family
of the original truncated stable processes {ξ�s }0�s�t for any fixed t > 0 satisfies a large deviation principle.

Lemma 3.1. On Da[0, t], the family of truncated stable processes {ξ�s }0�s�t defined in Section 1.1 under Pa

satisfies a large deviation principle with a rate function

St(φ) =
t∫

0

L
(
φ′(s)

)
ds

for absolutely continuous φ (otherwise = ∞), where L is defined in (2.2). Namely,

(i) For any Borel measurable and open set O ⊆ Da[0, t],

lim inf
�→0+

� logPa

{
ξ� ∈ O

}
� − inf

φ∈O
St(φ);

(ii) For any Borel measurable and closed set F ⊆ Da[0, t],

lim sup
�→0+

� logPa

{
ξ� ∈ F

}
� − inf

φ∈F
St(φ).

An equivalent formulation to (i) and (ii) is as follows:

(I) For any δ > 0, γ > 0 and s0 > 0, there exists �0 > 0 such that

Pa

{
sup

0�s�t

∣∣ξ�s − φ(s)
∣∣ < δ

}
� exp

{
−�−1[St(φ) + γ

]}
for any � < �0 and any φ ∈ Φt(s0) which is defined as

Φt(s) =
{
φ ∈ Da[0, t]: St(φ) � s

}
, for s > 0.

(II) For any δ > 0, γ > 0 and s0 > 0, there exists �0 > 0 such that

Pa

{
dist

(
ξ�, Φt(s)

)
� δ

}
� exp

{
−�−1(s− γ)

}
for any � < �0 and any s � s0.
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Proof. The equivalence between (i) + (ii) and (I) + (II) is from Section 3.3 in [7]. We consider the measure
μ(du) := u2g(u) du where g(u) is defined in Section 1.1. This measure is bounded μ(R) < ∞, and has a
strict support [−c, c]. Thus Theorem 4.1.1 in [18] tells that the family {ξ�s }0�s�t satisfies this large deviation
principle. It also follows from the same result that Φt(s) is a compact set for each s > 0. �

For the proof of Theorem 2.1, we need one more property of the rate function Sa,b.

Lemma 3.2. The rate function Sa,b defined by (2.1) is lower semi-continuous and the level set Φa,b(s) =
{φ ∈ Da,b[0, 1): Sa,b(φ) � s} is compact for each s > 0.

Proof. The idea of the proof is to change our consideration from [0, 1) to [0, 1] and then apply several known
results on [0, 1] from [18].

Step 1. We first prove that the level set Φa,b(s) is uniformly equicontinuous, that is, for any ε > 0, there
is δ(ε) > 0 such that ∣∣φ(x) − φ(y)

∣∣ � δ whenever |x− y| < ε, for all φ ∈ Φa,b(s).

To this end, let us verify a fact that L(x) grows to infinity faster than a linear speed. Note that an upper
estimate of H(y) for positive large enough y is H(y) � c′

y e
cy with a constant c′ depending on c which is

in the definition of truncated stable processes in Section 1. Thus in the definition of L(x), we simply take
y = 1

2c log x for large enough x to have L(x) � x · 1
2c log x− c′·2c

log x · x1/2.
Now from the convexity of L and Jensen’s inequality, it follows that, for any φ ∈ Φa,b(s), x, y ∈ [0, 1)

(without loss of generality, assuming y > x),

d(a, b) + s �
1∫

0

L
(
φ′(t)

)
dt �

y∫
x

L
(
φ′(t)

)
dt � L

(
1

y − x

y∫
x

φ′(t) dt
)

= L

(
φ(y) − φ(x)

y − x

)
.

Since L(x) grows to infinity faster than a linear speed, the ratio |φ(y)−φ(x)|
|y−x| has to be bounded uniformly

for φ, x and y. Namely, with some M > 0,

|φ(y) − φ(x)|
|y − x| � M, for all φ ∈ Φa,b(s).

Step 2. This step is to prove that Sa,b is lower semi-continuous. The level set Φa,b(s) is uniformly equicon-
tinuous, therefore it can be continuously extended to [0, 1], and the extended level set Φ̃a,b(s) is still uniformly
equicontinuous. The rate function Sa,b(φ̃) remains the same as Sa,b(φ). It has been proved in [18] (cf. The-
orems 3.1.1 and 4.1.1 therein) that on [0, 1] the function Sa,b is lower semi-continuous, so is on [0, 1). This
also implies that Φ̃a,b(s) is compact.

Step 3. It follows from Step 2 that Φa,b(s) is a closed set. Furthermore, for any sequence {φn} ⊆ Φa,b(s),
the extended sequence {φ̃n} ⊆ Φ̃a,b(s) has a convergent subsequence because of the compactness of Φ̃a,b(s),
thus {φn} also has a convergent subsequence. This implies that Φa,b(s) is compact. �

With the help of Lemmas 3.1 and 3.2, we are now ready to prove Theorem 2.1.

3.1. Proof of the lower bound (2.3)

For any Borel measurable and open set O ⊆ Da,b[0, 1) and a point φ∗(·) ∈ O with Sa,b(φ∗) < ∞ and
Ballδ(φ∗) ⊆ O for some δ > 0, we define (0 � t < 1)
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Ot =
{
φ ∈ Da,b[0, 1): sup

0�s�t

∣∣φ(s) − φ∗(s)
∣∣ < δ

}
;

Ot =
{
φ ∈ Da,b[0, 1): sup

t�s<1

∣∣φ(s) − φ∗(s)
∣∣ � δ

}
.

It is then clear that Ot ⊆ O ∪Ot and

P�

a,b{O} + P�

a,b

{
Ot

}
� P�

a,b{Ot}. (3.2)

On the set Ot, it is from (1.5) that

lim inf
�→0+

� logP�

a,b{Ot} = lim inf
�→0+

� logP�

a,b

{
ξ0 = a, ξ1− = b, sup

0�s�t

∣∣ξs − φ∗(s)
∣∣ < δ

}
= lim inf

�→0+
� logP�

a,b

{
sup

0�s�t

∣∣ξs − φ∗(s)
∣∣ < δ

}
.

Now we set A = {ω: sup0�s�t |ξs(ω) − φ∗(s)| < δ}. Then it is clear that A ∈ Ft. Therefore it follows from
the transformation (3.1) that for large enough n,

lim inf
�→0+

� logP�

a,b{Ot} = lim inf
�→0+

� logP�

a,b{A}

= lim inf
�→0+

� log
∫

{sup0�s�t |ξs−φ∗(s)|<δ}

p1−t(ξt, b, �)
p1(a, b, �)

dP�

a

� lim inf
�→0+

� log
∫

{sup0�s�t |ξs−φ∗(s)|< 1
n}

p1−t(ξt, b, �)
p1(a, b, �)

dP�

a

= lim inf
�→0+

� log
∫

{sup0�s�t |ξ�
s−φ∗(s)|< 1

n}

p1−t(ξ�t , b, �)
p1(a, b, �)

dPa

= lim inf
�→0+

� log
∫

{sup0�s�t |ξ�
s−φ∗(s)|< 1

n}

p1−t

(
ξ�t , b, �

)
dPa

− lim inf
�→0+

� log p1(a, b, �). (3.3)

The limit lim inf�→0+ � log p1(a, b, �) = −d(a, b) which is from the main theorem in [10]. Now we will prove
that in (3.3) the limit

lim inf
�→0+

� log
∫

{sup0�s�t |ξ�
s−φ∗(s)|< 1

n}

p1−t

(
ξ�t , b, �

)
dPa � −

t∫
0

L
(
φ′
∗(s)

)
ds. (3.4)

To prove (3.4), we need a lower bound for p1−t(x, b, �) as follows. For x in any fixed compact set, θ > 0 and
0 � t < 1 being any fixed values, the following holds

p1−t(x, b, �) � exp
{
−1
�

(
d(x, b) + 2θ

)}
· �−1/2 · c(�, θ, t) (3.5)

when � (depending on θ and t) is small enough, where c(�, θ, t) is a constant depending on �, θ, t, and
satisfying lim�→0+ c(�, θ, t) = c(θ, t) > 0 for each fixed θ > 0 and fixed 0 � t < 1. This lower bound is
from [10]. Then applying (3.5) to the first limit in the last identity in (3.3) yields
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lim inf
�→0+

� log
∫

{sup0�s�t |ξ�
s−φ∗(s)|< 1

n}

p1−t

(
ξ�t , b, �

)
dPa

� lim inf
�→0+

� log
∫

{sup0�s�t |ξ�
s−φ∗(s)|< 1

n}

exp
{
−1
�

(
d
(
ξ�t , b

)
+ 2θ

)}
· �−1/2 · c(�, θ, t) dPa

� lim inf
�→0+

� log
∫

{sup0�s�t |ξ�
s−φ∗(s)|< 1

n}

exp
{
−1
�

(
α(n, t) + 2θ

)}
· �−1/2 · c(�, θ, t) dPa

= lim inf
�→0+

� log
∫

{sup0�s�t |ξ�
s−φ∗(s)|< 1

n}

exp
{
−1
�

(
α(n, t) + 2θ

)}
dPa

� lim inf
�→0+

� log
[
exp

{
−1
�

(
α(n, t) + 2θ

)}
Pa

{
sup

0�s�t

∣∣ξ�s − φ∗(s)
∣∣ < 1

n

}]
(3.6)

for α(n, t) → 0 as n → ∞ and t → 1− which is from the fact that (x, y) 	→ d(x, y) is continuous (cf. [4]
and [10]). Now in (3.6), the last limit is equal to

−
(
α(n, t) + 2θ

)
+ lim inf

�→0+
� logPa

{
sup

0�s�t

∣∣ξ�s − φ∗(s)
∣∣ < 1

n

}
� −

(
α(n, t) + 2θ

)
−

t∫
0

L
(
φ′
∗(s)

)
ds

where the last inequality is from the large deviations of the truncated stable processes {ξ�s }0�s�t; namely (I)
in Lemma 3.1.

Taking into account preceding inequalities, we now take limt→1− in (3.3) to get

lim
t→1−

lim inf
�→0+

� logP�

a,b{Ot} � − lim
t→1−

lim
n→∞

(
α(n, t) + 2θ

)
− lim

t→1−

t∫
0

L
(
φ′
∗(s)

)
ds + d(a, b)

� − lim
t→1−

t∫
0

L
(
φ′
∗(s)

)
ds + d(a, b) = −Sa,b(φ∗). (3.7)

The last inequality in (3.7) is obtained by sending θ → 0 and using the fact that α(n, t) → 0 as n → ∞ and
t → 1−. From (3.2) and (3.7), it is clear that the lower bound (2.3) is proved if

lim
t→1−

lim
�→0+

� logP�

a,b

{
Ot

}
= −∞. (3.8)

For convenience, we prove the limit (3.8) in the following lemma which will be also used in the proof of the
upper bound (2.4).

Lemma 3.3.

lim
t→1−

lim
�→0+

� logP�

a,b

{
Ot

}
= −∞.

Proof. In order to prove this lemma, we need a notation from [6]. For each fixed � > 0, if there is another
right continuous Markov process {ξ̂�t }t�0 with left limits associated with a transition semigroup {P̂ �

t }t�0
such that
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∫
R

f(x)P �

t g(x) dx =
∫
R

P̂ �

t f(x)g(x) dx

for all t > 0 and all positive Borel functions f and g, then we say ξ̂� is in duality with ξ� relative to the
Lebesgue measure. Corollary 1 in [6] states that the P�

a,b-law of the time-reversed process {ξ(1−t)−}0�t<1

is the bridge law P̂�

b,a from b to a constructed in the same way as in Section 1.2 based on the dual pro-
cess {ξ̂�t }t�0.

According to Section II.2 in [3], the dual of a Lévy process ξ� is always ξ̂� = −ξ�. Our Lévy process
ξ� considered in this paper has better properties since it is symmetric, thus the characteristic exponent is
real-valued (cf. (1.1)), and in this case the dual ξ̂� has the same law as ξ�.

Based on these observations, we have

lim
�→0+

� logP�

a,b

{
Ot

}
= lim

�→0+
� logP�

a,b

{
ξ0 = a, ξ1− = b, sup

t�s<1

∣∣ξs − φ∗(s)
∣∣ � δ

}
= lim

�→0+
� logP�

a,b

{
sup

t�s<1

∣∣ξs − φ∗(s)
∣∣ � δ

}
= lim

�→0+
� logP�

a,b

{
sup

0�s<1−t

∣∣ξ(1−s)− − φ∗
(
(1 − s)−

)∣∣ � δ
}

= lim
�→0+

� log P̂�

b,a

{
sup

0�s<1−t

∣∣ξ̂s − φ∗(1 − s)
∣∣ � δ

}
= lim

�→0+
� logP�

b,a

{
sup

0�s<1−t

∣∣ξs − φ∗(1 − s)
∣∣ � δ

}
,

where the fourth equality is from Corollary 1 in [6] and the fact that φ∗ is continuous (since Sa,b(φ∗) < ∞
at the beginning of Section 3.1), and the last equality follows from the fact that the dual has the same law
as the original process. Applying the transformation (3.1), we obtain

lim
�→0+

� logP�

a,b

{
Ot

}
= lim

�→0+
� log

(
1

p1(b, a, �)

∫
{sup0�s<1−t |ξ�

s−φ∗(1−s)|�δ}

pt
(
ξ�1−t, a, �

)
dPb

)
.

Now a relaxed upper bound of pt(x, a, �) can be derived based on Section 3 in [10] as follows. For any fixed
θ > 0 and 0 < t � 1, the following holds

pt(x, a, �) � c1(t) · �−c2(t) · exp
{
θ/(2�)

}
(3.9)

when � (depending on θ and t) is small enough, where c1 and c2 are two positive constants depending on t.
Therefore, for t close enough to 1 from the left,

lim
�→0+

� logP�

a,b

{
Ot

}
� d(a, b) + lim

�→0+
� logPb

{
sup

0�s�1−t

∣∣ξ�s − φ∗(1 − s)
∣∣ � δ

}
� d(a, b) + lim

�→0+
� logPb

{
sup

0�s�1−t

∣∣ξ�s − b
∣∣ � δ/4

}
(3.10)

From the upper bound of large deviations (i.e. (ii) in Lemma 3.1) for the family of {ξ�s }0�s�1−t, it follows
that

lim sup
�→0+

� logPb

{
sup

0�s�1−t

∣∣ξ�s − b
∣∣ � δ/4

}
� − inf

φ∈A1−t

1−t∫
L
(
φ′(s)

)
ds
0
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where the closed set A1−t is defined as

A1−t =
{
φ ∈ Db[0, 1 − t]:

∣∣φ(1 − tδ) − b
∣∣ � δ/4 for some 1 − tδ ∈ [0, 1 − t]

}
.

Because of the convexity of L(x), we have

inf
φ∈A1−t

1−t∫
0

L
(
φ′(s)

)
ds � inf

φ∈A1−t

1−tδ∫
0

L
(
φ′(s)

)
ds

� inf
φ∈A1−t

L

( 1−tδ∫
0

φ′(s)/(1 − tδ) ds
)

· (1 − tδ)

= inf
φ∈A1−t

L
(∣∣φ(1 − tδ) − b

∣∣/(1 − tδ)
)
· (1 − tδ)

→ ∞ as 1 − tδ → 0+ (3.11)

where the convergence to infinity in the last step comes from the facts that |φ(1 − tδ) − b| � δ/4 and
L(x) grows to infinity faster than a linear speed (see the proof of Lemma 3.2). The proof is complete by
combining (3.11) and (3.10). �
3.2. Proof of the upper bound (2.4)

Based on the rate function Sa,b in (2.1), we define the following set for each s > 0,

Φ(s) =
{
φ : [0, 1) → R, right continuous with left limits, φ(0) = a and Sa,b(φ) � s

}
.

Applying the same arguments as in Lemma 3.2, we see that Φ(s) is compact. The proof of the upper bound
is entirely based on these compact sets. For a fixed 0 � t < 1 and a small δ > 0 (which will be specified
later), we rewrite {dist(ξ, Φ(s))} as{

dist
(
ξ, Φ(s)

)
� δ

}
=

{
dist

(
ξ[0,t], Φ[0,t](s)

)
� δ

}
∪
{
dist

(
ξ[t,1), Φ[t,1)(s)

)
� δ

}
where Φ[0,t](s) (resp. Φ[t,1)(s)) denotes the collection of all elements in Φ(s) restricted on [0, t] (resp. [t, 1)),
and ξ[0,t] (resp. ξ[t,1)) denotes the path of ξ restricted on [0, t] (resp. [t, 1)). Therefore

P�

a,b

{
dist

(
ξ, Φ(s)

)
� δ

}
� P�

a,b

{
dist

(
ξ[0,t], Φ[0,t](s)

)
� δ

}
+ P�

a,b

{
dist

(
ξ[t,1), Φ[t,1)(s)

)
� δ

}
. (3.12)

We first deal with the probability P�

a,b{dist(ξ[0,t], Φ[0,t](s)) � δ}. First, it is clear that the set
{dist(ξ[0,t], Φ[0,t](s)) � δ} ∈ Ft. Therefore from the transformation (3.1), we obtain

P�

a,b

{
dist(ξ[0,t], Φ[0,t]) � δ

}
= 1

p1(a, b, �)

∫
{dist(ξ�

[0,t],Φ[0,t](s))�δ}

p1−t

(
ξ�t , b, �

)
dPa.

The upper bound estimate for pt(x, a, �) in (3.9) implies that

lim sup
�→0+

� logP�

a,b

{
dist(ξ[0,t], Φ[0,t]) � δ

}
� d(a, b) + lim sup

�→0+
� logPa

{
dist

(
ξ�[0,t], Φ[0,t](s)

)
� δ

}
� d(a, b) + lim sup � logPa

{
dist

(
ξ�[0,1], Φ

1(s)
)

� δ
}

� −s (3.13)

�→0+
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where the last inequality is from large deviations for the family of truncated stable processes {ξ�s }0�s�1

(namely, (II) in Lemma 3.1), and Φ1(s) is defined in Lemma 3.1. The reasoning is that ξ� is well defined
on [0, 1] instead of [0, t], and every function φ ∈ Φ(s) can be extended to [0, 1] by its left limit at 1 without
changing the value of Sa,b(φ). Furthermore, that fact that Sa,b(φ) = S1(φ) − d(a, b) is used. This form of
large deviations involving the compact sets Φ1(s) instead of closed sets are discussed in [18] and [7], together
with several other different equivalent forms of large deviations.

Now for the second probability P�

a,b{dist(ξ[t,1), Φ[t,1)(s)) � δ} in (3.12), we choose a function φ0 such that
Sa,b(φ0) = 0. The existence of such φ0 has been explained in Section 2. Then

P�

a,b

{
dist

(
ξ[t,1), Φ[t,1)(s)

)
� δ

}
= P�

a,b

{
dist

(
ξ[t,1), Φ[t,1)(s)

)
� δ, sup

t�s<1

∣∣ξs − φ0(s)
∣∣ < δ

}
+ P

{
dist

(
ξ[t,1), Φ[t,1)(s)

)
� δ, sup

t�s<1

∣∣ξs − φ0(s)
∣∣ � δ

}
.

It is easy to see that {dist(ξ[t,1), Φ[t,1)(s)) � δ, supt�s<1 |ξs − φ0(s)| < δ} ⊆ {φ0 /∈ Φ(s)}, thus

P�

a,b

{
dist

(
ξ[t,1), Φ[t,1)(s)

)
� δ, sup

t�s<1

∣∣ξs − φ0(s)
∣∣ < δ

}
� P�

a,b

{
φ0 /∈ Φ(s)

}
� P�

a,b

{
Sa,b(φ0) > s

}
= 0.

Thus the second probability

lim
t→1−

lim sup
�→0+

� logP�

a,b

{
dist

(
ξ[t,1), Φ[t,1)(s)

)
� δ

}
� lim

t→1−
lim sup
�→0+

� logP�

a,b

{
dist

(
ξ[t,1), Φ[t,1)(s)

)
� δ, sup

t�s<1

∣∣ξs − φ0(s)
∣∣ � δ

}
� lim

t→1−
lim sup
�→0+

� logP�

a,b

{
sup

t�s<1

∣∣ξs − φ0(s)
∣∣ � δ

}
= −∞ (3.14)

where the last identity is from Lemma 3.3.
Now for a closed set F , we define s = infφ∈F Sa,b(φ) − γ for an arbitrarily small positive γ. Then there

exists a small δ > 0 such that

lim sup
�→0+

� logP�

a,b{ξ ∈ F} � lim
t→1−

lim sup
�→0+

� logP�

a,b

{
dist

(
ξ, Φ(s)

)
� δ

}
� lim

t→1−
lim sup
�→0+

� logP�

a,b

{
dist

(
ξ[0,t], Φ[0,t](s)

)
� δ

}
� −s = − inf

φ∈F
Sa,b(φ) + γ = − inf

φ∈F
Sa,b(φ), by sending γ → 0, (3.15)

where in the second inequality (3.12) and (3.14) are used, and in the third inequality (3.13) is used.
Thus (3.15) completes the proof.
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