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1. Introduction

A sequence of polynomials {p,(z)}, where p,(x) is of exact degree n in z, is said to be orthogonal with
respect to a Lebesgue—Stieltjes measure da(x) if

o0

/ P (@)pn(2)de(z) =0, M # . (1)

— 00
Implicit in this definition is the assumption that the moments

oo

My = /x"da(z), n=0,1,2,..., (2)

— 00

are finite. If the nondecreasing, real-valued, bounded function a(x) also happens to be absolutely continuous
with da(z) = p(z)dz, p(x) > 0, then (1) and (2) reduce to
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[ pu@pa@ip()dz =0, m £, (3)
and
M = / p(x)x"dx, n=0,1,2,..., (4)

respectively, and the sequence {p,(x)} is said to be orthogonal with respect to the weight function p(z). If,
on the other hand, a(x) is a step-function with jumps p; at * = z;, 7 = 0,1,2,..., then (1) and (2) take
the form of a sum:

> pm(z)pala;)p; =0, m#n (5)
j=0
and
j=0

The polynomials p,,, in monic form, are given explicitly in terms of the moments by [31]

Ko 251 Hn
H1 H2 Hn41
() = — '
P B dnfl ’
Hn—1  Hn H2n—1
1 T x™
where
flo 1t o
M1 H2 o Mngd
d, = under the condition d,, # 0, n > 0.
Mn—1 Hn o MHon—1
Mn  Hnig1 0 H2n

The previous representation shows that the moments characterize fully the orthogonal family {p,(x)}. In
[1, p. 295, Theorem 6.3.3] for example, the authors used the moments of the Jacobi polynomials to give the
hypergeometric representation of these polynomials.

Note that the classical continuous and discrete orthogonal polynomial families are very much related to
probability theory [30] (see also [21]). In the continuous case, the measures of the Hermite, Laguerre and
Jacobi polynomials are the normal, the Gamma and the Beta distributions, respectively. In the discrete case,
the measures of the Charlier, the Meixner, the Krawtchouk and the Hahn polynomials are the Poisson, the
Pascal, the binomial and the hypergeometric distributions. Of course moments play an important role in
probability theory and statistics (see [21]).

Despite the important role that the moments play in various topics of orthogonal polynomials and
applications to other domains such as statistics and probability theory, no exhaustive repository of moments
for the well-known classical orthogonal polynomials can be found in the literature. The book by Koekoek,
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Lesky and Swarttouw [23] which is one of the best and most famous documents containing almost all kinds
of formulas and relations for the Askey—Wilson scheme does not provide information about the moments.
In addition, despite the fact that almost all the moments of the classical orthogonal polynomials of the
continuous, the discrete and g¢-discrete classes have been previously published in the literature (see for
example [3,7,8]), this is not the case for the classical orthogonal polynomials of the quadratic and the
g-quadratic lattices. It becomes therefore a very interesting task to investigate this topic in order not only
to make available in the literature the moments of the classical orthogonal polynomials of a quadratic and
g-quadratic variable but also to provide and exhaustive repository of the moments of all classical orthogonal
polynomials of the Askey—Wilson scheme.
The paper is organized as follows:

e In Section 2, we present some basic definitions and give some important properties that will be used
throughout the paper;

e in Section 3, some useful Taylor formulas for polynomials and applications are given and used to find
connection coefficients between suitable polynomial bases;

« in Section 4, we use the results given in Section 3 to deduce explicit representations of the (canonical)
moments of all the orthogonal families listed in [23]. Some generating functions for these moments are
also provided.

The results of this paper appeared in the PhD thesis [27] of the first author.
2. Definitions and miscellaneous properties

In this section we recall basic definitions and introduce some difference operators that will be useful along
this paper.

Definition 1. (See [23, p. 4].) The Pochhammer symbol or shifted factorial is defined by
(a)o:=1 and (a), =ala+1)(a+2)---(a+n—-1), a#0, n=1,23,....
The following notation (falling factorial) will also be used:
a®:=1 and a*=a(a—1)(a—2)---(a—n+1), n=1273,....

It should be noted that the Pochhammer symbol and the falling factorial are linked as follows:

Ay,
r Fs
bla o 'abs
where

(a1, yar)n = (a1)n - (@r)n.

Definition 3. (See [23, p. 11].) The ¢-variant of the shifted factorial, also called g-Pochhammer symbol, is
defined by
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For n = oo we set
(a:¢)oo = [[(1 - ag™), gl <1.
n=0

In order to deal with some families of orthogonal polynomials and other basic hypergeometric functions,
the following more general notation (see [22])

1

(zoy)y =(@@-y(z—qy) - (z-q¢""y), (7)
which is the so-called g-power basis, will be used.

Definition 4. (See [23, p. 15].) The g-hypergeometric function denoted by ,¢s is defined by

A1,0a2, "+, Qp
T¢S<

b1,b2, -, b (617"'7b8;Q)7L (CLQ)n

q;Z> = Z w[(_]_)nq(g)}l-l—s—r zZ" ’

n=0

where

(alv Az, m; Q)n = (al; Q)n(a2>Q)n ce (am§ q)n'

We will also use the following common notations

[a]q: 1*(]7 aeC, g#1, (8)
o~ (@dn e
[m] S GO @D TS (9)

called the g-bracket and the g-binomial coefficient, respectively.
The following difference and divided difference operators will also be frequently used.

Definition 5. Let f be a function of the variable x.

1. The forward and the backward difference operators A and V are, respectively, defined by:
Af(x) = flz+1) = f(z),  Vf(@)=flx)-flz-1).
For m € N>¢ ={0,1,2,3,...}, one sets
AL f(2) = A(A’”f(:c)), and Af(z) = f(x).
2. The g-difference operator D, is defined as:

f(@) = f(qz)
(1-q)x

and D, f(0) = f/(0) provided that f is differentiable at z = 0.

D,f(z) = if x #£0,
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If m is a nonnegative integer, we have

Dyt f(w) = Dy(Dg'f(2)):  Dyf(x) = f(x).
3. The difference operator D is defined as follows:
Df(x) = f(x—i— %) - f(x— %), where i = —1.
4. The divided difference operator D is defined as follows:
fllz+35)%) = f(= = 5)*)

Df(2*) = i , P =-L

3. Taylor formulas, power derivatives and connection formulas

In this section, we give some tools for the computations of the moments given in the next section.
Some Taylor formulas are proved, the power derivatives of some operators are given. As applications, we
compute some connection coefficients between suitable polynomial sets that appear in the computation of
the moments.

Proposition 6. (See e.g. [2,19,20].) Let f(x) be a polynomial of degree n in the variable x. The following
expansion formula holds

fa)=3 %uey)gﬂ (10)

m=0
Proof. We assume f is a polynomial of degree n, and we write

n

f@) =) en(zoy)y

m=0

Next we apply the operator D, k times to both sides of this relation and get

|

D)= 3 en L (g oyt

= " m — k]!
Taking « = y, it follows that [DF f](y) = cx[k],! and the proposition follows. O

Corollary 7. We have the following connection formula between the g-power and the power bases

" = z": yn—m [:,L

m=0

(z oY)y (11)

Remark 8. This corollary will be useful for the computations of the canonical moments of the Al Salam—
Carlitz I polynomials.

Theorem 9. Define the polynomial basis 0, (a,x) by

n—1

On(a,z) = (a —ix)n(a + iz), = H (12 + (a+ k)Q)’ Oo(a,x) = 1.
k=0
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If f is a polynomial of degree n in x2, then

= kaek(a»m)a
k=0

where

D*f(i(a+3))

T = k!

Proof. First remark that 6y (a,ai) = 0 for all £ > 0. Hence

Djf(z)ifk(kﬁ!j)lek_j( ) figt+ Z fk j<a+‘;,x>

k=j k=j+1

Djf<i<a+%)> = f;jl. O

Theorem 10. (See [9].) Let k be a nonnegative integer. Then

and for z =i(a + %), we get

k

2ix — k — 21) k—2l
D” f( ull ). 12
fa ; ! 21x—k+l)k+1f(x+ 2 Z) (12)
Corollary 11. The following result is valid
"(—k) (2iz—k+20) k-2l \*"
DFg2 =y A — — =) . 13
* l;) I (20— k+ Dst (“H 2 Z) (13)
Proof. Take f(z) = 2" in (12) to get the result. O
Corollary 12. The following connection formula is valid
k
1 —2a — 2k + 21)
2n _ l 2n
— kE—1)""0 . 14
= 3 g S GRSy (1)

Proof. The proof follows from Theorem 9 and Theorem 10 with f(x) = 2?". O

Remark 13. This connection is useful for the computation of the moments of the Wilson and the Continuous
Dual Hahn polynomials.

Theorem 14. Define the polynomial basis n,(a,x) = (a + ix),. If f is a polynomial of degree n in x, then

=> fum(a, ),
k=0

fe= (_kll)kaf(i <a + g))

where
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Proof. First remark that ny(a,ai) = 0 for all £ > 0. Hence

Djf(:g):kZiJ( )fk( b )'Uk]<(l+2 ) 1) fi5! + kar (& — )" g(a+2 )

_J+1

and for x =i(a + %), we get

Djf<i (a + %)) = (=1)75!f;.

This proves the theorem. O

Remark 15. Note that in Theorem 14, there is a need to have an explicit representation of D* f(x) in order
to have a better expression of the Taylor formula. The following proposition gives the required expression.

Proposition 16 (Power of D). Let k be a nonnegative integer, then the following relation holds

_lzk:(—l)l<];>f<x+ k22li>. (15)
=0

Proof. The proof is done by induction. The relation is obvious for £ = 1. Assume it is true for a fixed integer
k > 0. Then, we have

D' f(z) = D(D* f(2))

(
_ g(—l)l (f) <f (w + #2) - f(x * #Z»
(

k+1
e+ 2 S (o)

Next, using Proposition 16, we have
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k

DFa" = (-1) (?) (x Lk _2 211')“.

=0

Then, we have

[D"2"] yar s zk: () (a+k—1)i)"
= 0 (B

1=0
This completes the proof. O
Remark 18. This connection is useful for the computation of the moments of the Continuous Hahn and the
Meixner—Pollaczek polynomials.
Proposition 19. (See [9].) The following q-derivative rule is valid.
91 n(l n)

n k(n—k)ZQk—nJF(q(n—Qk)/ZZQ)
Drf)i(x) = ————— 17
( qf)( ) (q 172 _ 1/2 n kZ:o l ] qitn=2k22: ), (q2F—nt12=2: ),y (17)

where f(z) = f((z+1/2)/2), z = €, x = cos .

Proposition 20. (See [18].) If f(x) is a polynomial in x = cos8 of degree n, then

f@) =" fr(ae’,ae™?;q), (18)
k=0
where
@D e,
Jie= (2a)’“(q;q)kq (Pyf) @)
with

z, = = (ag"? + ¢7*?/a).

l\')|’—‘

Corollary 21. If f(x) is a polynomial of degree n in x = cos @, then

with

k —(k=3)% 26—k F(qak—7
q flaq
qkz ( )

= (4 g +2=0a?;q);(q, g7 72k Da=2; q)p—;

Remark 22. Note that, by a change of variable j := k — j, the p’s in Corollary 21 can be written as

qkzk: g9 a % f(ag))

= (4" % g (, 47 a7 ),
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Corollary 23. The following connection formula is valid.

n k i —i\k
k g7 a"¥(ag’ +a'q7) 0 —if
= q ae”,ae”";q),, x = cosb. 20
kZ:O ; (¢,4" "% a? q)k—j(q, ¢~ QJG‘Q;Q)J'( )i (20)

Remark 24. This connection is useful for the computation of the moments of orthogonal polynomials on
g-quadratic lattices.

4. Moments of classical orthogonal polynomials
4.1. Canonical moments and generalized moments

Definition 25. Let {p,(x)} be a polynomial set, i.e. deg(p,(x)) = n, orthogonal with respect to a Lebesgue—
Stieltjes measure da(z). Let {6, (x)} be a polynomial set. The numbers

o0

tin (O (z)) = / O, (x)da(x), n=0,1,2,... (21)

— 00
are the moments with respect to 6, (z) of the family {p,(x)}, they are called generalized moments.

Remark 26. Note that in the previous definition, if 6, (x) = 2™, then the generalized moments are the
canonical moments.

Theorem 27. Let {0,(x)} be a polynomial set. Assume that one can find explicit representations of the
coefficients Cp,(n) in the expansion

= Z Cn(n)0m (). (22)

m=0

Then, the canonical moments , can be computed from the generalized moments i, (0 (x)) using the relation

Hn = Z Cm(”):um (ek(m» (23)

n = z"da(x) = Cr(n)0,,(x) |da(x
r 4 <>4<7;) <>(>><>
= Z Cn(n) / O (2)da(z) = Z Con (1) i (01 (2)) . O
m=0 oo m=0

Theorem 28. Assume that the coefficients I,,(n) (called inversion coefficients) in the expansion

= Z I (n) Py () (24)

m=0
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are given. Then, for all n € N, the generalized moments of the family (P,),, with respect to the basis 0,,(x)
can be computed by the formula

tin (01 (2)) = Io(n)Popo- (25)

Proof. Using the expansion (24), we have

1
tin (01 (2)) = FO(9 ), Po) Po ka )(Pn, Po) = —Ofo(n)(Po,Po) = Io(n)Popo,

where (f,g) is the inner product defined by

o0

(f.9) = / f@g(@)da(z).  ©

— 00

Note that this result was announced in [17].

Corollary 29. Using the notations of Theorems 27 and 28, the canonical moments of the orthogonal family
{pn} can be computed for all n € N by the formula

Hn = HoPo Z Cm(n)IO(m) (26)
m=0
4.2. Continuous orthogonal polynomials
Note that by P{™ ﬁ)( ), C,(l)‘)(m), T (x), Up(x), Po(x), LS?)(;U), H,(z), B,(La)(x), we denote, respectively,

the Jacobi, Gegenbauer (ultraspherical), Chebyshev of first kind, Chebyshev of second kind, Legendre,
Laguerre, Hermite and Bessel polynomials. They have the following hypergeometric representations (see [23])

Fa ) = W%MQFI(_HWZTIBH ’ 1_Tx> a>-1,8>-1 (J1)
_(—1)n(ﬁ+7'1)"2F1<_n,n—gi-1l-ﬁ+l ‘H?a:> 2
O @) = D)
_ (2;\!)712 1(—7;7122)\ ‘ 1;;5) o
P2 (1) 2
o) = D) (5 [ 152),
2
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n n—1

H,(z) = (2x)"2F0(_5’_ 2

=0,1,...,N, a < —2N —1.

B@ () :2FO<—n,n+a+1 ‘ gc)’ "
In the classical continuous case the computation of the moments is rather straightforward. For example,
for the Laguerre polynomials, by their definition the moments are given as values of the Gamma function.
Nevertheless, since the inversion formulas can be used in principle for their computation, for the sake of
completeness we state here the inversion coefficients for the classical continuous orthogonal polynomials
which are given in the literature (see [6,14,25,28,29,34]).

Theorem 30. The following inversion formulas are valid

) n (=1)™2"m!(a+m+ 1)p_m (8)(,
. g( ) +ﬁ+m—|— Dm (a+ﬁ+2m+2)n_mpm5()7 (27)
R 2"l (B4+m + 1)p_m (8 (4
_mz_:< )( +B+m+ 1), (a+ﬂ+2m+2)nimpmﬁ()a (28)
"t = « Y ﬂ (@) (o
ol [n/2] 1
xzﬁkzﬂ)m n2k() (30)
" = -~ (n (=)™m(=2)" (@) (g
- 'rnX::O <m> (a+m+1)m(a+2m+2)nimBm (7). (31)

Next, we provide several representations for the Jacobi polynomial moments (compare [11]).

Theorem 31. The canonical moments of the Jacobi polynomials have the following representations:

= I'(la+1)n! JF, (—B,n+1 ‘_1> (1) 1;(6+1)n! JF, (—a,z—kl ‘_1>

Ila+n+2) a+n+2 r(f+n+2) B4+n+2
~gatpn e+ D)I(B+1) —n,a+1‘
-7 I'(a+p+2) 2 a+B+2 2 (32)
_(_noarpr e+ HI(BE+1) —n,B+1 ‘

Proof. Let us prove the first representation. We rewrite

1 1
/x (1-2)~ z)Pdr + (- /x (1 +2)%(1 — z)’dz.
0 0

Next, the use of the integral representation for the Gauss hypergeometric function [23, p. §]

P _leb—l _xc—b—l — 22) "% x
)— <b>o/ (1 =) (1= za)
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with z = —1 gives the desired result. In fact, for the first integral fol 2"(1 — 2)*(1 + z)%dx, using the integral
representation of the Gauss hypergeometric function with b = n+1, ¢ = a+n+2 and a = —f, it follows that

/xn(l—x)a(1+$)’3dl‘: Ila+1)I'(n+1) I (ﬂ,n+1 '_1>.
0

I'la+n+2) a+p+2

The second integral is computed in the same manner.
Next, we develop the second representation. For a > —1 and g > —1, the Jacobi polynomials Pff“ﬁ )(ac)
are orthogonal in the interval (—1;1) and fulfil the orthogonality relation [23, p. 217]

1
a+p+1
[0+ 2 P @) P ) = 5 fontot DIntprl),
21

S 2n+a+B+1 I(n+a+p+1)n!

It follows that

F(a+D)IB+1)

1

_ - « « _ a+B+1

,uo_/(l ) (14 z)%x =2 Ta13+2)
21

We first prove relation (32). From the inversion formula (27) the zeroth inversion coefficient is

I(n):2nf(a+1+n)F(a+ﬁ+2) _ogn_(at D
0 Ia+B+n+2)(a+1) (a+B+2),

Hence, the generalized Jacobi moments with respect to the basis (1 — z)™ have the representation

(a+1D)I(B+1) (a+1),
la+B8+2) (a+8+2),

,un((l _ Ji)k) — gntat+B+1 r

Finally, using the binomial formula in the form
- n
"= -1 1—az)™
#= 3 (n)a-

and Theorem 28, (32) follows.
In order to prove (33), we follow the same method using relation (28), and the binomial formula

o = ni)(_m"m (:L) (1+z)™ O

Using the definition and the Beta function (see e.g. [24]), one gets
Theorem 32. The following representations for the canonical moments are valid for:

(a) the Gegenbauer polynomials

r(O+1) 2p)! . _
i, = TTOFD) 22p;7(!(1;\)+1)p’ if n=2p, (34)
0 ifn=2p+1,
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(b) the Chebyshev polynomials of first kind

T ! .
1y = % if n=2p, (35)
" 0 ifn=2p+1.

(c¢) the Chebyshev polynomials of second kind

m(2p)! I
sy = | ey =2, (36)
0 ifn=2p+1.
(d) the Legendre polynomials
2 e
by =4 et =2 (37)
" 0 ifn=2p+1.

Using the definition and the Gamma function (see e.g. [24]), one gets
Theorem 33. The following representations for the canonical moments are valid for:

(a) the Laguerre polynomials

pn=I(n+a+1), n=0,1,2,... (38)
(b) the Hermite polynomials
14 (=) 1 o) ey — 9
L = +( ) F(n+ >: \/7_T22pp! 'Lfn p . n=0,1,2... (39)
2 2 0 fn=2p+1

4.8. Discrete orthogonal polynomials

We denote by @ (z;a, 8,N), M, (x; 8,¢), Kp(z;p, N) and Cy,(z;a) the Hahn, Meixner, Krawtchouk and
Charlier polynomials, respectively. They have the following hypergeometric representations (see [23])

—n,—zr,n+1+a+p 1
a+1,—-N ’

Qn(x7a7ﬁaN) :3F2 (

n,x=0,1,...,N, a>—1and > —1, or a < —N and < —N,

—n, — 1
Mn(x;ﬂac):2F1< n,ﬁ v 1——>, 6>0,0<c<l, z=0,1,...,
C
—n,—x | 1
Kn(z;p,N) =211 N | o) 0<p<limz=01...N,
- p

1

C’n(x;a)ZQFO(_n’_JC ——), a>0,z=0,1,....
- a

In order to obtain the canonical moments for these polynomials, we need the following theorem, which
can be found in [25] and [34, Table 18] (where the polynomial systems were standardized differently).
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Theorem 34. The Hahn, the Krawtchouk, the Meixner and the Charlier polynomials fulfil the following
inversion formulas

(n) (—=1)" (v + 1) (=N),,

m) @ T Bt mt Dmla+ B+ 2m + 2 2T 0N,

n
" = E
m=0

= () 0 3 0 (1) i ),

m=0

o= ren(-5) 3

c—1

0 () e 0,

o = i(nm (;;)a"Ck(x;a). (40)

Theorem 35. The following representations for the canonical moments are valid for:

(a) the Hahn polynomials

_ @+ B+ DNt N~ qym (@+ Dm(=N)m
Hn = (a+pB+1)N! m:O( )" Sm(n) (a+B+2)m (41)
(b) the Krawtchouk polynomials
pn = Sm(n)(=N)m(—p)™; (42)
m=0

(c) the Meixner polynomials

S —10)ﬁ Z(_l)msm(”)(ﬂ)m<cf 1) : (13)

(d) the Charlier polynomials

i, = €° Z Sm(n)a™, (44)

where Sy, (n) denote the Stirling numbers of second kind defined by

2" =Y Sm(n)a™ (45)

m=0

Note that (44) appeared in [16] and [26] without the constant g = e®. The results of Theorem 35 also
appeared in [3] and [21]. Note also that in [3] and [21], the authors used different techniques and different
standardizations as compared with the current manuscript.

Proof. We give the proof for the moments of the Hahn polynomials, the other moments are obtained
similarly.
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The Hahn polynomials @, (z; «, 5, N) fulfil the following orthogonality relation [23, p. 204]

i (a i x) (6 I x) Qn(; 0, B, N)Qun (5 01, B, N)

= x N -z

(D" tat B+ Dnri(B+anl g

2n+a+B+1)(a+1),(=N),N! "

fora>—1land > —1ora < —N and § < —N. (46)

With m = n =0, it follows that

(a+ B+ 1)Ny1

= ¥ B+ )N

From the inversion formula (40), for 6,,(x) = 2™ in 24, we get

(@4 Dn(=N)n

Therefore, the generalized Hahn moments with respect to the basis ™ have the representation

)= (- )n(a+ﬂ+ Dnt1 (@+1)p(=N)p
(a+B+1)N! (a+B+2),

B

fin ( (47)

Using the connection (45) between the powers and the falling factorials and Corollary 29, we obtain (41). O

Whereas the canonical moments of the Krawtchouk, Meixner and Charlier polynomials are expressed in
terms of the complicated Stirling numbers, they have rather simple generating functions.

Theorem 36.

1. The canonical Krawtchouk moments have the following exponential generating function
oo n
(pez+1—p)N=Zun%. (48)
n=0
2. The canonical Meizner moments have the following exponential generating function
& n
ﬁ = gun%7 |ce?| < 1. (49)

3. The canonical Charlier moments have the following exponential generating function

Proof. By definition, the canonical Krawtchouk moments are given by

N

fn =Y K" (‘:)p’“(l -p)Nh

k=0
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Therefore, it follows that

:i((f)pkﬂ )N_kg(k;')n>
) ;ﬁ; (ZD (pe*)" (1 —p)N*
= (pe* +1—p)

Hence, (48) is proved.
By definition, the canonical Meixner moments are given by

It therefore follows that

This proves (49).
By definition, the canonical Charlier moments are given by

Therefore, we have:

For more informations about generating functions, we refer the reader to [33].

137
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4.4. q-Orthogonal polynomials

These polynomials have the following g-hypergeometric representations (see e.g. [23]):

(ZEC]>~

(a) The Big g-Jacobi polynomials

g ", abg" @

pn(‘xv a, ba & q) = 3¢)2 (

aq,cq
(b) The ¢g-Hahn polynomials
B —n7a n—‘,—l7 —x
Qn(q x;aaﬂaN;(Z):?@z(q aqﬂ(]q_Nq q;q | -

(¢) The Big ¢-Laguerre polynomials

qg "0,z
aq, bq

Pn(x,a,b; Q) = 3¢2 <

(d) The Little g-Jacobi polynomials

Pn(x;a,blq) = 201 <q ’

(e) The g-Meixner polynomials

—n —T

g

M, (g *;b,c;q) = 2¢>1(q b

(f) The Quantum ¢-Krawtchouk polynomials

T

" q
K3 (q7";p,N;q) = 20 q,’N

q‘m"“) :

‘q;q), n=0,1,2,...,N.

(h) The g-Krawtchouk polynomials

—z. o Neg) — " q " —pg
Kn(q ,p7N7Q)_3¢2< q_N 0

)

n

(g) The Affine g-Krawtchouk polynomials

x

_ qg " 0,9
KM (g7 p,Niq) = 3¢2 ( o

q;q) n=20,1,2,...,N.

(i) The Little g-Laguerre polynomials

g "0 1 g "t
Pn(x,alq) = 201 ( ag ‘ q;qx) = —2%(

(a=tqg™™;q)n
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(j) The g-Laguerre polynomials

—n

a+1. )
L(a) ) = (q yq)n q
v (@) (% 9)n | got

¢ _qn+a+1x> .

‘J§q$> .

(k) The Alternative g-Charlier (also called ¢-Bessel) polynomials

—n —n

, —aq

Kn(z5059) = 201 (q 0

(1) The g-Charlier polynomials

(m) The Al Salam—Carlitz I polynomials

n —n gl T
U (a1 q) = (—a)nq(2)2¢1(q 0 4 q_)
a
(n) The Al Salam—Carlitz IT polynomials
VO (2 0) = (—a)q~ ) DR
n ($7q) ( (1) q 2 2¢0 0 q; a

(0) The Stieltjes—-Wigert polynomials

1 —-n
Sn(x;q) = Mﬂlﬁ (qo

@ —q”“x) :

. —n; .%'_1
ha(z:9) = %) <q 0 |q; —q:v) :

(p) The Discrete g-Hermite I polynomials

(@) The Discrete g-Hermite I polynomials

7 —n — (7 771; i n
hn(@;q) =i "q (2>2¢o<q U lai—q )

These polynomials fulfil the following inversion formulas (see [4,13,27,32], [3, Table 19])

139

(51)

Theorem 37. The Big q-Jacobi, the g-Hahn, the Big q-Laguerre, the qg-Meizner, the Quantum q-Krawtchouk,
the q-Krawtchouk, the Affine q-Krawtchouk, the q-Charlier, the Al Salam—Carlitz II and the Discrete

q-Hermite II polynomials fulfil the following inversion formulas, respectively

n (%) .
(@5 Q)n = > (-1 ln] €2 (ag, i ) Pp(z;a,b,¢9),

. (abg™*1; q)m (abg®>™ 2 @) n—m

(52)
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[nl (=D)™q'%) (ag, gV g)n Qm (g% 0, 8, Nq)

my (@Bq™ Y @) m (aBG*™ 25 @) n—m

2
(@ q)n = > _ (=)™ [::L] q%) (ag, bg; q)n P (5 0,5 q),
>

(q—x; q)n _ ( 1)n—m M(512n+1)_n(m+1)cn n ‘| (bq; q)an (q—x; b, c; q)7

m=0 m q
" ()

(@ %a), =) (-D)" l;] W(qw;q)n(pQ)_”Kme(q_””;p,N\q),

m=0 q
- ~ | n (—1)™q%) (g q)n B
%a), = Km(a™";p, Niq),

(%50), P [m]q Er s B UL

(¢ %q), =) (1" [Z] 0% (pa, a3 q), K27 (¢%;p, Niq),
m=0 q

(q—m;q)n — (_l)n—man [TZ‘| q"'L("2L+1)_n(m+1)Cm (q—r;a;q)’ (53)
m=0 q

(T;q)n = (=" [n] @G Y@ (g ),
0 a

(@¢)n = D (=1)™ l

Theorem 38. The following representations for the canonical moments are valid:
The Big q-Jacobi polynomials

(abg®,a"'c,ac”g; q 50 Cnma ("3 (a4, €4 @)m
L= m . 54
Hn =% (ag, bg, eq, abeTq Z ! © (@b ) (54
q
The q-Hahn polynomials
(B q - () (@2, @)
L= . 55
= Baon(ag™ ZO l Lq (@Bg% @)m e
The Big q-Laguerre polynomials
(g, 'b,ab” 1q )0 = [ ‘| —nmA+("51)
i = ag Z q 2 ) (ag, bg; q)m.- (56)
7b )
(aq aq — .
The q-Meizner polynomials
( cv‘])oo - n —nm+()
n X )
= Cheg q) | 4 )™ (bg; q) (57)
) o0 m=0 q
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The Quantum q-Krawtchouk polynomials

n

N -N
PG ON (N m | T i) (@ Om
i = TN () 37 (1 g 58
" (g @a)N ,;)( " m , (pg)™ 58)
The q-Krawtchouk polynomials
(=pg;@)n (=pg"iq)n 1
= —, n=0,1,2,...,N. 59
S R () B o
The Affine q-Krawtchouk polynomials
—N - m | T —nm+(" —N.
tin = (Pq) Z:O(—l) lm] ¢ ") (pg, Vi) . (60)
m= q
The q-Charlier polynomials
pn = (s (- 0) () a8 Ccompare 5, 1. 50)). (61)
q
The Al Salam—Carlitz II polynomials
[in = RN ol a™q™ ™™ (see [7, Eq. (10.10), p. 197]). (62)
(ag;9)ec 2= [ | ’
The Discrete q-Hermite 11 polynomials
(q27_q7 _q7q2)00 - n ( _ )
w (=% — %) oo mz::O( ) m ; (63)

Proof. We prove the result for the Big g-Jacobi polynomials, the other results are proved similarly. The Big
g-Jacobi polynomials P, (x;a,b,c; q) fulfil the following orthogonality relation [23, p. 438]

aq
/ (a ™tz e 12 q) 0

P, (z;a,b,¢;,q)Pp(x; a,b, c;q)dgx
cq

(abg?,a"tc,ac™1q; q) oo

(aq,bq, cq,abc'q; )0

1—abg (q,bq,abc™'q;q)n
1 —abg®>"*! (aq,abq,cq; q)n

= aq(1 - q)

(fcaq2)nq(2)5mn.

By taking m = n = 0 in the orthogonality relation it follows that

(abg?,a™ cac™ q; q) oo
(ag,bq, cq, abc™1q; q) oo

po = agq(1—q)
From the inversion formula (52), we get the zeroth inversion coefficient

(aq,cq;q)n

Ton) = (abg?;q)n
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Hence, the Big g-Jacobi generalized moments with respect to (z;q), have the representation

10, G,C_lq; q)oo (a/q7 cq; q)n

(aq,bq, cq,abc™1q; q)o (abg?;q)pn

(abg?,a~

tn (23 9)1) = ag(l — q)

Finally, using the connection formula (see [1,4,27])

m

Zt =) (- ln] ¢ ") (),
q

and Corollary 29, we obtain (54). O

Theorem 39. (See [3,4,13].) The Little q-Jacobi, the Little q-Legendre, the Little q-Laguerre, the q-Laguerre,
the Alternative q-Charlier/q-Bessel and the Stieltjes—Wigert polynomials fulfil the following inversion for-
mulas, respectively

n n —1)a(%) (ag:
x”:Zl ] 0 GV 0G50, (270, bla),

abq™ 15 q)m (abg*™ 2 q)n—m
q
n (=1)"4¢'%) (4 9)n
(

L], @ Dm (@ O

(=™ 0\?) (aq; @) npm (x;alq),
L g

(m—n)(2a+3m+4n+1)
2

Tt (g5.q) i (475 0) L I (w59),

ym (23 alq),

8
|

8
3
|
M= M= M= M= i0:
[e=] O/\ o [e=}
=
3
3 3

[n ] (—1)mq(%)

(_aqm; Q)7n(_aq2m+l; q)n—m
q

m | n (m—m)@mint1) o
(-1 l ] q 2 (@5 Q)mSm (3 q).
q

Theorem 40. The following representations for the canonical moments are valid.

(a) The Little q-Jacobi polynomials

(abg" 2 q)se  (abg*; @)oo (aq; q)n (64)

Hn = = .
(ag"*t @)oo (aq; @)oo (abg?; q)n

(b) The Little g-Laguerre polynomials

fin = M, compare with [3, p. 91]. (65)

(ag; q)oo
(¢) The q-Laguerre polynomials
1 —

q a; q)OO 7(”)771(&4»1) a+1,
(qa+1’ —c, _Cilq; q)oo q 2 (q 3 Q)n7 (66)

(Qa 7cqa+1’ —C

pid =
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for the discrete orthogonality, and

7q) oo — (™) —
pi) = U0 P a4 1)q B (o) (67)
for the continuous orthogonality.
(d) The q-Bessel polynomials
_ (-049) (68)
" (Cagig)n
(e) The Stieltjes—Wigert polynomials
_(n+1
fn == q(g;¢)oog™ ("2 (69)

Note that these moments appeared in [3, p. 91] and [8, p. 223].

Proof. Since the polynomials involved in this theorem are represented in the power basis, their canonical
moments are easy to compute, by just taking the zeroth inversion coefficients in the inversion formulas,
multiplied by pg which comes from the orthogonality relations. O

Theorem 41. (See [27].) The Al Salam—Carlitz I and the Discrete q-Hermite I fulfil the following inversion
formulas, respectively

(zen)y=> a" " l” U (2:q),
m=0 q
1" yrm B (3 q). 70
woni= 3o 1] s (0
m= q

Theorem 42. The canonical moments of the Al Salam—Carlitz I and the Discrete q-Hermite I polynomials

have the following representations, respectively

pn = (1= q)(ga,07 " 359) Y [?] a, (71)

i=0
1+ (=" L ¢
pn = (1= )@ =1, =5 )oo ——5—— (454 ?)pjar  compare with [3, p. 91]. (72)
Proof. Since the Discrete g-Hermite I are the Al Salam—Carlitz I polynomials for a = —1, it is sufficient to

prove the result for the Al Salam—Carlitz I case.
The Al Salam—Carlitz I polynomials Ul (z; q) fulfil the following orthogonality relation [23, p. 534]

1
/(qa:, atqz; q)OOU,Sf) (2: Q) U (a; q)dyx
a

n

= (-a)"(1 = Q)(¢: Dn (00,07 ¢:9) _q¥Gmn, a <0

With m = n = 0, it follows that

o =(1—q)(g,a,0 " q3q)



144 P. Njionou Sadjang et al. / J. Math. Anal. Appl. 424 (2015) 122-151

From the inversion formulas (70) for 6,,(z) = (z © 1)7, we have the zeroth inversion coefficient
Iy(n) = a™.
Hence, the Al Salam—Carlitz I generalized moments with respect to the ¢-power basis are
n((x©1)f) =1 -q)(g.a,a " g5q) _a”
taking into account Eq. (25). Finally, using the connection formula (11) and Corollary 29, (71) follows. O
Remark 43. From the g-hypergeometric representation of the Al Salam—Carlitz I polynomials given in
Eq. (51) we realized using the relation 2™ (z7";¢), = (¢ © 1)}, that the basis (x © 1) is the appropriate

and natural basis to be used. This remark can be emphasized by the fact that the inversion formula given
above is in terms of this basis.

4.5. Orthogonal polynomials on quadratic lattices
Note that by W,,(z%;a,b,¢,d), Spm(x?;a,b,¢), pm(z;a,b,c,d), P()‘)(J;,gb), we denote, respectively, the

Wilson, the Continuous Dual Hahn, the Continuous Hahn, and the Meixner—Pollaczek polynomials. Their
hypergeometric representations (see [23]) are:
1
(a+b)n(a+c)nla+d), a+ba+cat+d
1>

n dn LS) b d_17 J
n! a+ca+d

1- eQi‘z’) ,

W, (2% a,b, c,d) _F —n,n+a+b+c+d—1,a+ix,a—ix
4F3
)

Sn(2%a,b,c) B —n,a — 1T, a + iz
(a+bnlatc)y, 72 a+ba+ec

)

20 in —n, A+ ix
P (x3¢) = (n) ¢F1< o

where
Mz)=z(x+~v+d+1).
These polynomials fulfil the following inversion formulas (for details see [27]).

Theorem 44. (See [27].) The following inversion formulas are valid

Z( ) e e L ity (o),

= (a+b+c+d+m—1)pla+db+c+d+2m)p_m

= Z < ) (a+b+m)p—m(a+c+m)p_nSm(2z*a,b,c), (73)
m=0

where
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Hn(x) = (a - Z‘r)n(a + il‘)n,

) " /n (=)™ml(a+c+m)p—m(@a+d+m)p—m
= m ; ’b’ 7d’
(a+iz)n Z( )(a+b+c+d—1+m)m(a+b+c+d+2m)n_mp (@30,b,¢.d)

m=0

m

A tiz)n =Y <n) (_zm_me!gi;;:;);_m ) (a5 ). (74)

m=0

Theorem 45. The following representations for the canonical moments are valid for:

(a) the Wilson polynomials

1(a+b0ila+)kla+d)r (—2a—2k+ 20) 9
fin = k—1)*, 75
MO;;HZ; k'l' atbrcrdr  (Ba—ZiD, @ tED (75)

with

I'la+b)I'a+c)['(b+c)[(b+d)'(c+d)
F'la+b+c+d) ’

po =27

(b) the Continuous Dual Hahn polynomials

b k)i (—2a — 2k +2l)(a+c)r(a+d am
“":“Ozz(k!l!)( (Qa;l(chl)zi(l Eat k-0, (76)

with
o =T(a+b)I'(a+c)['(b+c);

(c¢) the Continuous Hahn polynomials

n k
_ (—l)l k (G,—FC)k(a—Fd)k n
_’“LO’;); k! <l>(a+b+c+d)k((a+1)l) ’ (77)

with

o = I'(a+c)l(a+d)['(b+c)['(b+d)

I'(a+b+c+d)
(d) the Meizner—Pollaczek polynomials
C210(20) Snxm (1) (R (2A)k((a + D))" 78)
= @sing)? £ 2= TR \1) T (T - e o

Proof. The Wilson polynomials fulfil the orthogonality relation [23, p. 186]

/'F(a+im)F(b+im)F(c+ix)F(d+ix) 2W (b, s d) Wi (22 0, e, ) it

I'(2ix)

2t (n+a+b)I'(n+a+c)l'(n+b+c)['(n+b+d)I(n+c+dn!
B rn+a+btct+d(n+at+btct+d—1),"

Smn.-
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With m =n = 0, it follows that

Fla+b)'(a+c)I'(b+c)I'(b+d)[(c+d)
Ia+b+c+d)

Mo = 27T

From the inversion formula (73), it follows that the zeroth inversion coefficient is

(a+b)n(a+c)nla+ d)n.

botn) = — e+ an,

Application of Theorem 28 gives the following Wilson generalized moments

Fla+bI(a+c)'(b+c)I'(b+d)(c+d)(a+b)u(a+c),(a+d)y,
I'a+b+c+d) (a+b+c+d),

tin (On(a, x)) = 27

where 0,,(a,x) is defined as in Theorem 44. Combining these generalized moments with the connection
formula (14), and using Corollary 29, we obtain (75). The other moments are obtained similarly. O

4.6. Orthogonal polynomials on q-quadratic lattices
These polynomials have the following g-hypergeometric representations (see [23]):

(a) The Askey—Wilson polynomials

a"pn(x;a,b,c,dlq) 5 g~ ", abedg™ ', ae®? ae~"
Tars ab, ac, ad

q;q) , = =cosb.
(b) The Continuous Dual ¢g-Hahn polynomials

a"pu(ziabielg) _ (g7 ae,ae™
(ab7 ac; q)n (lb7 ac

q,q) , x =-cos#.

(¢) The Continuous g-Hahn polynomials

(abe?? ac,ad;q), 3 abe?? ac,ad

q,q) ,  x=-cos(f+ o).

(d) The Al-Salam—Chihara polynomials

an

ab; q)n g ", ae', ae"
Qn(w;a,blq) = u3<¢52 <

(e) The g-Meixner—Pollaczek polynomials

P, (z;a|q) = o~ "e—in® (a2; Qn s ( qa ", aei(9+2¢), ae~%
n ) - I —

(@ 9)n ° a?,0

q,q) , x=cos(f+ ¢).
(f) The continuous g-Jacobi polynomials

- 1 1 . 1 1
P (afq) = @D (a7 qreriel it
' YT wan gt —qzlotBH) _ga(atht2)

q;q) , x =-cos#.
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(g) The continuous big ¢-Hermite polynomials

619, a€—19

- qg " a
Hn ya, = "
(z5a,]|q) = a "3¢2 ( 0.0

q,q) , « =cosf.

(h) The continuous g-Laguerre polynomials

a+1. —n Ltat+l i Llati —if
PT(LQ)(OCM):L ,q)n3¢2<q AR parre

(@ @n ¢t 0

q,q) , x =cos#.

(i) The continuous g-Hermite polynomials

) -n_(
Hn($|Q) _ em92¢0 (q ) ‘ q, qne—220> ; 7 = cosb.

Note that these polynomials fulfil the following inversion formulas.

Theorem 46. (See [27].) The Askey—Wilson, Continuous Dual g-Hahn, the Al-Salam—Chihara and the Con-
tinuous big q-Hermite polynomials fulfil the following inversion formulas, respectively

n q a aoq -, acq ", aaq ;5 q)n—m
Bo(x) = m(z5a,b,c,d 1,5,12,27,32)),
. l 1 (abedq™; Q) (@bedg®; g DTGB d) - (see 1,5 /)

q(ZL) (aqu‘7 acqm; q)nimpm(x, a, b7 C‘Q)a

Bu(x) =Y (~a)™ | " | ¢¥)(abg™;q),, _, Qu(w;a,blq),

m=0 L dq
Bu(@)= (=)™ | " | ¢l Hy(w:alo), (79)
m=0 L dgq

where
B, (x) = (ae' ,ae”" ;q)n, T = cos .
Remark 47. It should be noted that from the inversion formula for the Askey—Wilson polynomials (79), the

remaining inversion coefficients for the polynomials of the Askey scheme may be obtained by appropriate
limit transitions.

Theorem 48. The following representations are valid for the canonical moments of:

(a) the Askey—Wilson polynomials

- Zk: (ab, ac, ad; q)x q*q a2 i(ag! +a"tqgI)k

(abed; @)k (q,¢ % a?;q)r—j(q. ¢ "% a=25q);

27 (abed; ) oo
~ (q;ab, ac,ad, be, bd, cd; q) o

=07=
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(b) the Continuous Dual g-Hahn polynomials

1g—J

n k 2 _9 k
¢"q a % (ag’ +a"'q )
fn = E E ————(ab, ac; q). (81)
(q,ab ac, bc 7) oo — = (¢, ¢" % a%q)i—j(q, a7 "% a"2;q);

(¢) the Al-Salam—Chihara polynomials

HUn =

(q,ab ?)oo (¢,¢* 0% q)n—5(q, a7 "% a2 q);

n_ k j j —1,—j\k
¢“q " a"%(ag’ +a"lq
>3 e (b (52)
=0j=
(d) the Continuous Big q-Hermite polynomials
Lgi)k

D SR K e L (53)
== (0.0"a% q)k—(g, 47 ¥ a2 q);

oo

Proof. From the Askey—Wilson orthogonality relation (see e.g [23]), with m = n = 0, it follows that

B 27 (abed; ) oo
1= (g ab, ac, ad, be, bd, cd; q) oo

From the inversion formula (79), we get the zeroth inversion coefficient

(abv ac, ad; Q)n

lo(n) = (abed; q)p,

Hence, using Eq. (25), the generalized Askey-Wilson moments with respect to B, (z) = (ae®,ae™";q),

have the representation

27 (abed; @) oo (ab, ac,ad; q)p,
(¢; ab, ac, ad, be,bd, cd; q)oo  (abed; q)n

Hn (Bn(@) = (84)
Finally, using (20) and Corollary 29, we obtain (80). The other canonical moments are computed using
similar arguments as in the proof of Theorem 45. O

Note that formula (80) appeared in [10].

Remark 49. Note also that by appropriate limit transitions, one may obtain the canonical moments of the
remaining polynomials from the moments of the Askey—Wilson polynomials (80). For example, the moments
of the Continuous Dual g-Hahn polynomials given in (81) are obtained by taking d = 0 in the Askey—Wilson
moments given by (80).

Theorem 50. The Continuous qg-Hahn and the q-Meizner—Pollaczek polynomials fulfil the following inversion
formulas, respectively

|| (—ae?)mql?) (abg™e*?, acq™, adg™; @) n—m
n = P/m ; 9 b 9 ) :
Enl) Zo lm] (abedq™; q)m(abedq®™; q)n—m (w50 be,dla),  see [27]
m= q
" id\ ™M n m m D"y
Bu(z) =Y (—ac'®) [m] 0% (@ Q) (a®q™;q), _, Pu(wialg), see [27]
m:O q
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where
Bn(z) = (aei(0+2¢), ae” ¥, q)n, x = cos(f + ¢).

Theorem 51. The Continuous qg-Hahn and the q-Meixner canonical moments have the following representa-
tions, respectively.

ZZ (abe®®,ac,ad; @)k q"q 7 a=2e¥%(ae0q) +a"teifq i)k (85)
= Mo . — . ,
k=0 j=0 ade Dr (00" a?e 2 q)k (g, 71" Ha e q),
where
_ 47 (abed; q) oo
Ho = (g, abe?¢ ac, ad,be, bd, cde=%'?; q) oo
and
e D) DL R ) -
Hn = T P SO a*,¢;q),.
" (e — = (0.4 a?e™ 95 q)j(q, ¢ a2e; ), b

Proof. The proof of this theorem is similar to the one of Theorem 48. O

Theorem 52. The Continuous q-Jacobi and the Continuous q-Laguerre polynomials fulfil the following in-
version formulas, respectively, see [27].

(qm—&-a—&-ﬁ-&-l’q) (q2m+a+,8+2 q)n m

+1+ L(a+p+1) _  3(a+B+2).
l 1 )™ (¢ )ma"?) (T Qo (—q2 @D g3 (@ )7Q)nP7sla,B)(x|q)’
0

> (= [ ] 0 (@ Qm (¢ ™5q) P (]q),
q

m=

o

where
B(x) = (q2a+4€19 Q%O‘Jr%e*m;q)n, x = cosb.

Theorem 53. The Continuous q-Jacobi and the Continuous q-Laguerre canonical moments have the following

representations.
a1 1 1
i “OZZ g I ORI (@ ST 4 I E )k (gt —gz (ot AHD _ga(atBi2) ), (87)
n — T ,
k—0j=0 ‘44 Gt ) h—j(q. Y7 31 q); (qo+P+2;q)y,
where
27 (q(@HB+) g3(a+B+3) g)
o (Q7 qa+1’ qﬁ+17 _q%(a+5+1)7 _q%(a+5+2); q)oo
and
2 n F qkq*qu*(a+%)j(qﬂ'+%+i + I TR (g ),
in SN = (88)

(0. 0° "3 @) =4 (¢,q7+° 2 q)4—j(q. a ¥~ 35 q);
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Proof. The proof of this theorem is similar to the one of Theorem 48. O

Theorem 54. The Continuous q-Hermite polynomials have the following representation:
T(—1)" & 2n gy @=B(n—k—1)
fomir =0, iz = D" Z(—l)"’( >(1 +g )T n=0,1,2,. .. (89)
(¢ Qo0 = k

In order to prove this theorem, we need the following lemma.

Lemma 55. (See Lemma 13.1.4 in [15].) The following relation is valid

™

/em'je (621'9’ e 2. q)oode _
0

m(=1)
(439

(1 _|_qj)qj(j—1)/2' (90)

Proof of the theorem. Note that u,, = 0 when n is odd. We start by writing

1 ()
ng— E 1(n72k).
COS on s <k>€

Next, we use the relation (90) to get:

T

Hon = /(cos )% (e2i9,e*2i9;q)ood0
0
_ 1 < (2n / 2i(n—k) (,2i0 _—2i6.
_22”Z<k>/e (e*)e ,q)oodﬁ
k=0 )
—1)" — n—k)(n—k—1
g
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