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On ground states for the Kirchhoff-type problem with a
general critical nonlinearity�

Zhisu Liu, Shangjiang Guo∗

College of Mathematics and Econometrics, Hunan University, Changsha,
Hunan 410082, P.R. China

Abstract

In this paper, we consider the following Kirchhoff-type problem{ −(a+ b
∫
R3 |∇u|2)�u = f(u), in R

3,
u ∈ H1(R3), u > 0, in R

3,

where a, b > 0 are constants, and f has a critical growth. The aim of this paper
is to study the existence of ground state solutions for Kirchhoff-type equations
with a general nonlinearity in the critical growth, without the assumption of

the monotonicity of the function t → f(t)
t3 . Moveover, we will show that the

mountain pass value gives the least energy level and also obtain a mountain
pass solution.

Keywords: Kirchhoff type problem; Critical nonlinearity; Ground state;
Variational methods
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1. Introduction

Consider the following Kirchhoff-type problem:{ −(a+ b
∫
R3 |∇u|2)�u = f(u), in R

3,
u ∈ H1(R3), u > 0, in R

3,
(K)

where a, b > 0 are constants and f ∈ C(R,R) satisfies the following assumptions.

(f1) f ∈ C(R,R) is odd;
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(f2) lim
s→0

f(s)
s = −m < 0;

(f3) lim
|s|→+∞

f(s)
s5 = k > 0;

(f4) There exist D > 0 and q ∈ (2, 6) such that f(s) +ms ≥ ks5 +Dsq−1 for
all s > 0.

For the sake of simplicity, in this paper we always assume that k = 1. We recall
that u(x) is said to be the ground state (or the least energy solution) of (K) if
and only if I(u) = l, where l := inf{I(u);u ∈ H1(R3)\{0} is a solution of (K)}.
Here, I : H1(R3) → R is the natural functional corresponding to (K), that is,

I(u) =
a

2

∫
R3

|∇u|2 + b

4

(∫
R3

|∇u|2
)2

−
∫
R3

F (u), (1.1)

where H1(R3) is the usual Sobolev space and F (u) =
∫ u

0
f(s)ds.

Note that Kirchhoff type problem on a smooth bounded domain Ω ⊂ R
N

takes the form of { −(a+ b
∫
Ω
|∇u|2)�u = f(x, u), in Ω,

u = 0, in ∂Ω
(1.2)

and has been studied by many mathematicians. Indeed, such a class of problems
is viewed as being nonlocal because of the presence of the term (

∫
Ω
|∇u|2dx)�u,

which implies that the equation in (1.2) is no longer a pointwise identity and is
very different from classical elliptic equations. That is to say, such a phenomenon
provokes some mathematical difficulties, which make the study of such a class
of problems particularly interesting. On the other hand, problem (1.2) arises in
many mathematical biological contexts. It is pointed out in [1] that the prob-
lem (1.2) models several biological systems, where u describes a process which
depends on the average of itself (for example, population density). Moreover,
problem (1.2) is related to the stationary analogue of the following equation{

utt −
(
a+ b

∫
Ω
|∇u|2dx)�u = f(x, u), in Ω,

u = 0, on ∂Ω,
(1.3)

which is proposed by Kirchhoff in [22] as an existence of the classical D’Alembert’s
wave equations for free vibration of elastic strings, particularly, taking into ac-
count the subsequent change in string length caused by oscillations. We have
to point out that Equation (1.3) received much attention only after Lions [25]
introduced an abstract framework to this problem. Some interesting results can
be found, for example, in [14, 6, 3]. More precisely, D’Ancona and Spagnolo
[6] proved the existence of a global classical periodic solution for the degenerate
Kirchhoff equation with real analytic data which is an example of a quasi-
linear hyperbolic Cauchy problem that describes the transverse oscillations of a
stretched string. In [3], Arosio and Panizzi studied the Cauchy-Dirichlet type
problem related to (1.3) in the Hadamard sense as a special case of an abstract
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second-order Cauchy problem in a Hilbert space. Recently, the solvability of
the Kirchhoff type equation (1.2) has been well studied by many authors. In
particular, Ma and Rivera [28] obtained positive solutions of such problems
via variational methods. Alves, Corrêa and Ma [1] studied problem (1.2) and
obtained positive solutions by using the Mountain Pass Theorem. Using the
variant version of the Mountain Pass Theorem, Cheng and Wu [12] also proved
two existence results of positive solutions for problem (1.2), when f satisfies
some asymptotic behaviors near zero and infinity. In [31], Perera and Zhang
obtained nontrivial solutions for (1.2) with the aid of the Yang index and crit-
ical groups. In [39] and [29], the authors used minimax methods and invariant
sets of descent flow to prove the existence of three solutions (a positive solution,
a negative solution and a sign-changing solution) for (1.2). Moreover, He and
Zou [17] showed the existence of infinitely many solutions by using the local
minimum methods and the Fountain Theorems. We refer to [11, 34, 13, 38, 12]
for more existence results of (1.2). We also note that there are several existence
results for the following Kirchhoff type problem on R

N :{ −(a+ b
∫
R3 |∇u|2)�u+ V (x)u = f(u), in R

N ,
u ∈ H1(R3), in R

N ,
(1.4)

where N = 1, 2 or 3. In fact, under the condition that f(u) is superlinear
at infinity, Wu [36] obtained a sequence of high energy solutions for problem
(1.4) via a symmetric Mountain Pass Theorem. In [37], Wu also studied the
existence of a sequence of high energy solutions for the above system with the
help of some new critical point theorems. When the nonlinear term f(u) is
asymptotically linear at infinity, Liu and Guo [26] obtained the existence of at
least a positive solution for (1.4). If V (x) is radially symmetric, Nie and Wu
[30] studied the existence of infinitely many high energy solutions for problem
(1.4) by using Mountain Pass Theorem and symmetric Mountain Pass Theorem.
Jin and Wu [21] employed the Fountain Theorem and obtained three existence
results of infinitely many radial solutions for problem (1.4) with V (x) ≡ 1. In
addition, Li et al. [24] made use of the cut-off function technique to investigate
the existence of positive solution for the following system without assuming
compactness:{

(a+ λ
∫
RN |∇u|2 + λb

∫
RN u2)[−�u+ bu] = f(u), in R

N ,
u ∈ H1(RN ), u > 0, in R

N ,

where N ≥ 3. Alves and Figueiredo [2] studied the following class of Kirchhoff
problem

M

(∫
RN

(|∇u|2 + V (x)u2)

)
[−�u+ V (x)u] = λf(u) + γuτ in R

N , (1.5)

where τ = 5 for N = 3 and τ ∈ (1,+∞) for N = 1, 2; λ > 0 and γ ∈ {0, 1}.
Alves and Figueiredo [2] showed that under certain conditions on functions M ,
V and f , there exists a constant λ∗ > 0 such that (1.5) with γ = 1 has at least a
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positive solution for every λ > λ∗, and (1.5) with γ = 0 has a positive solution,
for every λ > 0.

We remark that problem (K) with a = 1, b = 0 and R
3 replaced by R

N ,
reduces to the well-known elliptic equation{ −�u = f(u), in R

N ,
u ∈ H1(RN ), u > 0 in R

N .
(1.6)

For (1.6), there is a large quantity of results on the existence and multiplicity
of solutions in the literature. We refer to [7, 8, 20, 4, 5, 41] and the more
references therein. In particular, for the subcritical growth case, we recall that
their celebrated paper [7], Berestycki and Lions studied the nonlinear elliptic
equation (1.6) and obtained the following existence result.

Theorem 1.1. Suppose N ≥ 3 and that f satisfies the following conditions:

(H1) f ∈ C(R,R) is odd;

(H2) −∞ < lim infs→0+
f(s)
s ≤ lim sups→0+

f(s)
s = −m < 0;

(H3) −∞ ≤ lim sups→0+
f(s)
sl

≤ 0, where l = N+2
N−2 ;

(H4) there exists ζ > 0 such that F (ζ) :=
∫ ζ

0
f(s)ds > 0.

Then (1.6) possesses a positive least energy solution u such that

(i) u is spherically symmetric: u(x) = u(r), where r = |x|, and u decreases
with respect to r;

(ii) u ∈ C2(RN ).

(iii) u together with its derivatives up to order 2 has exponential decay at in-
finity:

|Dαu(x)| ≤ Ce−δ|x|, x ∈ R
N ,

for some C, δ > 0 and for |α| ≤ 2.

Under the assumptions that f satisfies (H1)-(H4), Berestycki and Lions [8]
also investigated the existence of infinitely many bound state solutions of (1.6);
Jeanjean and Tanaka [20] showed that the mountain pass value gives the least
energy level for problem (1.6); Azzollini, d’Avenia and Pomponio [4] studied a
class of Schrödinger-Poisson problems and obtained the existence of at least a
radial positive solution; Azzollini [5] extended Theorem 1.1 to problem (K) and
obtained the existence of ground state solutions by using minimizing arguments
on a suitable natural constraint (the Pohozaev’s manifold P, see Section 4).

Zhang and Zou [41] investigated the existence of the least energy solutions
of the problem (1.6) under the critical growth assumption on f and obtained
the following result.

Theorem 1.2. Suppose N = 3, and that (f1)-(f4) hold. If q ∈ (4, 6), then (1.6)
possesses a positive least energy solution u ∈ H1(RN ) satisfying (i)-(ii) and
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(iii’) u and its first derivatives decay exponentially at infinity:

|Dαu(x)| ≤ Ce−δ|x|, x ∈ R
N

for some C, δ > 0 and for |α| = 0, 1.

Moreover, motivated by Jeanjean and Tanaka [20], Zhang and Zou [41] also
showed the fact that the mountain pass value is equal to the least energy level.

Now we give the fifth assumption on the nonlinear term f :

(f5) Set g(s) = f(s)+ms, then there exists γ > 3 such that 1
γ g(s)s−G(s) ≥ 0

for all s ∈ R, where G(s) =
∫ s

0
g(t)dt.

Note that, under the assumptions (f1)-(f5), Zhang [40] studied a class of Schrödinger-
Poisson problems and proved the existence of ground state solutions for q ∈ (2, 4]
with D sufficiently large, or q ∈ (4, 6).

Now, an interesting question is whether the same existence results occur to
the nonlocal problem (K). It is worth noticing that, to our best knowledge, there
is no work on the existence of positive solutions for problem (K) where f stands
for a general nonlinearity in the critical growth; that is, f satisfies the conditions
(f1)-(f4). In the present paper, we are interested in studying the existence of
positive ground state solutions for this class of problems. In fact, we can not
only obtain the existence of positive ground state solutions, but also prove that
problem (K) has a mountain pass solution. Moreover, it is easy to see that the
mountain pass solution is also a ground state solution, which is very important
for us to study singular perturbation problems of Kirchhoff-type equations, i.e.,
the search of peak solutions. The ground state often serves as the scaled limit
profile of solutions near the spike in singular perturbation problem{ −(ε2a+ εb

∫
R3

|∇u|2)�u+ V (x)u = f(u), in R
3,

u ∈ H1(R3), u > 0, in R
3.

(1.7)

The peak solutions of (1.7), sometimes called semi-classical states, are families
of solutions uε(x) which concentrate and develop a spike shape around certain
points in R

3 while vanishing elsewhere as ε → 0. For this subject we refer, for
example, to [18, 35, 27, 15]. By minimizing the energy functional restricted to

the Nehari manifold N , the monotonicity assumption t → f(t)
t3 is often used to

ensure that the mountain pass value gives the least energy. See, for example,
[18] and [24]. However, in our paper we also get the same result without the
monotonicity assumption. In addition, we obtain a positive ground state so-
lution (see Proposition 4.2) by minimizing the energy functional restricted to
the Pohozaev’s manifold P. Unfortunately, we can not distinguish between the
mountain pass solution and the positive ground state solution.

Now, we state our main result.

Theorem 1.3. Under assumptions (f1)-(f4), assume that either q ∈ (4, 6) or
q ∈ (2, 4] and D is sufficiently large. Then problem (K) admits at least a positive
ground state solution u ∈ H1(R3). Moreover, the least energy level can be given
by the mountain pass value.
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Remark 1.1. Note that our result is very important in the study of semi-
classical states of Kirchhoff problem due to the facts mentioned above.

Remark 1.2. In the present paper, we can also obtain conclusions (i), (ii) of
Theorem 1.1, and (iii’) of Theorem 1.2. Indeed, in Section 2 we shall prove the
solution u is spherically symmetric and decreases with respect to r. As for the
regularity, set

−�u = q(x)u in R
3,

where q(x) = f(u(x))
(a+b

∫
R3

|∇u|2)u(x) . By using similar arguments as that in [41], we

have u ∈ C2(R3) and u′(r) < 0 for any r > 0. The exponential decay of u at
infinity follows from a standard argument of ordinary differential equations. See
also [41] for the details of the proof.

Remark 1.3. Assumption (f4) plays a significant role in ensuring the existence
of ground state solution to problem (K). Without (f4), the assumptions (f1)-(f3)
are not enough to guarantee the ground state solution of problem (K). Indeed,
we can give a counterexample, i.e., f(u) = −ms + k|s|4s. It is not difficult to
see that f satisfies the assumptions (f1)-(f3) except (f4). But it is easy to verify
that problem (K) has not any nontrivial solutions, see [23].

In order to prove Theorem 1.3, we have to solve four difficulties. Firstly,
in our general assumptions, we don’t assume the following global Ambrosetti-
Rabinowitz growth hypothesis on f :

there exists μ > 4 such that 0 < μF (s) ≤ f(s)s for all s ∈ R,

which makes the proof of the boundedness of Palais-Smale sequences very tough.
Thus, we will use an indirect approach developed by Jeanjean [20] to get the
boundedness. Secondly, as we deal with the critical problem (K) in H1(R3),
the Sobolev embeddings H1(R3) ↪→ L6(R3) is not compact. The functional
I does not satisfy (PS)c condition at every energy level c. To overcome this
difficulty, in the spirit of Brezis and Nirenberg’s celebrated paper [10], we try to
pull the energy level down below some critical level to recover the compactness.
Thirdly, it is very difficult to prove the weak sequential continuity of I ′ by
direct calculations since problem (K) is no longer a pointwise identity. Indeed,
in general, we do not know whether

∫
R3 |∇un|2 → ∫

R3 |∇u|2 follows from un ↪→ u
in H1(R3). Fortunately, by citing the functional

J(u) =
a+ bA2

2

∫
R3

|∇u|2 −
∫
R3

F (u),

where A2 = lim
n→∞

∫
R3 |∇un|2, we do easily see that J ′ is weakly sequentially

continuous at the weak limit point u of the (PS)c sequence {un} of I, which helps
us to find the nontrivial critical point of I by pulling the mountain-pass level
c down below some critical energy level c∗1 (see Section 3). Finally, Berestycki

6



and Lions [7] and Zhang and Zou [41] obtained the existence of ground state
solutions by studying the minimization problem

Minimize

{∫
R3

|∇u|2;
∫
R3

F (u) = 1

}
.

This method doesn’t work in our case due to the nonlocal term (
∫
Ω
|∇u|2dx)�u.

Thus, we have to find another approach in order to obtain the existence of
ground state solutions. In fact, our plan is to minimize I restricted to the
Pohozaev’s manifold P and then use Lagrange multiplier technique to obtain a
ground state solution. However, the functional J(u) is not applicable here, since
the minimizing sequence on the manifold P takes the place of (PS)c sequence.
Fortunately, we can prove the minimum point of I can be attained on the
manifold P with the help of a Pohozaev-type identity of problem (K). Moreover,
motivated by Jeanjean and Tanaka’ arguments in [20], we can show that the
mountain pass solution is also actually a ground state solution.

Throughout this paper, C > 0 denotes a universal positive constant. The
remainder of this paper is organized as follows. We will give some notations
and preliminaries in Section 2. The existence of the mountain pass solution
are presented in Section 3, and Section 4 is devoted to the existence of positive
ground state solutions. Finally, in Section 5, we prove Theorem 1.3.

2. Notations and preliminaries

Hereafter, let us fix some notations. For every ρ > 0 and every z ∈ R
3, Bρ(z)

denotes the ball of radius ρ centered at z and |Bρ(z)| denotes its Lebesgue
measure. For any 1 ≤ s ≤ +∞, we denote by ‖ · ‖s the usual norm of the
Lebesgue space Ls(R3). Let D1,2(R3) := {u ∈ L6(R3) : |∇u| ∈ L2(R3)} be the
Sobolev space equipped with the norm ‖u‖2D1,2 :=

∫
R3 |∇u|2. Recall that

S = inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2

(
∫
R3 u6dx)1/3

,

where S is the best constant in the Sobolev inclusion. For fixed a,m > 0, we
introduce an equivalent norm on H1(R3), that is, the norm of u ∈ H1(R3) is
defined as

‖u‖ :=

⎛
⎝∫

R3

(a|∇u|2 +mu2)

⎞
⎠

1
2

,

which is induced by the associated inner product on H1(R3). Set g(s) = f(s)+
ms, so functional I is reduced as

I(u) =
1

2
‖u‖2 + b

4

⎛
⎝∫

R3

|∇u|2
⎞
⎠

2

−
∫
R3

G(u), (2.1)
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where u ∈ H1(R3) and G(s) =
∫ s

0
g(t)dt. The conditions (f1)-(f3) imply that

the functional I : H1(R3) �→ R is of class C1. It can be proved that u is a
solution of (K) if and only if u ∈ H1(R3) is a critical point of the functional I.
Let H1

r (R
3) := {u ∈ H1(R3): u is radial}. In this paper, we will look for critical

points of I on H1
r (R

3), which is a natural constraint.
In the following, we give the abstract critical point theorem developed by

Jeanjean [19].

Theorem 2.1. ([19]) Let (E, ‖ · ‖) be a real Banach space with its dual space
E−1 and J ∈ R

+ an interval. Consider the family of C1 functionals on E:

Iλ = A(u)− λB(u), ∀λ ∈ J,

with B nonnegative and either A(u) → +∞ or B(u) → +∞ as ‖u‖ → ∞,
satisfying Iλ(0) = 0. For any λ ∈ J we set

Γλ = {γ ∈ C([0, 1], E) | γ(0) = 0, γ(1) < 0}.
If for every λ ∈ J the set Γλ is nonempty and

cλ = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)) > 0, (2.2)

then for almost every λ ∈ J there is a bounded Palais-Smale sequence {un}, i.e,
{un} is bounded and satisfies that Iλ(un) → cλ and I ′λ(un) → 0 in E−1.

In our case, E = H1
r (R

3),

A(u) :=
1

2
‖u‖2 + b

4

(∫
R3

|∇u|2
)2

,

B(u) :=

∫
R3

G(u),

and the associated perturbed functional we study is

Iλ(u) =
1

2
‖u‖2 + b

4

(∫
R3

|∇u|2
)2

− λ

∫
R3

G(u) (2.3)

for u ∈ E and λ ∈ J := [ 12 , 1]. It is clear that this functional is of C
1-functional

defined on the whole space E and for every u, v ∈ E,

I ′λ(u)v = a

∫
R3

∇u∇v +m

∫
R3

uv + b

∫
R3

|∇u|2
∫
R3

∇u∇v − λ

∫
R3

g(u)v. (2.4)

Note that B(u) ≥ 0, ∀u ∈ E and A(u) → +∞ as ‖u‖ → ∞ which is suitable for
some conditions of Theorem 2.1.

We will make use of the following Pohozaev type identity, whose proof is
standard and can be found in [7, 5].

Lemma 2.1. Let u be a critical point of Iλ in E for λ ∈ J , then

a

2

∫
R3

|∇u|2 + b

2

⎛
⎝∫

R3

|∇u|2
⎞
⎠

2

+
3m

2

∫
R3

u2 − 3λ

∫
R3

G(u) = 0.
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3. A Mountain Pass solution

Lemma 3.1. Suppose that (f1)-(f4) hold, then
(i) Γλ �= ∅ for every λ ∈ J ;
(ii) there exists a constant η > 0 such that cλ ≥ η > 0 for every λ ∈ J .

Proof (i) For every λ ∈ J , using (f4) and (2.3), we have

Iλ(u) ≤ 1

2
‖u‖2 + b

4

(∫
R3

|∇u|2
)2

− 1

12

∫
R3

u6 − D

2q

∫
R3

|u|q.

Set w ∈ E \ {0} such that w �≡ 0. Then lim
t→+∞ Iλ(tw) = −∞. Thus there exists

t0 > 0 such that Iλ(t0w) < 0 for every λ ∈ J . Define γ1 : [0, 1] → E as

γ1(t) = tt0w, 0 ≤ t ≤ 1.

It is easy to see that γ1 is a continuous path from 0 to t0w. Furthermore, we
have Iλ(γ1(1)) < 0 and Iλ(γ1(0)) = 0 for every λ ∈ J .

(ii) The conditions (f1)-(f3) imply that, for any ε > 0, there exists Cε > 0
such that

|g(u)| ≤ ε|u|+ Cε|u|5. (3.1)

In view of (2.3) and (3.1), there holds

Iλ(u) ≥ 1

2
‖u‖2 − ε

2

∫
R3

u2 − Cε

6

∫
R3

u6

≥ m− ε

2m
‖u‖2 − CCε‖u‖6.

So, by fixing ε ∈ (0,m) and letting ‖u‖ = ρ > 0 small enough, it is easy to see
that there is η > 0 such that Iλ(u) ≥ η for every λ ∈ J . Now fix λ ∈ J and
γ ∈ Γλ. Since γ(0) = 0 and Iλ(γ(1)) < 0, certainly ‖γ(1)‖ > ρ. By continuity,
we conclude that there exists tγ ∈ (0, 1) such that ‖γ(tγ)‖ = ρ. Therefore, for
every λ ∈ J ,

cλ ≥ inf
γ∈Γλ

Iλ(γ(tγ)) ≥ η > 0.

This completes the proof of this lemma. �
It follows from Lemma 3.1 that the conclusions of Theorem 2.1 hold. In the

following, we will give an upper bounded estimate on cλ.

Lemma 3.2. Assume (f1) -(f4) hold and if q ∈ (4, 6) or q ∈ (2, 4] and D is

sufficiently large, then cλ < c∗λ := ab
4λS

3 + [b2S4+4λaS]
3
2

24λ2 + b3S6

24λ2 .

Proof For ε, r > 0, take Uε(x) =
φ(x)ε1/4

(ε+|x|2)1/2 , where φ ∈ C∞
0 (B2r(0)) satisfies

0 ≤ φ(x) ≤ 1 and φ(x) ≡ 1 on Br(0). Recall that S is attained by the functions
ε1/4

(ε+|x|2)1/2 . Direct calculation shows that∫
R3

|∇Uε|2dx = K1 +O(ε
1
2 ),

∫
R3

|Uε|6dx = K2 +O(ε
3
2 ) (3.2)
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and ∫
R3

|Uε|tdx =

⎧⎨
⎩

O(ε
t
4 ), t ∈ [2, 3);

O(ε
3
4 |lnε|), t = 3;

O(ε
6−t
4 ), t ∈ (3, 6),

(3.3)

where K1,K2 are positive constants. Moreover, S = K1

K
1/3
2

. Using (3.2) and (3.3)

we have ∫
R3 |∇Uε|2dx

(
∫
R3 |Uε|6dx)1/3 = S +O(ε

1
2 ). (3.4)

In view of the definition of cλ, we have cλ ≤ max
t≥0

I(tUε). Define function

y(t) := t2

2 ‖Uε‖2 + bt4

4 (
∫
R3 |∇Uε|2)2 − λt6

6

∫
R3 |Uε|6. It is clear that y(t) attains

its maximum at

t0 =

⎛
⎝b(

∫
R3 |∇Uε|2)2 +

√
b2(

∫
R3 |∇Uε|2)4 + 4λ‖Uε‖2

∫
R3 |Uε|6

2λ
∫
R3 |Uε|6

⎞
⎠

1/2

and

y(t0) =
b‖Uε‖2(

∫
R3 |∇Uε|2)2

4λ
∫
R3 |Uε|6 +

[b2(
∫
R3 |∇Uε|2)4 + 4λ‖Uε‖2

∫
R3 |Uε|6] 32

24(λ
∫
R3 |Uε|6)2 +

b3(
∫
R3 |∇Uε|2)6

24(λ
∫
R3 |Uε|6)2 .

Observe that there exists t′ ∈ (0, 1) such that for ε < 1, we have

max
t′≥t≥0

Iλ(tUε(x)) ≤ max
t′≥t≥0

(
t2

2
‖Uε‖2 + bt4

4
(

∫
R3

|∇Uε|2)2
)

≤ max
t′≥t≥0

(
t2

2
‖Uε‖2 + Ct4‖Uε‖4

)
< c∗λ.

(3.5)

By (f4) and (2.3), one has

Iλ(tUε(x)) ≤ y(t)− λD

q
tq
∫
R3

|Uε|q

≤ y(t)− CDtq
∫
R3

|Uε|q.
(3.6)

Now we claim that there exists ε0 ∈ (0, 1) such that lim
t→+∞ Iλ(tUε(x)) < 0

uniformly in ε ∈ (0, ε0). Indeed, It follows from Lemma 3.1 and (3.6) that
lim

t→+∞ Iλ(tUε(x)) = −∞ and Iλ(tUε(x)) > 0 as t is close to 0. Define

e(t) :=
t2

2
‖Uε‖2 + bt4

4
(

∫
R3

|∇Uε|2)2 − λt6

6

∫
R3

|Uε|6 − λD

q
tq
∫
R3

|Uε|q,

then there exists tε > 0 such that e(tε) = 0 and e(t) < 0 for t > tε. From

e(tε) = t2ε

(
1

2
‖Uε‖2 + bt2ε

4
(

∫
R3

|∇Uε|2)2 − λt4ε
6

∫
R3

|Uε|6 − λD

q
tq−2

∫
R3

|Uε|q
)

= 0,
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we have

1

2
‖Uε‖2 + bt2ε

4
(

∫
R3

|∇Uε|2)2 =
λt4ε
6

∫
R3

|Uε|6 + λD

q
tq−2

∫
R3

|Uε|q

≥ λt4ε
6

∫
R3

|Uε|6.

Furthermore, using (3.2), (3.3) one has

λt4ε
6

≤ 1

2

‖Uε‖2∫
R3 |Uε|6 +

bt2ε
4

(
∫
R3 |∇Uε|2)2∫
R3 |Uε|6

≤ 1

2

aK1 +O(ε
1
2 )

K2 +O(ε
3
2 )

+
bt2ε
4

K2
1 +O(ε

3
2 )

K2 +O(ε
3
2 )

+O(ε
1
2 )

≤ aK1 + |O(ε
1
2
0 )|

K2
+

bt2ε
2

K2
1 + |O(ε

3
2
0 )|

K2
+ |O(ε

1
2
0 )|

(3.7)

for ε ∈ (0, ε0), where ε0 > 0 is small enough. (3.7) implies that tε is bounded
from above by some t∗ > 0 uniformly for ε ∈ (0, ε0), where t∗ is independent
of ε. Combining the above fact and (3.6), it is easy to see that there exists
ε0 ∈ (0, 1) such that lim

t→+∞ Iλ(tUε(x)) < 0 uniformly in ε ∈ (0, ε0). Thus there

exists t′′ > t∗ such that for ε ∈ (0, ε0),

max
t≥t′′

Iλ(tUε(x)) < c∗λ. (3.8)

It follows from (3.3), (3.4) and (3.6) that

max
t′′≥t≥t′

Iλ(tUε(x))

≤ y(t0)− CD

∫
R3

|Uε|q

=
ab

4λ
S3 +

(b2S4 + 4λaS)
3
2

24λ2
+

b3S6

24λ2
+O(ε

1
2 )− CD

∫
R3

|Uε|q.

(3.9)

For q ∈ (2, 4] and D sufficiently large, ε ∈ (0, ε0) fixed, we derive from (3.9) that

max
t′′≥t≥t′

I(t2Uε(tx)) <
ab

4λ
S3 +

(b2S4 + 4λaS)
3
2

24λ2
+

b3S6

24λ2
. (3.10)

For q ∈ (4, 6), observe that 6−q
4 < 1

2 , then it follows from (3.3) and (3.9) that,
there exists ε1 ∈ (0, ε0) small enough such that for ε ∈ (0, ε1),

max
t′′≥t≥t′

I(t2Uε(tx)) <
ab

4λ
S3 +

(b2S4 + 4λaS)
3
2

24λ2
+

b3S6

24λ2
. (3.11)

Combining (3.5), (3.8) and (3.10), (3.11), we deduce that cλ < c∗λ.
We cite a variant of Strauss’ compactness result [33] which plays a crucial

role in our arguments:
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Theorem 3.1. ([33]) Let P and Q : R → R be two continuous functions satis-
fying

lim
s→∞

P (s)

Q(s)
= 0.

Let {vn}n, v and w be measurable functions from R
N to R, with z bounded,

such that

sup
n

∫
RN

|Q(vn)w| < +∞

and
P (vn(x)) → v(x) a. e. in R

N , as n → +∞.

Then for any bounded Borel set B one has ‖(P (vn)− v)w‖L1(B) → 0. Further-
more, if

lim
s→0

P (s)

Q(s)
= 0

and
lim

|x|→+∞
sup
n

|vn(x)| = 0,

then ‖(P (vn)− v)w‖L1(RN ) → 0 as n → +∞.

Lemma 3.3. For t, s > 0 and λ ∈ [12 , 1], the following system{
Φ(t, s) = t− aSλ

−1
3 (t+ s)

1
3 = 0,

Ψ(t, s) = s− bS2λ
−2
3 (t+ s)

2
3 = 0

has a unique solution (t0, s0). Moreover, if Φ(t, s) ≥ 0 and Ψ(t, s) ≥ 0, then
t ≥ t0, s ≥ s0.

Proof The proof is similar to that of Lemma 3.6 in [37], we now provide it

for the completeness. If Φ(t0, s0) = Ψ(t0, s0) = 0, then t0 + s0 =
λt30
a3S3 . Hence,

it follows from the second equality of system that

(
λt30 − a3S3t0

a3S3

)3

= b3λ−2S6

(
λt30
a3S3

)2

,

which implies that

t0 =
abS3 + a

√
b2S6 + 4aλS3

2λ

and

s0 =
b2S3

√
b2S6 + 4aλS3

2λ2
+

b3S6

2λ2
+

abS3

λ
.

If Φ(t, s) ≥ 0 and Ψ(t, s) ≥ 0, then t+s ≥ aSλ
−1
3 (t+s)

1
3 + bS2λ

−2
3 (t+s)

2
3 . Let

K(l) := l − aSλ
−1
3 l

1
3 − bS2λ

−2
3 l

2
3 , l > 0. Then, K(l) has a unique zero point

12



l0 > 0 and K(l) ≥ 0 and hence l ≥ l0. Namely, t + s ≥ t0 + s0. Suppose that
t < t0, then

Φ(t, s) = t− aSλ
−1
3 (t+ s)

1
3 < t0 − aSλ

−1
3 (t0 + s0)

1
3 = 0,

which contradicts with Φ(t, s) ≥ 0, so t ≥ t0. Similarly, s ≥ s0. �

Lemma 3.4. Under the conditions of Theorem 1.3, for almost every λ ∈ J ,
there exists u ∈ E, u �= 0, such that I ′λ(u) = 0 and Iλ(u) = cλ.

Proof By Lemma 3.1 and Theorem 2.1, for almost every λ ∈ J , there exists
a bounded sequence {un} ⊂ E such that

Iλ(un) → cλ; I ′λ(un) → 0 in E−1, (3.12)

where E−1 is the dual space of E. Up to a subsequence, we can suppose that
there exist u ∈ E and A ∈ R such that

un ⇀ u weakly inE,

un → u inLp(R3), 2 < p < 6,

un → u a.e. inR3

(3.13)

and ∫
R3

|∇un|2 → A2. (3.14)

Set h(t) = g(t) − t5. If we apply Theorem 3.1 to P (t) = h(t), Q(t) = |t|5,
{vn}n = {un}n, v = h(u), and w ∈ C∞

0 (R3), then it follows from Sobolev
inequality, (3.13) and (f1)-(f4) that∫

R3

h(un)w →
∫
R3

h(u)w. (3.15)

As a consequence, from (3.12)-(3.15), we deduce that∫
R3

(a∇u∇w+muw)+bA2

∫
R3

∇u∇w−λ

∫
R3

(h(u)+u5)w = 0, ∀w ∈ C∞
0 (R3),

i.e., J ′
λ(u) = 0, where u ∈ E and

Jλ(u) :=
1

2
‖u‖2 + bA2

2

∫
R3

|∇u|2 − λ

∫
R3

H(u)− λ

6

∫
R3

u6,

and

H(u) =

∫ u

0

h(t)dt.

Note that J ′
λ is weakly sequence continuous in E. From Lemma 2.1, we can

easily conclude that the following Pohozaev type identity

Pλ(u) :=
3m

2

∫
R3

u2 +
a+ bA2

2

∫
R3

|∇u|2 − 3λ

∫
R3

H(u)− λ

2

∫
R3

u6 = 0

13



holds. It follows from (3.12) and (3.14) that {un} is a bounded (PS)
cλ+

bA4

4

sequence of Jλ and

Jλ(u)− 1

3
Pλ(u) =

a+ bA2

3

∫
R3

|∇u|2 ≥ 0. (3.16)

Set vn = un − u, then we have vn ⇀ 0 in E. By the well-known Brezis-Lieb
lemma [9], one has

‖vn‖22 = ‖un‖22 − ‖u‖22 + o(1),

A2 + o(1) = ‖∇un‖22 = ‖∇vn‖22 + ‖∇u‖22 + o(1),

‖vn‖66 = ‖un‖66 − ‖u‖66 + o(1).

(3.17)

where o(1) → 0 as n → ∞. If we apply Theorem 3.1 to P (t) = h(t)t, Q(t) =
t2 + t6, {vn}n = {un}n, v = h(u)u, and w = 1, then it follows from (3.13) and
(f1)-(f4) that ∫

R3

h(un)un →
∫
R3

h(u)u. (3.18)

Similarly, we also have ∫
R3

H(un) →
∫
R3

H(u). (3.19)

Then, by (3.17), (3.18) and J ′
λ(u) = 0, we have

o(1) = 〈J ′
λ(un), un〉

= 〈J ′
λ(u), u〉+ (a+ bA2)

∫
R3

|∇vn|2 +m

∫
R3

|vn|2 − λ

∫
R3

|vn|6 + o(1)

= ‖vn‖2 + b(

∫
R3

|∇vn|2)2 + b

∫
R3

|∇vn|2
∫
R3

|∇u|2 − λ

∫
R3

|vn|6 + o(1),

which yields

‖vn‖2 + b(

∫
R3

|∇vn|2)2 + b

∫
R3

|∇vn|2
∫
R3

|∇u|2 − λ

∫
R3

|vn|6 = o(1). (3.20)

Up to a subsequence, we assume that there exists li ≥ 0 (i = 1, 2, 3) such that

‖vn‖2 → l1, b(

∫
R3

|∇vn|2)2 + b

∫
R3

|∇vn|2
∫
R3

|∇u|2 → l2, λ

∫
R3

|vn|6 → l3,

then l1 + l2 = l3. If l1 > 0, then l2, l3 > 0. In view of (3.13), (3.19), (3.20) and
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the definition of Jλ, we conclude that

Jλ(un) =Jλ(u) +
a+ bA2

2

∫
R3

|∇vn|2 + m

2

∫
R3

|vn|2 − λ

6

∫
R3

|vn|6 + o(1)

=Jλ(u) +
1

2
‖vn‖2 + b

4
[(

∫
R3

|∇vn|2)2 +
∫
R3

|∇vn|2
∫
R3

|∇u|2]

− λ

6

∫
R3

|vn|6 + bA2

4

∫
R3

|∇vn|2 + o(1)

=Jλ(u) +
1

3
‖vn‖2 + b

12
[(

∫
R3

|∇vn|2)2 +
∫
R3

|∇vn|2
∫
R3

|∇u|2]

+
bA2

4

∫
R3

|∇vn|2 + o(1).

Letting n → ∞, we have

cλ +
bA4

4
≥ Jλ(u) +

1

3
l1 +

1

12
l2 +

bA4

4
lim

n→∞

∫
R3

|∇vn|2. (3.21)

Note that, by Sobolev imbedding inequality we have

∫
R3

|∇vn|2 ≥ S

(∫
R3

|vn|6
) 1

3

and b

(∫
R3

|∇vn|2
)2

≥ bS2

(∫
R3

|vn|6
) 2

3

.

Then
l1 ≥ aSλ

−1
3 (l1 + l2)

1
3 and l2 ≥ bS2λ

−2
3 (l1 + l2)

2
3 .

By Lemma 3.3, we have

1

3
l1 +

1

12
l2 ≥ 1

3

abS3 + a
√
b2S6 + 4aλS3

2λ
+

1

12
(
b2S3

√
b2S6 + 4aλS3 + b3S6 + 2λabS3

2λ2
)

=
ab

4λ
S3 +

[b2S4 + 4λaS]
3
2

24λ2
+

b3S6

24λ2
= c∗λ.

Hence, it follows from (3.16) and (3.21) that

cλ +
bA4

4
≥ Jλ(u) +

1

3
l1 +

1

12
l2 +

bA4

4
lim

n→∞

∫
R3

|∇vn|2

≥ c∗λ +
bA2

4
lim

n→∞

(∫
R3

|∇vn|2 +
∫
R3

|∇u|2
)

= c∗λ +
bA4

4
,

(3.22)

that is, cλ ≥ c∗λ which contradicts with Lemma 3.2. Therefore, l1 = 0, i.e.
‖vn‖2 = o(1), hence un → u in E. �

Proposition 3.1. Assume (f1)- (f4) hold and if q ∈ (4, 6) or q ∈ (2, 4] and D
is sufficiently large, then I has a critical point u ∈ E with I(u) = c1.

15



Proof In view of Lemma 3.4, in order to show that I has a nontrivial critical
point, it suffices to construct a bounded (PS)c1 sequence for I, where c1 is the
mountain pass value of I1 = I. Lemma 3.4 implies that there exists uλ ∈
E, uλ �= 0, such that

I ′λ(uλ) = 0, Iλ(uλ) = cλ for a.e. λ ∈ J.

Choosing λn → 1, we have a sequence of {uλn}, denoted by {un}, which are the
critical points of Iλn . Next, we show that {un} is bounded. Indeed, by Lemma
2.1 and Iλn(un) = cλn , we have{

a
2

∫
R3 |∇un|2 + b

2

(∫
R3 |∇un|2

)2
+ 3m

2

∫
R3 u

2
n − 3λn

∫
R3 G(un) = 0,

a
2

∫
R3 |∇un|2 + b

4

(∫
R3 |∇un|2

)2
+ m

2

∫
R3 u

2
n − λn

∫
R3 G(un) = cλn ≤ c 1

2
.

From these relations, we have

a

∫
R3

|∇un|2 + b

4

⎛
⎝∫

R3

|∇un|2
⎞
⎠

2

≤ 3c 1
2
. (3.23)

Moreover, by Lemma 2.1 and (3.1), for any ε ∈ (0,m), there exists Cε > 0 such
that

3m

2

∫
R3

u2
n ≤ 3

∫
R3

G(un)

≤ 3ε

2

∫
R3

u2
n +

Cε

6

∫
R3

u6
n

≤ 3ε

2

∫
R3

u2
n + S−3Cε

6

(∫
R3

|∇un|2
)3

.

(3.24)

Combining (3.23) and (3.24), we can deduce that {un} is a bounded sequence
in E. Therefore, by using the fact that the map λ :→ cλ is left-continuous (see
[19]), we have

lim
n→∞ I(un) = lim

n→∞

(
Iλn(un) + (λn − 1)

∫
R3

G(un)

)
= lim

n→∞ cλn = c1 < c∗1

and

lim
n→∞ I ′(un)w = lim

n→∞

(
I ′λn

(un)w + (λn − 1)

∫
R3

g(un)w

)
= 0

for all w ∈ C∞
0 (R3). Then it is easy to see that I ′(un) → 0 in E−1 and Lemma

3.4 yields that there exists u0 ∈ E, u0 �= 0, being a critical point of I.
Let us note that all the calculations above can be repeated word by word,

replacing I with the functional

I+(u) =
1

2
‖u‖2 + b

4

⎛
⎝∫

R3

|∇u|2
⎞
⎠

2

−
∫
R3

H(u)−
∫
R3

(u+)6,
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where u+ = max{u, 0} is the positive part of u. Therefore, there exists nonzero
function u0 can solve the equation

−(a+ b

∫
R3

|∇u|2dx)�u+mu = h(u) + (u+)5 (3.25)

In (3.25), using u−
0 = max{−u0, 0} as a text function and integrating by parts,

we obtain

0 =

∫
R3

(a|∇u−
0 |2+m|u−

0 |2)dx+b

(∫
R3

|∇u0|2dx
)∫

R3

|∇u−
0 |2dx−

∫
R3

h(u0)u
−
0 dx.

(3.26)
It follows from (f1) and (f4) that h is an odd function and h(t) > 0 for t > 0.
So from (3.26) we have

0 =

∫
R3

(a|∇u−
0 |2 +m|u−

0 |2)dx+ b

(∫
R3

|∇u0|2dx
)∫

R3

|∇u−
0 |2dx.

Thus u−
0 = 0, and u0 ≥ 0 is a solution of problem (K). From Harnack’s inequality

(see[16]), we can infer that u0 > 0 for all x ∈ R
3. Therefore, u0 is a positive

solution of (SK). The proof is complete.
�

4. A ground state solution

Based on the previous sections, in this section we will find a ground state
solution. As mentioned before, we plan to consider energy functional I on the
Pohozaev manifold. By Lemma 2.1, we know that if u is a solution of problem
(K), then u satisfies the following Pohozaev type identity

J∗(u) =
a

2

∫
R3

|∇u|2 + b

2

(∫
R3

|∇u|2
)2

− 3

∫
R3

F (u) = 0.

We introduce the Pohozaev Manifold P:

P := {u ∈ H1(R3) \ {0} : J∗(u) = 0}.

By Proposition 3.1, we know that P is nonempty.

Proposition 4.2. Assume that (f1) -(f4) hold, and if q ∈ (4, 6) or q ∈ (2, 4] and
D is sufficiently large, then there exists a minimizer u ∈ P of I|P (I is defined
on the manifold P). Moreover, u is positive and I ′(u) = 0 in H1(R3).

Proof Similarly to [32], the proof will be developed in several steps.
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Step 1. There exists a positive constant C such that ‖u‖ ≥ C for all u ∈ P.
For every u ∈ P and 0 < ε < 1, by (3.1), there exists Cε > 0 such that

0 = J∗(u) =
a

2

∫
R3

|∇u|2 + b

2

(∫
R3

|∇u|2
)2

+
3m

2

∫
R2

u2 − 3

∫
R3

G(u)

≥ a

2

∫
R3

|∇u|2 + 3m

2
(1− ε)

∫
R3

u2 − 1

2
Cε

∫
R3

u6

≥ a

2

∫
R3

|∇u|2 − CεC(

∫
R3

|∇u|2)3.

(4.1)

We recall that u �= 0 whenever u ∈ P and (4.1) implies

(∫
R3

|∇u|2
)2

≥ a

2CCε
> 0. (4.2)

Hence every limit point of a sequence in the Pohozaev manifold is different from
zero.

Step 2. We claim that I is bounded from below on P. For every u ∈ P,
the following formula holds:

I(u) = I(u)− 1

3
J∗(u) =

a

3

∫
R3

|∇u|2 + b

12

(∫
R3

|∇u|2
)2

. (4.3)

It follows from that (4.3) and (4.2) that

I(u) =
a

3

∫
R3

|∇u|2 + b

12

(∫
R3

|∇u|2
)2

>
ab

24CεC
> 0. (4.4)

for all u ∈ P. Therefore, I is bounded from below on P.
Define

l = inf{I(u), u ∈ P}
and l > 0. Let a sequence {un} ⊂ P be such that I(un) → l. Let u∗

n denote the
Schwarz spherical rearrangement of |un| (the definition and some properties of
the Schwarz symmetrization are recalled in [7]). One has

∫
R3 F (u∗

n) =
∫
R3 F (un),

and
∫
R3 |∇u∗

n|2 ≤ ∫
R3 |∇un|2. This means that

a

2

∫
R3

|∇u∗
n|2 +

b

2

(∫
R3

|∇u∗
n|2

)2

− 3

∫
R3

F (u∗
n)

≤ a

2

∫
R3

|∇un|2 + b

2

(∫
R3

|∇un|2
)2

− 3

∫
R3

F (un)

= 0.

Hence, for each n ∈ N, we can find a positive constant 0 < ωn ≤ 1 such that
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wn(x) := u∗
n(

x
ωn

) solves the following equation

a

2

∫
R3

|∇wn|2 + b

2

(∫
R3

|∇wn|2
)2

− 3

∫
R3

F (wn)

=
aωn

2

∫
R3

|∇u∗
n|2 +

bω2
n

2

(∫
R3

|∇u∗
n|2

)2

− 3ω3
n

∫
R3

F (u∗
n)

= 0.

Obviously, {wn} ⊂ P. From
∫
R3 F (u∗

n) =
∫
R3 F (un), it is easy to conclude that

I(wn) =
aωn

2

∫
R3

|∇u∗
n|2 +

bω2
n

4

(∫
R3

|∇u∗
n|2

)2

− ω3
n

∫
R3

F (u∗
n)

≤ aωn

2

∫
R3

|∇un|2 + bω2
n

4

(∫
R3

|∇un|2
)2

− ω3
n

∫
R3

F (un)

≤ a

2

∫
R3

|∇un|2 + b

4

(∫
R3

|∇un|2
)2

−
∫
R3

F (un) = I(un).

Combining the above inequality and I(un) → l, we have I(wn) → l. Replacing
{wn} by {un}, we will assume henceforth that, for all n ∈ N, un is nonnegative
and spherically symmetric.

Similarly to the proof of boundedness in Proposition 3.1. we can prove that
{un} is bounded. Assume, passing to a subsequence, that un ⇀ u in P.

Step 3. We claim that u ∈ P and un → u strongly in H1(R3). Thus, it
is clear that I|P attains its minimum at u. Actually, in view of Proposition
3.1, we know that problem (K) has a mountain pass solution u∗ satisfying

0 < I(u) = c1 < c∗1, where c∗1 = ab
4 S

3 + [b2S4+4aS]
3
2

24 + b3S6

24 . Hence, it is easy to
see that l < c∗1. By (3.19), the lower semi-continuity of the D1,2(R3)-norm and
the Fatou lemma, we have

a

2

∫
R3

|∇u|2 + b

2

(∫
R3

|∇u|2
)2

+
3m

2

∫
R3

u2 − 3

∫
R3

H(u)

≤ lim inf
n→+∞

(
a

2

∫
R3

|∇un|2 + b

2

(∫
R3

|∇un|2
)2

+
3m

2

∫
R3

u2
n − 3

∫
R3

H(un)

)

=
1

2
lim inf
n→+∞

∫
R3

u6
n.

Therefore, we have

J∗(u) ≤ 1

2
lim inf
n→+∞

∫
R3

(u6
n − u6). (4.5)

If J∗(u) < 0, then, from Step 2 we know that there exists 0 < θ < 1 such
that ū = u( ·

θ ) ∈ P. Using the lower semi-continuity of the D1,2(R3)-norm and

19



(4.3), we infer that

I(ū) = I(ū)− 1

3
J∗(ū) =

a

3

∫
R3

|∇ū|2 + b

12

(∫
R3

|∇ū|2
)2

=
aθ

3

∫
R3

|∇u|2 + bθ2

12

(∫
R3

|∇u|2
)2

< lim inf
n→+∞

(
a

3

∫
R3

|∇un|2 + b

12

(∫
R3

|∇un|2
)2

)
= lim

n→+∞ I(un) = l,

which contradicts with I(ū) ≥ l. Therefore, from (4.5), we infer that J∗(u) ∈
[0, 1

2 lim inf
n→+∞

∫
R3(u

6
n − u6)]. Set vn := un − u, then vn ⇀ 0 in H1(R3). It follows

from (3.17) and (3.19) that

0 ≥ J∗(un)− J∗(u)

=
a

2

∫
R3

|∇vn|2 + 3m

2

∫
R3

v2n

+
b

2

((∫
R3

|∇vn|2
)2

+ 2

∫
R3

|∇vn|2
∫
R3

|∇u|2
)

− 1

2

∫
R3

v6n + o(1).

Hence,

a

∫
R3

|∇vn|2+ b

(∫
R3

|∇vn|2
)2

+2b

∫
R3

|∇vn|2
∫
R3

|∇u|2−
∫
R3

v6n ≤ o(1). (4.6)

Up to a subsequence, we may assume that there exists li ≥ 0(i = 1, 2, 3) such
that

a

∫
R3

|∇vn|2 → l1, b(

∫
R3

|∇vn|2)2+2b

∫
R3

|∇vn|2
∫
R3

|∇u|2 → l2,

∫
R3

|vn|6 → l3,

then l1 + l2 ≤ l3. If l1 > 0, then l2, l3 > 0. By (4.6) and the definition of I, we
conclude that

I(un) =I(un)− 1

3
J∗(un) =

a

3

∫
R3

|∇un|2 + b

12

(∫
R3

|∇un|2
)2

=
a

3

∫
R3

|∇u|2 + b

12

(∫
R3

|∇u|2
)2

+
b

12

((∫
R3

|∇vn|2
)2

+ 2

∫
R3

|∇vn|2
∫
R3

|∇u|2
)

+
a

3

∫
R3

|∇vn|2 + o(1).

Letting n → ∞, we have that

c∗1 > l =
a

3

∫
R3

|∇u|2 + b

12

(∫
R3

|∇u|2
)2

+
1

3
l1 +

1

12
l2.
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Similarly to the proof of (3.22), we see that

c∗1 > l =
a

3

∫
R3

|∇u|2 + b

12

(∫
R3

|∇u|2
)2

+ c∗1.

Obviously, it is impossible. Therefore, l1 = 0, i.e. ‖vn‖ → 0, hence un → u in
H1(R3) and I(u) = l, u ∈ P.

Step 4. We claim that J ′(u) �= 0, where u ∈ P is the minimum point of I|P
found above. Again reasoning by contradiction, suppose that J ′(u) = 0. Define

A = a

∫
R3

|∇u|2, B = b(

∫
R3

|∇u|2)2, Z =

∫
R3

F (u). (4.7)

In a weak sense, the equation J ′(u) = 0 can be written as

−(a+ 2b

∫
R3

|∇u|2)�u− 3f(u) = 0. (4.8)

Then, the following equalities hold:⎧⎨
⎩

1
2A+ 1

2B − 3Z = 0,

1
2A+B − 9Z = 0.

(4.9)

The first equation comes from the fact that J(u) = 0. The second one is the
Pohozaev equality (see [7]) applied to (4.8). From (4.9), we get A+ B

2 = 0. It
is not possible. Therefore J ′(u) �= 0.

Step 5. We show that I ′(u) = 0 in H1(R3). Thanks to the Lagrange
multiplier rule, there exists μ ∈ R so that I ′(u) = μJ ′(u). We claim that μ = 0.
As above, the equation I ′(u) = μJ ′(u) can be written, in a weak sense, as

−(a+ b

∫
R3

|∇u|2)�u− f(u) = μ[−(a+ 2b

∫
R3

|∇u|2)�u− 3f(u)].

Then u solves the equation

−[(μ− 1)a+ (2μ− 1)b

∫
R3

|∇u|2)]�u− (3μ− 1)f(u) = 0. (4.10)

Recall the definitions of A, B, Z; arguing as above, we have⎧⎨
⎩

1
2A+ 1

2B − 3Z = 0,

μ−1
2 A+ 2μ−1

2 B − 3(3μ− 1)Z = 0.
(4.11)

The first equation holds since J(u) = 0. The second one is the Pohozaev equality
(see [7]) applied to (4.10). It follows from (4.9) that μ(A+ B

2 ) = 0. Obviously,
μ = 0. Therefore, I ′(u) = 0 in H1(R3). The proof is complete. �
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5. Proof of Theorem 1.3

Let u0 ∈ H1(R3) be the mountain pass solution of problem (K) satisfying
I(u0) = c1, where c1 has been defined in Theorem 2.1, then u1 ∈ P and c1 ≥ l,
where l is defined in Proposition 4.2. Let u ∈ H1(R3) be a ground state solution
of problem (K) found in Proposition 4.2, then I(u) = l. It follows from Pohozaev
type identity of I that lim

t→+∞ I(u( ·t )) = −∞. So there is t∗ > 1 such that

I(u( ·
t∗ )) < 0. In the following, we define a continuous curve γ ∈ Γ: γ : [0, 1] → E

as
γ(t) = u(

·
tt∗

), 0 ≤ t ≤ 1.

So following the definition of c1, we have c1 ≤ I(u) = l. Now it is easy to
see that l = c1. Furthermore, u0 ∈ H1(R3) is also a ground state solution of
problem (K). The proof is complete. �
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