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Existence and Decay of Global Smooth Solutions

to the Coupled Chemotaxis-Fluid Model∗

Xia Ye †

School of Mathematical Sciences, Xiamen University, Xiamen 361005, P.R. China

Abstract. In this paper, we consider a coupled chemotaxis-fluid model in R
3, which describes

the so-called “chemotaxis Boycott effect” arising from the interplay of chemotaxis and diffusion
of nutrients or signaling chemicals in bacterial suspensions. It is shown that the Cauchy problem
has a unique global-in-time solution (n, c, u)(x, t) on R

3 × (0,∞), provided the invariant initial
norm ‖(u0,∇c0)‖L3 + ‖n0‖L3/2 is suitably small, or the diffusion coefficients of cells, substrate
and fluid (i.e. λ, ν, μ) are large enough. We also show that the invariant norm ‖(u,∇c)(t)‖3L3 +

‖n(t)‖3/2
L3/2 is monotone decreasing in t for all t ≥ 0.
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1 Introduction

Chemotaxis is a biological process in which cells (e.g., bacteria) move towards a chemically
more favorable environment. For example, bacteria often swim towards higher concentration of
oxygen to survive. A typical model describing chemotaxis is Keller-Segel equations which were
derived by Keller and Segel in [10] and have been one of the best-known models in mathematical
biology. In nature, cells often live in a viscous fluid, and thus, the biology of chemotaxis is
intimately related to the surrounding physics. In other words, the cells and chemical substrates
are always transported with the fluid, and meanwhile, the motion of the fluid is also affected
by gravitational forcing generated by aggregation of cells. The motion of the fluid is usually
determined by the well-known incompressible Navier-Stokes/Stokes equations. Recently, the
following coupled Keller-Segel-Navier-Stokes (KSNS) equations were proposed in [22] to model
the interaction of swimming bacteria, oxygen and viscous incompressible fluids on Ω× R

+:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tn+ u · ∇n = λΔn−∇ · (χ(c)n∇c),

∂tc+ u · ∇c = νΔc− κ(c)n,

∂tu+ u · ∇u+∇P = μΔu− n∇φ,

∇ · u = 0

(1.1)

with t > 0 and x ∈ Ω ⊂ R
3. Here, the unknown funcitons n = n(t, x) : R

+ × Ω → R
+,

c = c(t, x) : R+ × Ω → R
+, u = u(t, x) : R+ × Ω → R

3, and P = P (t, x) : R+ × Ω → R
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are the cell density, the substrate (for example, oxygen) concentration, the velocity field and
the pressure of the fluid, respectively. The positive constants λ, ν and μ are the corresponding
diffusion coefficients of the cells, substrate and fluid. The function χ(c) denotes the chemotactic
sensitivity and κ(c) is the consumption rate of the substrate by the cells. The function φ = φ(x)
is a given potential function produced by different physical mechanism, e.g., the gravitational,
centrifugal, electrically magnetic force, and so on.

It is clear from (1.1) that the coupling of chemotaxis and fluid is realized through both the
transport of cells and chemical substrates u ·∇n, u ·∇c, and the external force −n∇φ exerted on
the fluid by cells. In particular, if the chemotaxis effects are ignored, then it becomes the famous
Navier-Stokes (NS) system governing the motion of an incompressible viscous fluid, which is one
of the most important equations in fluid mechanics and has been extensively studied by many
people (see, e.g., [12, 21, 13]). On the other hand, when the hydrodynamic effect is dropped,
system (1.1) reduces to the classical Keller-Segel (KS) chemotaxis model (cf. [10, 11]). A huge
number of studies in the literature have been devoted to KS model by postulating different
biologically relevant chemotactic sensitivity function χ(c) and consumption rate function κ(c),
see the surveys [7, 8, 6].

For the coupled chemotaxis-fluid model (1.1) subject to large smooth data, the local exis-
tence of regular solutions in two and three spatial dimensions was established in [2, 15]. Under
certain structural conditions on the consumption rate function κ(·) and the chemotactic sensi-
tivity function χ(·), the global existence of weak (resp. classical) solutions of (1.1) with large
initial data was proved in dimensions three (resp. two) (see [4, 14, 2]). However, similar to
that for the incompressible Navier-Stokes equations, the problem of regularity and uniqueness
of weak solutions of three-dimensional equations is full of mathematical challenge and remains
unknown. Here, we refer to [2, 3] for various blowup criteria of local classical solutions of (1.1).
Recently, Duan, Lorz and Markowich [4] proved the global-in-time existence of smooth solutions
of (1.1) when the initial data are close to the constant equibrium states in H3. Chae, Kang
and Lee [3] showed the global existence of classical solutions of the Keller-Segel-Stokes (KSS)
equations (i.e., the convection term u ·∇u in (1.1)3 is dropped in the case when the flow is slow),
if either ‖c0‖L∞ or ‖n0‖L3/2 is sufficiently small. A simplified model with κ(c) = χ(c) = 0 was
studied in [5] and the large-time behavior of large amplitude classical solutions was announced.

Let Ω = R
3. The main purpose of this paper is to study the global existence of classical

solutions to the Cauchy problem of KSNS model (1.1) with the following initial data

(u, n, c)(0, x) = (u0, n0, c0)(x), x ∈ R
3. (1.2)

To state our main result precisely, we define

E(t) �
∫
R3

(
|u(t)|3 + |∇c(t)|3 + |n(t)|3/2

)
dx, (1.3)

where (u, P, c, n) is a solution of (1.1), (1.2). Indeed, let

uR(t, x) � Ru(R2t, Rx), nR(t, x) � R2n(R2t, Rx), cR(t, x) � c(R2t, Rx),

PR(t, x) � R2P (R2t, Rx), and φR(t, x) � φ(R2t, Rx). (1.4)

Then it is easily checked that (1.1) and (1.3) are scaling invariant under (1.4). So, similar to the
classical result of Navier-Stokes equations due to Kato [9], it is natural to seek global classical
solutions of (1.1), (1.2) with small initial energy E0 � E(0).

Our main result in this paper is the following theorem.
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Theorem 1.1 (i) Assume that φ ∈ H2(R3), χ(·) ∈ C2([0,∞)) and

κ(·) ∈ C1([0,∞)) with κ(0) = 0, κ′(c) ≥ 0 for c ≥ 0. (1.5)

Then for given initial data (n0, c0, u0) ∈ H2 × H2 × H2 satisfying n0, c0 ≥ 0, there exists a
unique strong solution (n, c, u)(x, t) of (1.1), (1.2) on R

3 × (0,∞) such that E(t) is monotone
decreasing in t (i.e., E ′(t) ≤ 0),

(n, c, u) ∈ L∞(0,∞;H2(R3)), (∇n,∇c,∇u) ∈ L2(0,∞;H2(R3)), (1.6)

and there exists a positive constant K independent of t such that for any t ≥ 0,⎧⎪⎪⎪⎨
⎪⎪⎪⎩
‖(∇c,∇u)(t)‖2L2 ≤ K(1 + t)−1,

‖∇ln(t)‖2L2 ≤ K(1 + t)−(l+α),

‖(Δc,Δu)(t)‖2L2 ≤ K(1 + t)−(3+2α)/2

(1.7)

with l = 0, 1, 2 and α ∈ [0, 1/2), provided

E0 � E(0) =
∫ (

n
3/2
0 + |∇c0|3 + |u0|3

)
dx ≤ min

{
Λ0

2
, Λ̃0

}
, (1.8)

where

Λ0 � min

⎧⎨
⎩
(

λ

4C1

(
λ−1M2 + ν−1M2 + μ−1‖∇φ‖2

L3

)
)3/2

,

(
λ

4C2‖∇φ‖L3

)3

,

(
ν

2C3ν−1

)3/2

,

(
μ

4C4‖∇φ‖L3

)3

,

(
μ

4C5μ−1

)3/2
}
, (1.9)

and

Λ̃0 � min

{(
λ

2C6M

)3

,

(
μ

2C7

)3

,

(
ν

2C8

)3
}
, (1.10)

where M is a positive constant depending only on ‖c0‖L∞ (such that χ(c), κ(c) ≤ M for all
0 ≤ c ≤ ‖c0‖L∞), and Ci (i = 1, . . . , 8) are absolutely positive constants depending only on
various Sobolev’s constants.

(ii) Assume further that χ(·) ∈ Ck([0,∞)), κ(·) ∈ Ck−1([0,∞)) and φ ∈ Hk(R3) with
3 ≤ k ∈ Z

+. Then for given initial data (n0, c0, u0) ∈ Hk × Hk × Hk with 3 ≤ k ∈ Z
+, there

exists a unique global smooth solutions of (1.1), (1.2) satisfying (1.6), (1.7) and

(n, c, u) ∈ L∞(0,∞;Hk(R3)), (∇n,∇c,∇u) ∈ L2(0,∞;Hk(R3)), (1.11)

provided (1.8), together (1.9) and (1.10), holds.

Remark 1.1 It is easily seen from (1.8)–(1.10) that the given initial data can be arbitrarily
large provided λ, ν and μ are large enough. Although the initial norm E0 is suitably small, yet
the oscillations of the solutions can be arbitrary large.

Remark 1.2 There is no any smallness condition on the potential function φ(x), nor structural
conditions on the chemotactic sensitivity and consumption rate functions χ(c), κ(c).
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Remark 1.3 The decay of ‖n‖L2 is mainly due to the boundedness of ‖n0‖L3/2 .

Remark 1.4 Since the proof of Theorem 1.1 only relies on energy estimates, we expect that the
method herein can be extended to deal with the case of quasilinear degenerate diffusion Δnm

as the one considered in [24, 25]. However, this is left for further investigation.

Theorem 1.1 will be proved by combining the local existence theorem (cf. [2, Theorem 1])
with the global a priori estimates established in sections 2 and 3.

2 A priori estimates

This section is devoted to the global a priori estimates of the solutions to the problem (1.1),
(1.2). To do this, we assume that the conditions of (i) Theorem 1.1 hold and (u, n, c)(t, x) is a
smooth solution of (1.1), (1.2) defined on R

3 × [0, T ).
First of all, it is easy to get that

n(t, x) ≥ 0, 0 ≤ c(t, x) ≤ ‖c0‖L∞ for all t ≥ 0, x ∈ R
3, (2.1)

due to (1.1)1, (1.1)2 and the maximal principle. So,

0 ≤ χ(c), κ(c) ≤ M and 0 ≤ χ′(c), κ′(c) ≤ M̃, (2.2)

where M, M̃ are positive constants depending only on ‖c0‖L∞ .
The proof of Theorem 1.1 is based on the following key a priori estimates which imply that

the quantity E(t) is monotone decreasing in t, provided E0 is suitably small.

Lemma 2.1 Let (n, c, u) be a smooth solution of (1.1), (1.2) on R
3 × [0, T ). Then E(t) is

decreasing in t on [0, T ), and

E(t) + 1

2

∫ t

0

∫ (
λn−1/2|∇n|2 + ν|∇c||∇2c|2 + μ|u||∇u|2

)
dxds ≤ E0, (2.3)

provided

E0 �
∫ (

n
3/2
0 + |∇c0|3 + |u0|3

)
dx ≤ Λ0

2
, (2.4)

where Λ0 is a positive constant defined as (1.9).

Proof. Multiplying (1.1)1, ∇(1.1)2 and (1.1)3 by n1/2, |∇c|∇c and |u|u respectively, integrating
by parts, and adding them together, by (1.1)4, (2.2) we deduce that

d

dt

∫ (
n3/2 + |∇c|3 + |u|3

)
dx+

∫ (
λn−1/2|∇n|2 + ν|∇c||∇2c|2 + μ|u||∇u|2

)
dx

≤ C

∫ (
Mn1/2|∇c||∇n|+Mn|∇c||∇2c|+ |u||∇c|2|∇2c|+ n|∇φ||u|2 + |P ||u||∇u|

)
dx

≤ 1

2

∫ (
λn−1/2|∇n|2 + ν|∇c||∇2c|2 + μ|u||∇u|2

)
dx+ Cλ−1M2

∫
n3/2|∇c|2dx

+Cν−1

∫ (
M2n2|∇c|+ |u|2|∇c|3) dx+ C

∫
n|∇φ||u|2dx+ Cμ−1

∫
|P |2|u|dx

� 1

2

∫ (
λn−1/2|∇n|2 + ν|∇c||∇2c|2 + μ|u||∇u|2

)
dx+

4∑
i=1

Ii, (2.5)
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where C > 0 is an absolute constant independent of λ, ν and μ.
We are now in a position of estimating the terms on the right-hand side of (2.5). First, by

the Hölder and Sobolev inequalities we have

I1 ≤ Cλ−1M2‖n‖3/2
L9/2‖∇c‖2L3 = Cλ−1M2‖n3/4‖2L6‖∇c‖2L3

≤ Cλ−1M2‖∇c‖2L3

∫
n−1/2|∇n|2dx. (2.6)

Similarly, we have

I2 ≤ Cν−1M2‖n‖1/2
L3/2‖n‖3/2L9/2‖∇c‖L3 + Cν−1‖u‖2L3‖∇c‖3L9

≤ Cν−1M2‖∇c‖L3‖n‖1/2
L3/2

∫
n−1/2|∇n|2dx+ Cν−1‖u‖2L3

∫
|∇c||∇2c|2dx (2.7)

and

I3 ≤ C‖∇φ‖L3‖n‖1/4
L3/2‖n‖3/4L9/2‖u‖1/2L3 ‖u‖3/2L9

≤ C‖∇φ‖L3‖n‖1/2
L3/2

∫
n−1/2|∇n|2dx+ C‖∇φ‖L3‖u‖L3

∫
|u||∇u|2dx. (2.8)

Finally, operating ∇· to both sides of (1.1)3 and using (1.1)4, we find

−ΔP = ∇ · ∇ · (u⊗ u) +∇ · (n∇φ). (2.9)

So, in view of the Calderón-Zygmund theorem (cf. [18]) and Hardy-Littlewood-Sobolev inequal-
ity (see [19, Theorem 1 on Page 119]), we infer from (2.9) that

‖P‖L3 ≤ C‖u‖2L6 + C‖n∇φ‖L3/2 ≤ C‖u‖1/2
L3 ‖u‖3/2L9 + C‖∇φ‖L3‖n‖1/4

L3/2‖n‖3/4L9/2

≤ C‖u‖1/2
L3

(∫
|u||∇u|2dx

)1/2

+ C‖∇φ‖L3‖n‖1/4
L3/2

(∫
n−1/2|∇n|2dx

)1/2

,

and consequently,

I4 ≤ Cμ−1‖u‖L3‖P‖2L3

≤ Cμ−1‖u‖2L3

∫
|u||∇u|2dx+ Cμ−1‖∇φ‖2L3‖u‖L3‖n‖1/2

L3/2

∫
n−1/2|∇n|2dx. (2.10)

Thus, substituting (2.6)–(2.8) and (2.10) into (2.5), we arrive at

dE(t)
dt

+ [λ− α(t)]

∫
n−1/2|∇n|2dx

+ [ν − β(t)]

∫
|∇c||∇2c|2dx+ [μ− γ(t)]

∫
|u||∇u|2dx ≤ 0, (2.11)

where

α(t) � Cλ−1M2‖∇c(t)‖2L3 + Cν−1M2‖∇c(t)‖L3‖n(t)‖1/2
L3/2

+C‖∇φ‖L3‖n(t)‖1/2
L3/2 + Cμ−1‖∇φ‖2L3‖u(t)‖L3‖n(t)‖1/2

L3/2 ,

β(t) � Cν−1‖u(t)‖2L3 , and γ(t) � C‖∇φ‖L3‖u(t)‖L3 + Cμ−1‖u(t)‖2L3
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with C > 0 an absolute constant depending only on various Sobolev’s constants. Recalling the
definition of E(t), one easily gets that

α(t) ≤ C1

(
λ−1M2 + ν−1M2 + μ−1‖∇φ‖2L3

) E(t)2/3 + C2‖∇φ‖L3E(t)1/3,

β(t) ≤ C3ν
−1E(t)2/3, and γ(t) ≤ C4‖∇φ‖L3E(t)1/3 + C5μ

−1E(t)2/3.
Let Λ0 > 0 be the positive constant defined in (1.9). To be continued, we set

Tmax � sup {t ∈ [0, T ) | E(s) ≤ Λ0, 0 ≤ s ≤ t} .

Due to (2.4), E(0) = E0 ≤ Λ0/2 < Λ0. Thus, by continuity arguments we have Tmax > 0 and

E(t) ≤ Λ0 for all 0 ≤ t ≤ Tmax, and E(Tmax) = Λ0. (2.12)

Suppose Tmax < T . Then it follows from (2.11) that for all 0 ≤ t ≤ Tmax,

dE(t)
dt

≤ dE(t)
dt

+

∫ (
λ

2
n−1/2|∇n|2 + ν

2
|∇c||∇2c|2 + μ

2
|u||∇u|2

)
dx ≤ 0, (2.13)

which shows that E(t) is decreasing on [0, Tmax]. Consequently,

E(t) ≤ E0 ≤ Λ0

2
< Λ0.

This contradicts (2.12). Therefore, Tmax = T and E(t) is decreasing on [0, T ). By (2.13), we
obtain the desired estimate (2.3) of Lemma 2.1. �

Based on Lemma 2.1, we have the following uniform estimates for (n, c, u).

Lemma 2.2 Let (n, c, u) be a smooth solution of (1.1), (1.2) on R
3 × [0, T ). Then,

sup
0≤t<T

(‖n‖2L2 + ‖c‖2H1 + ‖u‖2H1

)
+

∫ T

0

(
λ‖∇n‖2L2 + ν‖∇c‖2H1 + μ‖∇u‖2H1

)
dt

≤ C
(
‖n0‖2L2 + ‖c0‖2L2 + ‖u0‖2H1 + ‖∇c0‖2L2 exp{CM̃2E0}+ E0‖∇φ‖2H1

)
, (2.14)

provided

E0 ≤ Λ � min

{
Λ0

2
,

(
λ

2C6M

)3

,

(
μ

2C7

)3

,

(
ν

2C8

)3
}
, (2.15)

where C and Ci (i = 6, 7, 8) are absolutely positive constants.

Proof. First, multiplying (1.1)1, (1.1)2 and (1.1)3 by n, c, u in L2 respectively, after integrating
by parts we deduce from (1.1)4 and (2.1)–(2.3) that

1

2

d

dt

(‖n‖2L2 + ‖c‖2L2 + ‖u‖2L2

)
+

(
λ‖∇n‖2L2 + ν‖∇c‖2L2 + μ‖∇u‖2L2

)
≤ CM‖n‖L6‖∇c‖L3‖∇n‖L2 + C‖n‖1/4

L3/2‖n‖3/4L9/2‖∇φ‖L2‖u‖L6

≤ CM‖∇c‖L3‖∇n‖2L2 + C‖n‖1/2
L3/2‖∇u‖2L2 + C‖∇φ‖2L2‖n‖3/2L9/2

≤ C6ME1/3
0 ‖∇n‖2L2 + C7E1/3

0 ‖∇u‖2L2 + C‖∇φ‖2L2‖n−1/4∇n‖2L2 ,
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so that, it follows from (2.3) that

sup
0≤t<T

(‖n‖2L2 + ‖c‖2L2 + ‖u‖2L2

)
+

∫ T

0

(
λ‖∇n‖2L2 + ν‖∇c‖2L2 + μ‖∇u‖2L2

)
dt

≤ (‖n0‖2L2 + ‖c0‖2L2 + ‖u0‖2L2

)
+ CE0‖∇φ‖2L2 , (2.16)

provided E0 satisfies

E0 ≤ Λ1 � min

{
Λ0

2
,

(
λ

2C6M

)3

,

(
μ

2C7

)3
}
.

Due to κ(0) = 0, it holds that κ(c) ≤ M̃c with M̃ being the one in (2.2). So, multiplying
(1.1)2 by Δc in L2 and integrating by parts, we obtain

1

2

d

dt
‖∇c‖2L2 + ν‖Δc‖2L2

≤ C

∫
(|u||∇c||Δc|+ κ(c)n|Δc|) dx

≤ C‖u‖L3‖∇c‖L6‖Δc‖L2 + CM̃‖c‖L6‖n‖1/4
L3/2‖n−1/4∇n‖L2‖Δc‖L2

≤ C
(
‖u‖L3 + ‖n‖1/2

L3/2

)
‖∇2c‖2L2 + CM̃2‖∇c‖2L2‖n−1/4∇n‖2L2

≤ C8E1/3
0 ‖∇2c‖2L2 + CM̃2‖∇c‖2L2‖n−1/4∇n‖2L2 , (2.17)

so that, by Lemma 2.1 and Gronwall’s inequality we know that

sup
0≤t<T

‖∇c‖2L2 +

∫ T

0
ν‖Δc‖2L2dt ≤ C‖∇c0‖2L2 exp{CM̃2E0}, (2.18)

provided

E0 ≤ Λ2 � min

{
Λ1,

(
ν

2C8

)3
}
.

In a similar manner, we also have

1

2

d

dt
‖∇u‖2L2 + μ‖Δu‖2L2

≤ C‖u‖L3‖∇u‖L6‖Δu‖L2 + C‖n‖1/4
L3/2‖n‖3/4L9/2‖∇φ‖L6‖Δu‖L2

≤ C9E1/3
0 ‖∇2u‖2L2 + C‖∇φ‖2H1‖n−1/4∇n‖2L2 ,

and consequently,

sup
0≤t<T

‖∇u‖2L2 +

∫ T

0
μ‖Δu‖2L2dt ≤ ‖∇u0‖2L2 + CE0‖∇φ‖2H1 , (2.19)

provided

E0 ≤ Λ � min

{
Λ2,

(
μ

2C9

)3
}
.

Therefore, combining (2.16), (2.18) and (2.19), we obtain Lemma 2.2. �
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3 Proof of Theorem 1.1

The section is devote to the proof of Theorem 1.1. To do this, we still need some global higher-
order estimates which are necessary for the existence of strong/smooth solutions. So, from now
on we assume that E0 ≤ Λ with Λ > 0 being the same one as in (2.15), so that, the global
estimates established in section 2 hold. Throughout this section, for simplicity we use the same
letter K to denote the positive constant, which may depend on λ, ν, μ, φ, χ(·), κ(·) and the norms
of (n0, c0, u0), but is independent of T .

We start with the following estimates.

Lemma 3.1 Assume that the conditions of (i) Theorem 1.1 hold. Let (n, c, u) be a smooth
solution of (1.1), (1.2) on R

3 × [0, T ). Then,

sup
0≤t<T

‖(n, c, u)(t)‖2H2 +

∫ T

0
‖(∇n,∇c,∇u)(t)‖2H2 ≤ K. (3.1)

Proof. First, operating Δ to both sides of (1.1)2, multiplying it by Δc in L2, and integrating
by parts, by (2.1)–(2.3) we find

d

dt
‖Δc‖2L2 + ‖∇Δc‖2L2

≤ K

∫ (|u|2|∇2c|2 + |∇u|2|∇c|2 + κ′(c)2|n|2|∇c|2 + κ(c)2|∇n|2) dx
≤ K

(
‖∇u‖2L2‖∇2c‖L2‖∇Δc‖L2 + ‖n‖1/2

L3/2‖n‖3/2L9/2‖∇c‖2L6 + ‖∇n‖2L2

)
≤ 1

2
‖∇Δc‖2L2 +K‖∇2c‖2L2

(
‖∇u‖4L2 + ‖n−1/4∇n‖2L2

)
+K‖∇n‖2L2 . (3.2)

Thanks to (2.3) and (2.14), one has∫ T

0

(
‖∇u‖4L2 + ‖n−1/4∇n‖2L2 + ‖∇n‖2L2

)
dt ≤ K +K sup

0≤t<T
‖∇u‖2L2 ≤ K,

so that, it follows from (3.2) and Gronwall’s inequality that

sup
0≤t<T

‖Δc‖2L2 +

∫ T

0
‖∇Δc‖2L2 ≤ K. (3.3)

Next, multiplying (1.1)1 by Δn in L2 and integrating by parts give

d

dt
‖∇n‖2L2 + ‖Δn‖2L2

≤ K

∫ (|u|2|∇n|2 + |∇n|2|∇c|2 + |n|2|∇2c|2 + |n|2|∇c|4) dx
≤ K

(‖∇u‖2L2 + ‖∇2c‖2L2 + ‖∇c‖2L3‖∇2c‖2L2

) ‖∇n‖L2‖∇2n‖L2

≤ 1

4
‖∇2n‖2L2 +K‖∇n‖2L2

(‖∇u‖4L2 + ‖∇2c‖4L2

)
, (3.4)

where we have used (2.1)–(2.3) and the following Sobolev’s inequalities:

‖n‖2L∞ ≤ K‖∇n‖L2‖∇2n‖L2 , ‖∇c‖2L4 ≤ K‖∇c‖L3‖∇2c‖L2 .
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In view of (2.14) and (3.3), we have∫ T

0

(‖∇u‖4L2 + ‖∇2c‖4L2

)
dt

≤ sup
0≤t<T

(‖∇u‖2L2 + ‖∇2c‖2L2

) ∫ T

0

(‖∇u‖2L2 + ‖∇2c‖2L2

)
dt

≤ K,

and hence, we deduce from (3.4) that

sup
0≤t<T

‖∇n‖2L2 +

∫ T

0
‖Δn‖2L2dt ≤ K. (3.5)

Analogously to the derivation of (3.2), we have

d

dt
‖Δn‖2L2 + ‖∇Δn‖2L2

≤ K

∫ (|u|2|∇2n|2 + |∇u|2|∇n|2 + |∇c|2|∇2n|2 + |∇n|2|∇2c|2) dx
+K

∫ (|∇n|2|∇c|4 + n2|∇Δc|2 + n2|∇2c|2|∇c|2 + n2|∇c|6) dx
≤ K

(‖∇u‖2L2 + ‖∇2c‖2L2 + ‖∇c‖2L3‖∇2c‖2L2

) ‖∇2n‖L2‖∇Δn‖L2

+K
(‖∇Δc‖2L2 + ‖∇c‖2L3‖∇Δc‖2L2 + ‖∇2c‖6L2

) ‖∇n‖L2‖∇2n‖L2 . (3.6)

By (2.3), (2.14), (3.3), (3.5) and the Cauchy-Schwarz inequality, we deduce from (3.6) that

d

dt
‖Δn‖2L2 + ‖∇Δn‖2L2 ≤ K‖∇2n‖2L2

(‖∇u‖4L2 + ‖∇2c‖4L2 + ‖∇Δc‖2L2

)
+K

(‖∇Δc‖2L2 + ‖∇2c‖2L2

)
,

where we have used the facts that ‖∇n‖L2 and ‖∇2c‖L2 are uniformly bounded in time, due to
(3.3) and (3.5). This, together with (2.14), (3.3) and Gronwall’s inequality, yields

sup
0≤t<T

‖Δn‖2L2 +

∫ T

0
‖∇Δn‖2L2dt ≤ K. (3.7)

Noting that n∇φ = ∇(nφ)− φ∇n, we infer from (1.1)3 that

d

dt
‖Δu‖2L2 + ‖∇Δu‖2L2

≤ K

∫ (|u|2|∇2u|2 + |∇u|4 + |∇2n|2|φ|2 + |∇n|2|∇φ|2) dx
≤ K

(‖∇u‖2L2‖∇2u‖L2‖∇Δu‖L2 + ‖∇2n‖L2‖∇Δn‖L2‖∇φ‖2L2

)
≤ 1

2
‖∇Δu‖2L2 +K‖∇2u‖2L2‖∇u‖4L2 +K‖∇2n‖L2‖∇Δn‖L2 ,

so that, by (2.14), (3.5) and (3.7) we see that

sup
0≤t<T

‖Δu‖2L2 +

∫ T

0
‖∇Δu‖2L2dt ≤ K. (3.8)

Now, (3.1) readily follows from (3.3), (3.5), (3.7), (3.8) and (2.14). �
To proceed, we need the following Moser-type calculus inequalities.
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Lemma 3.2 ([16]) (Moser-Type Calculus Inequalities)
(i) For f, g ∈ Hs ∩ L∞ and |α| ≤ s,

‖Dα(fg)‖L2 ≤ C(s) (‖f‖L∞‖Dsg‖L2 + ‖g‖L∞‖Dsf‖L2) .

(ii) For f ∈ Hs, Df ∈ L∞, g ∈ Hs−1 ∩ L∞ and |α| ≤ s,

‖Dα(fg)− fDαg‖L2 ≤ C(s)
(‖Df‖L∞‖Ds−1g‖L2 + ‖g‖L∞‖Dsf‖L2

)
.

(iii) Assume that h(v) with v ∈ W is a smooth function on W , and that u(x) is a continuous
function satisfying u(x) ∈ W1, W̄1 ⊂⊂ W and u ∈ L∞ ∩Hs. Then for s ≥ 1,

‖Dsh(u)‖L2 ≤ C(s)‖h′(u)‖Cs−1(W̄1)‖u‖s−1
L∞ ‖Dsu‖L2 .

Based on Lemmas 3.1, 3.2 and induction arguments, we have

Lemma 3.3 Assume that the conditions of (ii) Theorem 1.1 hold. Then,

sup
0≤t<T

‖(n, c, u)(t)‖2Hk +

∫ T

0
‖(∇n,∇c,∇u)‖2Hkdt ≤ K. (3.9)

Proof. The proof of (3.9) will be done by induction arguments. First, it follows from Lemmas
2.2 and 3.1 that (3.9) holds for k = 2. Now, assume that (3.9) holds for k = m− 1 with m ≥ 3,

sup
0≤t<T

‖(n, c, u)(t)‖2Hm−1 +

∫ T

0
‖(∇n,∇c,∇u)‖2Hm−1dt ≤ K. (3.10)

Next, we shall show that (3.9) holds for k = m by using the induction assumption (3.10).
To do so, operating Dm with m ≥ 3 to both sides of (1.1)1, multiplying it by Dmn in L2, and
integrating by parts, by (3.10) and Lemma 3.2 we obtain

d

dt
‖Dmn‖2L2 + ‖∇Dmn‖2L2

≤ K
(‖u‖2L∞‖∇n‖2Hm−1 + ‖∇n‖2L∞‖u‖2Hm−1

)
+K

(‖n‖2L∞‖∇c‖2Hm + ‖∇c‖2L∞‖n‖2Hm

)
≤ K1

(‖∇n‖2Hm−1 + ‖∇c‖2Hm + ‖∇c‖2Hm−1‖n‖2Hm

)
, (3.11)

where we have used ‖(n, c, u)‖L∞ ≤ K and ‖∇n‖L∞ ≤ K‖∇n‖Hm−1 , due to Lemma 3.1, Sobolev
embedding inequality and the fact that m ≥ 3.

Similarly, it follows from (1.1)2 that

d

dt
‖Dmc‖2L2 + ‖∇Dmc‖2L2 ≤ K

(‖u‖2L∞‖∇c‖2Hm−1 + ‖∇c‖2L∞‖u‖2Hm−1

)
+K

(‖n‖2L∞‖c‖2Hm−1 + ‖c‖2L∞‖n‖2Hm−1

)
≤ K2

(‖∇n‖2Hm−1 + ‖∇c‖2Hm−1

)
, (3.12)

and using the fact that n∇φ = ∇(nφ)− φ∇n, one gets from (1.1)3 that

d

dt
‖Dmu‖2L2 + ‖∇Dmu‖2L2 ≤ K

(‖u‖2L∞‖∇u‖2Hm−1 + ‖∇u‖2L∞‖u‖2Hm−1

)
+K

(‖φ‖2L∞‖∇n‖2Hm−1 + ‖∇n‖2L∞‖φ‖2Hm−1

)
10



≤ K3

(‖∇n‖2Hm−1 + ‖∇u‖2Hm−1

)
, (3.13)

where we have also used ‖(n, c)‖L∞ ≤ K‖(∇n,∇c)‖Hm−1 for any m ≥ 2.
Thus, adding (3.11), 2K1×(3.12) and (3.13) together, by (3.10) and Gronwall’s inequality

we arrive at

sup
0≤t<T

‖(Dmn,Dmc,Dmu)(t)‖2L2) +

∫ T

0
‖(∇Dmn,∇Dmc,∇Dmu)‖2L2dt ≤ K,

which, together with (3.10), leads to (3.9). �
Proof of Theorem 1.1. Combining the local existence result [2, Theorem 1] and the global a

priori estimates established in Lemmas 2.1, 2.2, 3.1 and 3.3, by continuity arguments we obtain
the global existence result of (1.1), (1.2) stated in (i), (ii) of Theorem 1.1, provided E0 ≤ Λ. The
uniqueness of smooth solutions can be proved in a standard manner as the one in [2].

The decay estimates in (1.7) are immediate results of the following proposition.

Proposition 3.1 Assume that χ(·), κ(·), φ and the initial data (n0, c0, u0) satisfy the conditions
stated in (i) of Theorem 1.1. Let (u, n, c) be the unique strong solution of (1.1), (1.2) on
R
3 × (0,∞). Then, there exists a positive constant K, independent of t, such that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sup
t≥0

(
(1 + t)‖(∇c,∇u)‖2L2

)
+

∫ ∞

0
(1 + t)‖(Δc,Δu)‖2L2dt ≤ K,

sup
t≥0

(
(1 + t)l+α‖∇ln‖2L2

)
+

∫ ∞

0
(1 + t)l+α‖∇l+1n‖2L2dt ≤ K,

sup
t≥0

(
(1 + t)(3+2α)/2‖(Δc,Δu)‖2L2

)
+

∫ ∞

0
(1 + t)(3+2α)/2‖(∇Δc,∇Δu)‖2L2dt ≤ K,

(3.14)

where l ∈ {0, 1, 2} and α ∈ [0, 1/2).

Proof. First, since ‖n−1/4∇n‖2L2 ∈ L1(0,∞) due to (2.3), we easily deduce after multiplying
(2.17) by (1 + t) and integrating it over (0,∞) that

sup
t≥0

(
(1 + t)‖∇c‖2L2

)
+

∫ ∞

0
(1 + t)‖Δc‖2L2dt ≤ K. (3.15)

As for the decay of ‖n‖L2 , we multiply (1.1)1 by n in L2 and integrate by parts to get

d

dt
‖n‖2L2 + ‖∇n‖2L2 ≤ K‖n‖2L∞‖∇c‖2L2 ≤ K‖∇n‖L2‖∇2n‖L2‖∇c‖2L2 ,

which, multiplied by (1 + t)α with α ∈ [0, 1/2) and integrated over (0,∞), yields

sup
t≥0

(
(1 + t)α‖n‖2L2

)
+

∫ ∞

0
(1 + t)α‖∇n‖2L2dt

≤ K +K

∫ ∞

0
(1 + t)α−1‖n‖2L2dt

+K sup
t≥0

(
(1 + t)‖∇c‖2L2

)(∫ ∞

0
‖∇n‖2L2dt

)1/2(∫ ∞

0
‖∇2n‖2L2dt

)1/2

≤ K +K

∫ ∞

0
(1 + t)α−1‖n‖4/3

L3/2‖∇n‖2/3
L2 dt

11



≤ K +K

(∫ ∞

0
(1 + t)α‖∇n‖2L2dt

)1/3(∫ ∞

0
(1 + t)α−3/2dt

)2/3

≤ K +K

(∫ ∞

0
(1 + t)α‖∇n‖2L2dt

)1/3

,

which, combined with Young’s inequality, gives

sup
t≥0

(
(1 + t)α‖n‖2L2

)
+

∫ ∞

0
(1 + t)α‖∇n‖2L2dt ≤ K. (3.16)

Here, we have also used (3.1) and (3.15). Moreover, with the help of (3.1) and (3.16), it is easily
deduced from (3.4) that

sup
t≥0

(
(1 + t)1+α‖∇n‖2L2

)
+

∫ ∞

0
(1 + t)1+α‖Δn‖2L2dt ≤ K. (3.17)

Noting that κ(c) ≤ M̃c due to κ(·) ∈ C1([0,∞)), by (2.2) we deduce in a manner similar
to the one used in (3.2) that

d

dt
‖Δc‖2L2 + ‖∇Δc‖2L2

≤ K‖∇2c‖2L2

(
‖∇u‖4L2 + ‖n−1/4∇n‖2L2

)
+K‖c‖2L∞‖∇n‖2L2

≤ K‖∇2c‖2L2

(
‖∇u‖4L2 + ‖n−1/4∇n‖2L2 + ‖∇c‖2L2

)
+K‖∇n‖4L2 ,

so that, using (2.3), (3.1), (3.15) and (3.17), we find

sup
t≥0

(
(1 + t)‖Δc‖2L2

)
+

∫ ∞

0
(1 + t)‖∇Δc‖2L2dt

≤ K +K

∫ ∞

0
‖Δc‖2L2dt+K sup

t≥0

(
(1 + t)‖∇n‖2L2

) ∫ ∞

0
‖∇n‖2L2dt

≤ K. (3.18)

By virtue of (2.3), (3.1) and the Cauchy-Schwarz inequality, we deduce from (3.6) that

d

dt
‖Δn‖2L2 + ‖∇Δn‖2L2

≤ K‖∇2n‖2L2

(‖∇u‖2L2 + ‖∇2c‖2L2

)
+K

(‖∇Δc‖2L2 + ‖∇2c‖2L2

) ‖∇n‖L2‖∇2n‖L2

≤ K‖∇2n‖2L2

(‖∇u‖2L2 + ‖∇2c‖2L2 + ‖∇Δc‖2L2

)
+K‖∇n‖2L2

(‖∇Δc‖2L2 + ‖∇2c‖2L2

)
,

which, combined with (3.1) and (3.15)–(3.18), yields

sup
t≥0

(
(1 + t)2+α‖Δn‖2L2

)
+

∫ ∞

0
(1 + t)2+α‖∇Δn‖2L2dt

≤ K +K

∫ ∞

0
(1 + t)1+α‖Δn‖2L2dt

+K

∫ ∞

0
(1 + t)2+α‖∇n‖2L2

(‖∇Δc‖2L2 + ‖∇2c‖2L2

)
dt
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≤ K +K sup
t≥0

(
(1 + t)1+α‖∇n‖2L2

) ∫ ∞

0
(1 + t)

(‖∇Δc‖2L2 + ‖∇2c‖2L2

)
dt

≤ K. (3.19)

By using (3.17) and (3.19), we can improve the decay rate of ‖Δc‖L2 . Indeed, similarly to
the derivation of (3.2), one has (keeping in mind that κ(c) ≤ M̃c)

d

dt
‖Δc‖2L2 + ‖∇Δc‖2L2

≤ K‖∇2c‖2L2

(
‖∇u‖4L2 + ‖n−1/4∇n‖2L2

)
+K‖∇c‖2L2‖∇n‖2L3

≤ K‖∇2c‖2L2

(
‖∇u‖4L2 + ‖n−1/4∇n‖2L2

)
+K‖∇c‖2L2‖∇n‖L2‖∇2n‖L2 ,

and thus, it follows from (2.3), (3.1), (3.15), (3.17) and (3.19) that

sup
t≥0

(
(1 + t)(3+2α)/2‖Δc‖2L2

)
+

∫ ∞

0
(1 + t)(3+2α)/2‖∇Δc‖2L2dt

≤ K +K sup
t≥0

(
(1 + t)(1+α)/2‖∇n‖L2(1 + t)(2+α)/2‖∇2n‖L2

)∫ ∞

0
‖∇c‖2L2dt

≤ K. (3.20)

Finally, we derive the decay estimates for u. First, noting that n∇φ = ∇(nφ) − φ∇n, we
deduce in a manner similar to the one used for (2.19) that

d

dt
‖∇u‖2L2 + ‖Δu‖2L2 ≤ K‖∇n‖2L∞‖φ‖2L2 ≤ K‖∇2n‖L2‖∇Δn‖L2

from which and (3.1), (3.17), (3.19), it is easily seen that

sup
t≥0

(
(1 + t)‖∇u‖2L2

)
+

∫ ∞

0
(1 + t)‖Δu‖2L2dt ≤ K. (3.21)

Similarly to the derivation of (3.8) , we have from (3.1), (3.17), (3.19) and (3.21) that

sup
t≥0

(
(1 + t)(3+2α)/2‖Δu‖2L2

)
+

∫ ∞

0
(1 + t)(3+2α)/2‖∇Δu‖2L2dt

≤ K +K

∫ ∞

0
(1 + t)(1+2α)/2‖Δu‖2L2dt+K

∫ ∞

0
(1 + t)(3+2α)/2‖∇2n‖L2‖∇Δn‖L2dt

≤ K +K

(∫ ∞

0
(1 + t)1+α‖∇2n‖2L2dt

)1/2(∫ ∞

0
(1 + t)2+α‖∇Δn‖2L2dt

)1/2

≤ K. (3.22)

Collecting (3.15)–(3.17) and (3.19)–(3.22) together finishes the proof of (3.14). The proof
of Theorem 1.1 is therefore complete. �
Remark. The derivations of the decay estimates for the second-order derivatives can be made
rigorously by mollifying the initial data and passing to the limits. Moreover, by using the similar
method, one can obtain the decay estimates of higher-order derivatives of the solutions, which
will be a bit more complicated.

13



References

[1] P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl.,
9 (2009), pp. 347-359.

[2] M. Chae, K. Kang, J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations.
Discrete Cont. Dyn. Sys. A, 33 (2013), pp. 2271-2297.

[3] M. Chae, K. Kang, J. Lee, Global existence and temporal decay in Keller-Segel models coupled to
fluid equations. Comm. Partial Diff. Eqns., 39 (2014), pp. 1205-1235.

[4] R. Duan, A. Lorz, P. Markowich, Global solutions to the coupled chemotaxis-fluid equations. Comm.
Partial Diff. Eqns., 35 (2010), pp. 1635-1673.

[5] J. Fan, K. Zhao, Global dynamics of a coupled chemotaxis-fluid model on bounded domains. J.
Math. Fluid Mech., DOI 10.1007/s00021-013-0162-1, 2013.

[6] T. Hillen, K. Painter, A user’s guide to PDE models for chemotaxis. J. Math. Biol., 58 (2009), pp.
183-217.

[7] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences:
I. Jahresber. Deutsch. Math.-Verein, 105 (2003), pp. 103-165.

[8] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences:
I. Jahresber. Deutsch. Math.-Verein, 106 (2004), pp. 51-69.

[9] T. Kato, Strong Lp-solutions of the Navier-Stokes equation in Rm, with applications to weak solu-
tions. Math. Z. 187 (1984), pp. 471-480.

[10] E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theoret.
Biol., 26 (1970), pp. 399-415.

[11] E.F. Keller, L.A. Segel, Model for chemotaxis. J. Theoret. Biol., 30 (1971), pp. 225-234.

[12] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach,
Science Publishers, New York-London-Paris, 1969.

[13] P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1: Incompressible Models. Oxford Univ.
Press, New York, 1996.

[14] J. Liu, A. Lorz, A coupled chemotaxis-fluid model: Global existence. Annales de l’Institut Henri
Poincare (C) Non Linear Anal., 28 (2011), pp. 643-652.

[15] A. Lorz, Coupled chemotaxis fluid model. Math. Models Meth. Appl. Sci., 20 (2010), pp. 987-1004.

[16] A. Majda, Compressible Fluid Flow and System of Conservation Laws in Several Space Variables.
Applied Mathematical Sciences, 53. Springer-Verlag, New York, 1984.

[17] C.S. Patlak, Random walk with persistence and external bias. Bull. Math. Biophys., 15 (1952), pp.
311-338.

[18] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equaitons. Arch. Rational
Mech. Anal., 9 (1962), pp. 187-195.

[19] E. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press,
Princeton, New Jersey, 1970.

[20] Y.S. Tao, M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes
system with nonlinear diffusion. Annales de l’Institut Henri Poincare (C) Non Linear Anal., 30
(2013), pp. 157-178.

[21] R. Teman, Naiver-Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam,
1984.

14



[22] I. Tuval, L. Cisneros, C. Dombrowski, C.W. Wolgemuth, J.O. Kessler, R.E. Goldstein, Bacterial
swimming and oxygen transport near contact lines. PNAS, 102 (2005), pp. 2277-2282.

[23] M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular
swimming in fluid drops. Comm. Partial Diff. Eqns., 37 (2012), pp. 319-351.

[24] S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel sys-
tems of parabolic-parabolic type with small data. J. Diff. Eqns, 252 (2012), pp. 2469-2491.

[25] S. Ishida, K. Seki, T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic
type on non-convex bounded domains. J. Diff. Eqns, 256 (2014), pp. 2993-3010.

15


