
J. Math. Anal. Appl. 428 (2015) 445–456
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Semistrictly quasiconcave approximation and an application to 

general equilibrium theory

Roberto Lucchetti a, Monica Milasi b,∗

a Department of Mathematics, Politecnico di Milano, Italy
b Department of Mathematics and Computer Science, Università di Messina, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 June 2014
Available online 12 March 2015
Submitted by J.A. Filar

Keywords:
Quasiconcave functions
Semistrictly quasiconcave functions
Exchange economy
Free-disposal economy
Equilibrium

We show how to approximate, in the sense of continuous convergence, a quasiconcave 
function with a sequence of semistrictly quasiconcave functions. This allows extend-
ing former existence results of equilibria for pure exchange economies when the 
preferences of the agents allow for local points of satiation, and existence results of 
free disposal equilibria for economies with production.
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1. Introduction

Approximating a concave function by a sequence of strictly concave functions is quite simple, since the 
sum of a concave and a strictly concave function is strictly concave. The problem is more subtle in the 
case of a quasiconcave function, since the above argument cannot be adapted to this case: the sum of 
a quasiconcave function with a concave one need not to be quasiconcave. In this paper we show how to 
approximate a quasiconcave function with a sequence of semistrictly quasiconcave functions. Our result 
holds in a general Banach space. We consider the case when the domain of the quasiconcave function f and 
the function itself are bounded. In this case we provide a sequence of semistrictly quasiconcave functions 
fn converging uniformly to f . Then we consider the case of an unbounded function f defined on a bounded 
domain. An adaptation of the construction provided in the above case produces another approximation 
result. In this case the convergence guaranteed is of a continuous type, in the sense that we produce 
semistrictly quasiconcave functions fn, defined on the domain of f , such that, for every x in the domain 
of f and for every sequence {xn} of elements in its domain with xn → x, it holds that fn(xn) → f(x). 
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Finally, the same convergence mode is guaranteed also in the case when the domain of f is not bounded, 
but in such a case the approximating functions have bounded domains invading the domain of the limit 
function f .

In the second part of the paper, we apply our previous results to obtain some general theorems of existence 
of an equilibrium for market economies. In the classical setting (we refer in particular to the papers [3,6], 
and [7]), usually it is assumed that consumers have strictly convex preferences, and it is well known that this 
is equivalent to semistrict quasiconcavity of the associated utility functions. Then a nonsatiation property 
is assumed, at least when the consumption set of the agents is unbounded, and this means that for every 
bundle x of goods in the consumption set there must be another bundle which is strictly preferred to x. In 
the proofs of the existence of an equilibrium, a crucial step is to guarantee that the nonsatiation property 
holds also locally, in the sense that the bundle preferred to x must be found arbitrarily close to x itself. 
Our existence theorem avoids this, via an approximation process. In other words, given an economy where 
the utility functions of the agents are only quasiconcave, by means of our construction we approximate the 
economy with a sequence of economies where the utility functions are semistrictly quasiconcave; this allows 
using classical theorems. Then via a standard limit argument we find an equilibrium for the initial economy. 
Some recent papers deal with the case of bounded consumption sets, and thus obviously there are satiation 
points for the agents. Thus some theorems were provided in order to have weak requirements about these 
satiation points (see [1,2,11]). We show that also in this case our approach allows us generalizing these 
results.

Nowadays the mathematical study of the competitive equilibrium is an active and investigated research 
topic; an alternative approach to the study of this topic is provided by variational methods (see for instance 
[4,8,10]). In particular, authors give a new formulation of a competitive equilibrium in terms of a suitable 
quasivariational inequality involving multivalued maps. This characterization is used to give the existence 
of the equilibrium when utility functions are semistrictly quasiconcave. To our knowledge, semistrict quasi-
concavity is (in a convex setting for preferences of the agents) the weakest condition, present in literature, to 
guarantee the existence of an equilibrium in an economy (see also [5] and [12] for other existence theorems).

2. Notation and preliminaries

In this section X is a closed and convex subset of a Banach space. Furthermore, we shall use the following 
notations throughout the paper. For a vector w in some Euclidean space Rk, we denote by w+ (w−) the 
vector whose j-th component is w+

j = max{wj , 0} (w−
j = min{wj , 0}), so that w = w+ + w−. Moreover, 

given two vectors w, z ∈ R
k we shall write w ≥ z if z ∈ w + R

k
+, w > z if z ∈ w + R

k
+ \ {0} and w >> z if 

z ∈ w+ int Rk
+. The closed ball centered at x and with radius r is denoted by B(x; r), while S(x; r) will be 

its boundary. We recall now a classical definition of set convergence, that will be used in the sequel.

Definition 2.1. Suppose An are nonempty subsets of a Banach space. The lower limit of the sequence An is 
the set

LiAn = {x : x = lim xn, xn ∈ An}.

The upper limit of the sequence An is the set

LsAn = {x : x = lim xk, xk ∈ Ank
}

where nk is a subsequence of the positive integers. Finally, we say the An converges to A in Kuratowski 
sense if

LsAn ⊂ A ⊂ LiAn.
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The set Li An is convex provided the sets An are convex and it is always closed (see [9, Proposition 8.2.1]). 
Thus a Kuratowski limit of a sequence of convex sets is always closed and convex. For more about set 
convergences, see [9, Chapters 8 and B.4].

Given a real valued function f , defined on X, we denote by fλ and fλ
> the upper level and strict upper 

level sets of f at height λ:

fλ = {x ∈ X : f(x) ≥ λ}, fλ
> = {x ∈ X : f(x) > λ}.

Definition 2.2. A function f : X → R is said to be

• quasiconcave if for every x, y ∈ X and λ ∈ [0, 1],

f(λx + (1 − λ)y) ≥ min{f(x), f(y)} ;

• semistrictly quasiconcave if for every x, y ∈ X such that f(y) �= f(x), and for every λ ∈ (0, 1),

f(λx + (1 − λ)y) > min{f(x), f(y)};

As it is well-known, properties of the upper level sets characterize some properties of the associated 
functions:

• a function f is quasiconcave if and only if, for every λ ∈ R, the upper level set fλ is convex, if and only 
if, for every λ ∈ R, the strict upper level set fλ

> is convex;
• f is upper semicontinuous if and only if, for every λ ∈ R, the upper level set fλ is closed.

Observe that a concave function (not necessarily strictly concave) is semistrictly quasiconcave. Quasi-
concave functions can have local maxima which are not global maxima, as easy examples show. On the 
contrary, for a semistrictly quasiconcave function a local maximum is automatically a global one, as it is 
obvious from the definition.

We now define a function which will play a crucial role in our approximation argument. Suppose Q and 
P are convex closed subsets of a Banach space, with ∅ �= P ⊂ intQ. Let μP,Q(x) be the following function

μP,Q(x) = inf{λ ≥ 0 : x ∈ λQ + (1 − λ)P}.

In the following remark we summarize some properties of μP,Q that will be used in the sequel. Their 
proofs are straightforward.

Remark 1. For every P, Q as above:

1. μP,Q is a real-valued, continuous and convex function;
2. μP,Q(x) = 0 if x ∈ P, μP,Q(x) < 1 if x ∈ int Q and μP,Q(x) > 1 if x /∈ Q;
3. If x = λq + (1 − λ)p with q ∈ int Q and p ∈ P , then λ > μP,Q(x).

Finally we remind the property, used in the sequel, that if A is convex, x ∈ int A, y ∈ cl A, then every z
in the segment [x, y) lies in int A (see [9, Proposition 1.1.14]).

3. Approximating quasiconcave functions

As already mentioned, we are interested in approximating quasiconcave functions with semistrictly qua-
siconcave functions. In order to build our approximating sequence, we introduce some more notation. In 
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particular, given a quasiconcave, bounded and continuous function f defined on a closed convex subset X of 
a Banach space we introduce, for every n ∈ N, a partition Pn = {αn

k}k=0,....,n of the interval [inf f, sup f ]
with the following properties:

1. αn
0 = sup f > αn

1 > · · · > αn
n = inf f ;

2. αn
k − αn

k+1 <
2
n

(sup f − inf f), for all k = 0, . . . , n − 1.

For easy notation, we denote by fk
n and fk

n>, respectively, the upper level sets fαn
k and fαn

k
> . Since f is 

quasiconcave and continuous, the upper level sets fk
n are convex and closed; moreover, since f is continuous, 

fk
n ⊂ int fk+1

n , where the interior is intended in the relative topology of X. We now consider the functions:

μn
k (x) = inf{λ ≥ 0 : x ∈ λfk+1

n + (1 − λ)fk
n}.

Finally, we define the following maps, for every n ∈ N, and k = 1, . . . , n − 1:

fn(x) =
{
αn

1 if αn
0 ≥ f(x) ≥ αn

1 ,

αn
k + (αn

k+1 − αn
k )μn

k (x) if αn
k > f(x) ≥ αn

k+1.
(1)

The following remark is obvious, but useful for the sequel.

Remark 2. From Remark 1, it follows that:

f(x) ∈ [αn
k+1, α

n
k ) ⇔ fn(x) ∈ [αn

k+1, α
n
k ).

Remark 3. For later purposes, we explicitly observe that, denoting by S (Sn) the set of the points maximizing 
f (fn) on X, it holds that S ⊂ Sn for all n. Moreover Sn is always nonempty while S is nonempty if and 
only if Ls Sn �= ∅.

Proposition 1. Suppose X is closed convex bounded; let f : X → R be continuous quasiconcave and bounded. 
Then for every n ∈ N the function fn, as defined in (1), is continuous and semistrictly quasiconcave.

Proof. Continuity of fn follows from Remark 1. Now, let x, y ∈ X be such that fn(x) > fn(y), take any 
λ ∈ (0, 1), and let z be z = λx + (1 − λ)y. We have to prove that fn(z) > fn(y).

Suppose that αn
i > fn(x) ≥ αn

i+1, αn
k > fn(y) ≥ αn

k+1. Then it holds that i ≥ k. In case i = k, the result 
follows from convexity of μn

k . If i > k, then the only case to consider is when αn
k > fn(z) ≥ αn

k+1. And one 
more time the inequality follows from convexity of μn

k , since μn
k (x) = 0 and thus

fn(z) = αn
k + (αn

k+1 − αn
k )μn

k (λx + (1 − λ)y) > αn
k + (αn

k+1 − αn
k )μn

k (y) = fn(y). �
With the help of Proposition 1, we can now state the first approximation result.

Theorem 3.1. Let X be a closed bounded convex set. Suppose f is a bounded quasiconcave and continuous 
function on X. Then there exists a sequence (fn) of continuous and semistrictly quasiconcave functions 
fn : X → R, converging uniformly to f on X:

lim
n→+∞

sup
x∈X

|fn(x) − f(x)| = 0.

Proof. Let fn be defined as in (1). The only thing we have to prove is that, for every ε > 0, there is N such 
that, for all n ≥ N ,
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sup
x∈X

|fn(x) − f(x)| < ε.

Due to Remark 2 it is enough to take N such that 2
N (sup f − inf f) < ε. �

Corollary 3.1. Let f be a quasiconcave bounded and continuous function on X, let x0, x1, . . . , xn, . . . be such 
that xi ∈ X for all i ≥ 0, and let lim

n→+∞
xn = x0. Then lim

n→+∞
fn(xn) = f(x0).

We now consider the case when f is unbounded. From Theorem 3.1, we can get:

Theorem 3.2. Let X be a bounded closed convex set; let f : X → R be a continuous quasiconcave function. 
Then there exists a sequence (fn) of functions fn : X → R, continuous and semistrictly quasiconcave, such 
that for x0, x1, . . . , xn, . . . such that xi ∈ X for all i ≥ 0, and lim

n→+∞
xn = x0, it holds lim

n→+∞
fn(xn) = f(x0).

Proof. We need to consider only the case of an unbounded function f . For all n ∈ N, define:

gn(x) =

⎧⎨
⎩

n if f(x) ≥ n,

f(x) if −n < f(x) < n,

−n if f(x) ≤ −n.

From Theorem 3.1, we know that for every n there exists fn such that

sup
x∈X

|fn(x) − gn(x)| < (1/n).

Now fix, x0 and ε > 0. We prove that, if xn → x0 as in the statement, then for all large n it is |fn(xn) −
f(x0)| < ε. Fix N so large that the following conditions are fulfilled:

• N > 2
ε ;

• there exists a neighborhood I of x0 such that, ∀x ∈ I, it holds:

|f(x)| < N ∧ |f(x) − f(x0)| < ε/2.

Then for all n ≥ N it holds that

|fn(xn) − f(x0)| ≤ |fn(xn) − gn(xn)| + |f(xn) − f(x0)| < ε. �
We now want to consider the case when X is unbounded.

Theorem 3.3. Let X be a closed convex set; let f : X → R be a continuous, quasiconcave function. Then 
there exists a sequence (fn) of functions fn : Xn → R, continuous and strictly quasiconcave, such that the 
sequence (Xn) converges to X in Kuratowski sense1 and such that, for x0, x1, . . . , xn, . . . such that xi ∈ X

for all i ≥ 0, and lim
n→+∞

xn = x0, it holds that lim
n→+∞

fn(xn) = f(x).

Proof. Let Xn be Xn = X ∩B(0; n). It is quite clear that the sequence (Xn) converges to X in Kuratowski 
sense. Then the proof is a simple adaptation to this case of the proof of Theorem 3.2, applied to the 
restriction of f to Xn. �
1 We can observe, for the reader familiar with hypertopologies, that actually we provide convergence also for finer topologies like 

the Mosco and bounded proximal topologies, and more generally all hypertopologies having the lower Vietoris topology as lower 
part (see [9, Chapter 8]).
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4. Some equilibria results

In this section we apply the previous results in order to generalize some theorems stating the existence 
of an equilibrium for competitive economies. In particular, we shall see how it is possible to relax the 
assumption of semistrictly quasiconcave utility functions for the agents.

4.1. Free-disposal equilibrium

Our first example deals with a free-disposal economy. The activities considered in the model are: exchange, 
consumption and production. There are n consumers, indexed by i ∈ I = {1, . . . , n}, m producers, indexed 
by j ∈ J = {1, . . . , m} and l different goods indexed by h ∈ {1, . . . , l}. To each commodity h is associated 
a nonnegative price ph; then p = (p1, . . . , pl) ∈ R

l
+ denotes a generic price vector. Each producer j ∈ J

is characterized by a production set Yj ⊆ R
l of possible production plans. Yj represents the technology 

available to producer j and Y denotes the aggregate production set of the economy: Y =
∑

j Yj . Given a 
production vector yj , y+

j is a vector of goods produced by j by making use of the vector of goods y−j . Taking 
into account that prices are nonnegative, 〈p, yj〉 will be what the producer j gets as income when she offers 
the production vector yj to the market, at the price p. Thus, given the price vector p ∈ R

l
+, the producer j

faces the problem of finding a production plan maximizing her profit 〈p, yj〉:

find ȳj ∈ Yj such that 〈p, y〉 = max
yj∈Yj

〈p, yj〉.

Each consumer i ∈ I is characterized by a consumption set Xi ⊂ R
l, and by a binary, reflexive, transitive 

and complete relation �i on Xi, expressing his preferences over the consumption set Xi. In a fairly general 
setting (more general than that one described here), these preference systems can be characterized by utility 
functions ui, defined on Xi: ui(x1) ≥ ui(x2) if and only if x1 �i x2. Each consumer is endowed with an 
initial endowment ei ∈ Xi, representing the amount of the various goods that he can consume or trade with 
other individuals. Each consumer chooses a consumption plan xi = (x1

i , . . . , x
l
i) ∈ Xi, where xh

i represents 
the quantity of commodity h consumed by i and x = (x1, . . . , xn) ∈ X =

∏
i∈I Xi ⊆ R

l×n is the total 
consumption of market. If xi belongs to the consumption set of the consumer i, then the x+

i represents the 
consumer’s demand for the commodity h, while −x−

i represents his supply. Moreover, the total production ∑
j∈J

yhj of commodity h is shared among consumers: each consumer i receives the given fraction 
∑
j∈J

θijy
h
j , 

determined by a system of weights θij ≥ 0 having the property that 
∑
i∈I

θij = 1 for all j ∈ J . Hence, each 

consumer i, relative to commodity h, has at command the quantity ehi +
∑
j∈J

θijy
h
j . Thus, if y is the production 

of the market, the wealth of the i-th consumer, at the current price system p, is wi = 〈p, ei〉 +
∑

j∈J θij〈p, yj〉.
Summarizing, each consumer is operating in the market to maximize his utility subject to a natural 

budget constraint: the value of the consumption plan of consumer i at the current price p, 〈p, xi〉, cannot 
exceed his wealth wi. Denote by Mi(p, y) the set of the consumption vector available to consumer i at the 
current price p:

Mi(p, y) =

⎧⎨
⎩xi ∈ Xi : 〈p, xi〉 ≤ 〈p, ei〉 +

∑
j∈J

θij〈p, yj〉

⎫⎬
⎭ .

Then the consumer i faces the following maximization problem:

find x̄i ∈ Mi(p, y) such that ui(x̄i) = max
xi∈Mi(p,y)

ui(xi)

where Mi(p, y) represents the budget constraint of the consumer i, at the price p and production y.



R. Lucchetti, M. Milasi / J. Math. Anal. Appl. 428 (2015) 445–456 451
The market is usually considered to be in equilibrium when the supply for each commodity equals the 
demand; but sometimes a weaker condition, called free-disposal, is assumed: first of all, demand cannot 
exceed supply:

∑
i∈I

(xi − ei) −
∑
j∈J

yj ≤ 0.

Furthermore, the price of a good not saturated by the market must be zero:

〈
∑
i∈I

(xi − ei) −
∑
j∈J

yj , p〉 = 0.

Thus, a competitive economy Ξ is described by the m-list (Xi, ui, ei), by the mn-shares (θij) and by the 
n-list (Yj):

Ξ =
(
(Xi, ui, ei)i∈I , (θij)i∈I,j∈J , (Yj)j∈J

)
.

A state of the economy Ξ is an m-list xi of consumptions of the consumers, an n-list yj of productions 
of the producers, and a price vector p. We define an attainable state for the economy by the conditions:

(a) for every i, xi is in Xi

(b) for every j, yj is in Yj

(c)
∑
i∈I

(xi − ei) −
∑
j∈J

yj ≤ 0.

The attainable consumption set X̂i of the i-th consumer is the set of his attainable consumptions and 
the attainable production set Ŷj of the j-th producer is the set of her attainable productions:

X̂i = {xi ∈ Xi : ∃ xi′ ∈ Xi′ ∀i �= i′, ∃yj ∈ Yj :
∑
i∈I

(xi − ei) −
∑
j∈J

yj ≤ 0},

Ŷj = {yj ∈ Yj : ∃ yj′ ∈ Yj′ ∀j′ �= j, ∃xi ∈ Xi :
∑
i∈I

(xi − ei) −
∑
j∈J

yj ≤ 0}.

Definition 4.1. A state (p, x, y) is a free-disposal equilibrium of the economy Ξ if p > 0 and

for all i ∈ I, ui(xi) = max
xi∈Mi(p,y)

ui(xi) (2)

for all j ∈ J, 〈p, yj〉 = max
yj∈Yj

〈p, yj〉 (3)
∑
i∈I

(xi − ei) −
∑
j∈J

yj ≤ 0, 〈
∑
i∈I

(xi − ei) −
∑
j∈J

yj , p〉 = 0. (4)

We now introduce some further notation. Si represents the set of all satiation points of ui:

Si = {si ∈ Xi : ui(si) ≥ ui(xi) ∀ xi ∈ Xi}.

In different models, Si is assumed to be either empty, or else a nonempty set, not necessarily reduced to a 
singleton, but with special features. In order to prove the existence of an equilibrium in the economy, Arrow 
and Debreu in 1954 introduced the Nonsatiation assumption, that is for each i ∈ I, the satiation points are 
always outside the set of attainable consumption set X̂i.
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We now recall the existence result for a competitive economy, provided by Arrow and Debreu:

Theorem 4.1. Assume the following:

(A0) Xi is closed convex and bounded for all i ∈ I;
(A1) ui is continuous and semistrictly quasiconcave for all i ∈ I;
(A2) (nonsatiation) Si ∩ X̂i = ∅ for all i ∈ I;
(A3) there is x0

i in Xi such that x0
i � ei for all i ∈ I;

(A4) 0 ∈ Yj for all j ∈ J ;
(A5) Yj is closed and convex for all j ∈ J ;
(A6) Yj are bounded j ∈ J .

Then there exists a free-disposal equilibrium of economy Ξ.

Proof. See Theorem 4 of [7]. �
(A2) is the nonsatiation assumption, as already observed. The meaning of the assumption (A4) is obvious: 

a producer can decide to produce nothing. In particular this will happen when at a given price all her possible 
production plans produce nonpositive income. (A6) will be substituted by a more natural one in the main 
result.

We can now prove our first existence result. We observe that, with respect to Theorem 4.1, we do not 
assume semistrict quasiconcavity of the utility functions. Moreover, the assumption (A6) on the boundedness 
of Xi, Yj is substituted by more natural assumptions. However this is classical, the novelty relies on a weaker 
requirement for the utility functions.

Theorem 4.2. Assume the following:

(A0’) Xi is closed convex and bounded from below for all i ∈ I;
(A1’) ui is continuous and quasiconcave for all i ∈ I;
(A2) (nonsatiation) Si ∩ X̂i = ∅ for all i ∈ I;
(A3) there is x0

i in Xi such that x0
i � ei for all i ∈ I;

(A4) 0 ∈ Yj for all j ∈ J ;
(A5) Yj is closed and convex for all j ∈ J ;
(A7) Y ∩ (−Y ) = {0};
(A8) Y ⊃ Y − R

l
+.

Then there exists a free-disposal equilibrium for the economy Ξ.

Proof. First of all, let us point out that under assumptions (A0’), (A4)–(A5)–(A7)–(A8), the sets X̂i

and Ŷj are bounded (see [3, p. 276]). Moreover observe that, without loss of generality, we can con-
fine our attention only to prices that lie on the simplex Π := {p ∈ R

l
+ :

∑
j∈J

pj = 1}. Next, for all 

n ∈ N, we set Xi,n = Xi ∩ B(0; n) and Yj,n = Yj ∩ B(0; n) and for every ui we define ui,n on Xi,n

as the semistrictly quasiconcave functions introduced in Theorem 3.3. Hence, we consider the economy 
Ξn =

(
(Xi,n, ui,n, ei)i∈I , (θij)i∈I,j∈J , (Yj,n)j∈J

)
. Clearly, Ξn satisfies assumptions (A0), (A1), (A3)–(A6). 

Assumption (A2) holds eventually; to see this suppose, for the sake of contradiction, that there exists 
i ∈ I such that assumption (A2) is not satisfied for a subsequence, still labeled with n. This means that 
Si,n ∩ X̂i,n �= ∅. Let x̃i,n ∈ Si,n ∩ X̂i,n. Since x̃i,n ∈ X̂i,n ⊆ X̂i for all n, and since X̂i is a compact set, we 
can pass to the limit (again along a suitable subsequence): there is x̃i ∈ X̂i such that x̃i,n → x̃i. Let xi be 
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in Xi, there is N ∈ N, such that, for all n > N , xi ∈ Xi,n. Since x̃i,n ∈ Si,n one has: ui,n(x̃i,n) ≥ ui,n(xi) for 
all n > N . Then, from Theorem 3.3, passing to the limit ui(x̃i) ≥ ui(xi). But, this contradicts assumption
(A2) for economy Ξ.

From Theorem 4.1, for all n ∈ N, the economy Ξn has a free-disposal equilibrium (pn, xn, yn):

for all i ∈ I, ui,n(xi,n) = max
xi∈Mi(pn,yn)

ui,n(xi) (5)

for all j ∈ J, 〈pn, yj,n〉 = max
yj∈Yj

〈pn, yj〉 (6)

∑
i∈I

(xh
i,n − ehi ) −

∑
j∈J

yhj,n ≤ 0, 〈
∑
i∈I

(xi,n − ei) −
∑
j∈J

yj,n, pn〉 = 0. (7)

Since {pn}n∈N ⊆ Π, {xi,n}n∈N ⊆ X̂i, {yj,n}n∈N ⊆ Ŷj and the sets Π, X̂i and Ŷj are compact, we can pass 
to the limit (along a suitable subsequence): pn → p, xi,n → xi,n and yj,n → yj for all i ∈ I and j ∈ J , 
with p ∈ Π, xi ∈ X̂i and yj ∈ Ŷj . We now have to prove that (p, x, y) is a free-disposal equilibrium of 
the economy Ξ. From (6) and (7), passing to the limit, we easily see that conditions (3) and (4) hold. To 
conclude, we need to prove (2), i.e.

ui(x̄i) ≥ ui(x), ∀x ∈ Mi(p̄, ȳ).

Since we know that

ui,n(x̄i,n) ≥ ui,n(x), ∀x ∈ Mi(p̄n, ȳn)

it is clear that (2) is proved once we prove that

∀x ∈ Mi(p̄, ȳ) ∃xn ∈ Mi(p̄n, ȳn) : xn → x.

This means that

Mi(p̄, ȳ) ⊂ LiMi(p̄n, ȳn).

Now, observe that, if 〈p̄, x〉 < 〈p̄, ei〉 +
∑

j∈J θij ȳj , then for all large n it is 〈p̄n, xi〉 < 〈p̄n, ei〉 +
∑

j∈J θij ȳj,n, 
showing that x ∈ Mi,n(p̄n, ȳn) eventually, and thus x ∈ Li Mi,n(p̄n, ȳn). Moreover, from assumption (A3), 
it is 〈p̄, x0

i 〉 < 〈p̄, ei〉 +
∑

j∈J θij ȳj , which means that the relative interior (in Xi) of Mi(p̄, ȳ) is a nonempty 
set. Since Mi(p̄, ȳ) is a closed convex set with nonempty interior (in the relative topology of Xi), then it is 
Mi(p̄, ȳ) = cl int Mi(p̄, ȳ). It follows that

Mi(p̄, ȳ) = cl intMi(p̄, ȳ) ⊂ cl Li Mi(p̄n, ȳn) = LiMi(p̄n, ȳn)

since the set Li Mi(p̄n, ȳn) is a closed set (see [9, Proposition 8.2.1]). This ends the proof. �
As a final comment of this part, let us observe that assumption (A7) simply states that if the vector of 

goods y+ can be used to produce the vector of goods −y−, then it is not possible to use −y− to produce 
y+: in other words, this is an irreversibility condition. Instead Y ⊃ Y − R

l
+ is the explicit free-disposal 

assumption.
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4.2. Pure exchange equilibrium

Now we consider a competitive economy without production and without free-disposal, in order to gen-
eralize other results concerning existence of an equilibrium. We use the same notation of the previous 
section, as far as goods, prices, endowments and so on are concerned. The prices p, in this setting, need 
not to be nonnegative. Thus a price vector p is such that p = (p1, . . . , pl) ∈ R

l \ {0}. Negative prices are 
in principle allowed to consider goods that turn out to be undesirable (such as, for instance, pollution 
byproducts). Since the wealth of consumer i is 〈p, ei〉, the budget constraint set at the current price p is 
Mi(p) = {xi ∈ Xi : 〈p, xi〉 ≤ 〈p, ei〉}. Thus, a competitive economy Ξ is described by the m-list:

Ξ = (Xi, ui, ei)i∈I .

A state of the economy Ξ is an n-list (x1, . . . , xi, . . . , xn) of the consumptions of the consumers and a price 
vector p. We now provide the definition of equilibrium in this context.

Definition 4.2. A state (p, x) is an equilibrium of the economy Ξ if

for all i ∈ I, ui(xi) = max
xi∈Mi(p)

ui(xi) (8)

for all h ∈ H,
∑
i∈I

(xh
i − ehi ) = 0. (9)

As usual, the difference of equilibrium and free-disposal equilibrium relies on the fact that in the first 
case it is required that the vector price p is nonnull, while in the second usually it is required that the 
nonnull vector price is also with nonnegative components. Moreover, the so called total demand on the 
market: 

∑
i∈I(xi − ei), that here is assumed to be zero (at the equilibrium) in the free-disposal case must 

be nonpositive, with some components possibly negative, when the corresponding price is zero.
We now introduce some further notation. For a consumer i, Ri denotes the set of the so called rational 

allocations for i, including those unfeasible:

Ri = {xi ∈ Xi : ui(xi) ≥ ui(ei)}.

Moreover, let

A = {x ∈ X :
∑
i∈I

xi =
∑
i∈I

ei, ui(xi) ≥ ui(ei), ∀i = 1, . . . , n}

be the set of all individually rational feasible allocations. Denote by Ai the projection of A onto Xi; clearly 
Ai represents the individually rational feasible consumption set of consumer i ∈ I.

Allouch and Le Van (see [1,2]), and Sato (see [11]) in this setting proved some existence theorems for 
equilibria in the economy under some weak nonsatiation assumptions. In particular, Allouch and Le Van, 
in 2008, introduced a new condition, called Weak Nonsatiation, by requiring that, for each i ∈ I, at least 
one satiation point lies outside the feasible set:

if Si �= ∅ then Si ∩Ac
i �= ∅.

Subsequently, in 2010, Sato considered a weaker condition, called Boundary satiation; namely, for each i ∈ I, 
at least one satiation point lies on the (relative) boundary of the set:

if Si �= ∅ then Si ∩ (intRi
Ai)c �= ∅

where intRi
Ai denotes the interior of Ai in the relative topology on Ri ⊂ R

l.
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Sato proved the following existence result:

Theorem 4.3. Assume the following, for all i ∈ I:

(A0) Xi is closed convex and bounded;
(A1) ui is continuous and semistrictly quasiconcave;
(A2’) (boundary satiation) Si ∩ (intRi

Ai)c �= ∅;
(A3) there is x0

i in Xi such that x0
i � ei.

Then, there exists an equilibrium for the economy Ξ.

Proof. See [11]. �
Here we generalize the Theorem of Sato, in the sense that we do not assume strict quasiconcavity; the 

approach used by him to prove his theorem is similar to that one used here: Sato applies the Theorem of 
Allouch and Le Van to a sequence of economies fulfilling the more restrictive assumption on satiation given 
by them, and passing to the limit he gets existence in the case of his more general satiation assumption. 
Here we build approximating economies in the proof of subsequent Theorem 4.4 that actually fulfill the 
Allouch and Le Van satiation assumption, thus our approach not only generalizes Sato’s theorem, but also 
provides a much shorter and simpler proof of his result.

Theorem 4.4. Assume the following, for all i ∈ I:

(A0) Xi is closed convex and bounded;
(A1’) ui is continuous and quasiconcave;
(A2’) (boundary satiation) Si ∩ (intRi

Ai)c �= ∅;
(A3) there is x0

i in Xi such that x0
i � ei.

Then, there exists an equilibrium for the economy Ξ.

Proof. First of all observe that, without loss of generality, we can confine our attention only to prices that lie 
on the boundary of the unit ball S(0; 1) ⊂ R

l. For all n ∈ N, we introduce the economy Ξn = (Xi, ui,n, ei)i∈I , 
using Theorem 3.1. We now claim that the economies Ξn satisfy assumption (A2’).

• Suppose ei ∈ Si,n (for a subsequence). Then by definition Ai,n ⊆ Si,n.
In this case the claim is proved.

• Now suppose ei /∈ Si,n (for a subsequence). Then, from Remark 3 and boundedness of Xi, it follows 
that Si,n ⊃ Si for all n. Thus ei /∈ Si. By assumption (A2’), there exists x̄ ∈ Si ∩ (intRi

Ai)c. By 
continuity of ui, there exist ε, δ > 0 such that, for every x ∈ B(x̄; ε), ui(x) > ui(ei) − 2δ. By uniform 
convergence of ui,n to ui, we get that for all large n, and for every x ∈ B(x̄; ε), ui,n(x) ≥ ui,n(ei) − δ. 
Thus B(x̄; ε) ∩ Xi ⊂ Ri,n. Suppose now x̄ ∈ intRi,n

Ai,n. Then there exists η < ε such that for all 
x ∈ B(x̄; η) ∩ Xi there are xj ∈ Xj , for j �= i verifying x +

∑
j xj =

∑
i ei. Thus x ∈ Ai and since 

ui(x) > ui(ei) it follows that x̄ ∈ Si ∩ (intRi
Ai), a contradiction. The claim is proved also in this case.

Thus, the assumptions of Theorem 4.3 hold for the economies Ξn. Then for every (large) n there exists a 
(pn, xn) equilibrium of Ξn. Since {pn} are norm one vectors, and, since {xi,n} ⊆ Xi and Xi are bounded, 
there are p̃, x̃i limits of some (common) subsequence of {pn} {xi,n}: lim

n→+∞
(pn, xn) = (p̃, ̃x). Now the proof 

that (p̃, ̃x) is an equilibrium of Ξ is quite similar to that one of Theorem 4.2, and it is omitted. �
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As a last result, we can generalize Theorem 4.4 when the consumption sets Xi are unbounded:

Theorem 4.5. Assume the following, for all i ∈ I:

(A0’) Xi is closed convex and bounded from below;
(A1’) ui is continuous and quasiconcave;
(A2’) (boundary satiation) if Si �= ∅, then Si ∩ (intRi

Ai)c �= ∅;
(A3) there is x0

i in Xi such that x0
i � ei.

Then, there exists an equilibrium for the economy Ξ.

Proof. For every i denote by zi a lower bound for Xi: xi ≥ zi for every xi ∈ Xi. Now, set Xi,n = Xi∩B(0; n), 
and define ui,n on Xi,n to be the restriction of ui to Xi,n. For every n ∈ N, we introduce the economy 
Ξn = (Xi,n, ui,n, ei)i∈I . We now claim that Ξn satisfy the assumption of Theorem 4.4. The only hypothesis 
to check is (A2’) (observe that Si,n is nonempty, due to boundedness of Xi,n). We need to consider two cases, 
according to the fact that Si is either empty or nonempty. If Si is nonempty, there exists x̂ ∈ Si∩(intRi

Ai)c. 
Suppose, by contradiction, x̂ /∈ Si,n ∩ (intRi,n

Ai,n)c eventually. Since x̂ ∈ Si,n (eventually), this implies 
x̂ ∈ (intRi,n

Ai,n), and this is a contradiction, since Ai,n = Ai (eventually), because Ai is bounded (see [3, 
p. 276]). In case Si = ∅, then necessarily Si,n does intersect the boundary of Xi,n, and this in turn implies 
that (A2’) is satisfied for Ξn, eventually. Thus there exists an equilibrium for the economy Ξn, for all large 
n. Since, for each n and i ∈ I:

zi ≤ xi,n ≤ xi,n +
∑

j∈I,j �=i

(
xj,n − zj

)
≤

∑
i∈I

ei −
∑

j∈I,j �=i

zj , pn ∈ S(0; 1)

we can pass to the limit, as in the proofs of Theorems 4.2 and 4.4, to find an equilibrium (x, p) for Ξ. �
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