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1. Introduction and preliminaries

In a paper that soon became a classic in statistics [10], Halmos and Savage illustrated the powerful 
implications of the Radon Nikodym theorem for the theory of sufficient statistics. One of their results, 
Lemma 7, deals with dominated sets of probability measures and states that each such set admits an 
equivalent, countable subset. This lemma rapidly obtained its own popularity, proving to be very useful in 
a variety of different contexts, such as the proof of Yan Theorem, another classical result in probability and 
in mathematical finance.

In their proof, Halmos and Savage exploit extensively countable additivity and the fact that the underlying 
family is a σ-algebra. Both properties are essential as they allow, loosely speaking, for the possibility of 
taking limits. For this reason their method of proof cannot be adapted to the case in which probability 
is defined on an algebra and is just finitely additive, a situation of interest for the subjective theory of 
probability originating from the seminal work of de Finetti [6] and, more generally, for decision theory in 
which countable additivity is more an exception than a rule. Finite additivity is also unavoidable in many 
classical problems in which it is needed to take extensions of the given set function.

In this short note we extend the original result of Halmos and Savage to the case of finitely addi-
tive measures. The proof is, somehow surprisingly, straightforward and does not make use but of classical 
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decomposition results of set functions, ultimately due to Bochner and Phillips. Before exploring its corol-
laries we obtain in Theorems 2 and 3 necessary and sufficient conditions for a family of bounded additive 
set functions to be dominated in both the finitely and the countably additive framework. Despite its sim-
plicity, Halmos and Savage theorem has interesting implications in identifying special countable families of 
sets. Thus, in Theorem 4 we prove that, even when countable additivity fails on a given algebra of sets, it 
necessarily holds on some appropriate sub algebra. A related result is the extension of a classical finding 
of Drewnowski – that each disjoint sequence of sets may be refined to a subsequence on which countable 
additivity obtains – to the case in which the given family of sets is just an algebra. We also obtain a new 
characterization of weak compactness in the space of additive set functions. Eventually, Halmos–Savage
theorem delivers, as a corollary, an extension of the theorem of Yan [12] to the case of finite additivity.

In the following, Ω will be a fixed, nonempty set and A an algebra of subsets of Ω. Also given is a 
positive, additive, bounded set function: in symbols λ ∈ ba(A )+. The symbol ca(A ) describes bounded, 
countably additive set functions on A . A set M ⊂ ba(A ) is said to be dominated by λ if μ � λ for every 
μ ∈ M (in symbols M � λ), i.e. if

lim
|λ|(A)→0

|μ|(A) = 0 μ ∈ M (1)

Let us recall that, under finite additivity, the property that μ vanishes on λ null sets is necessary but not 
sufficient to conclude that μ � λ, see [2, Chapter 6].

For the theory of finitely additive measures and integrals we mainly borrow notation, definitions and 
terminology from Dunford and Schwartz [9], although we prefer the symbol |μ| to denote the total variation 
measure generated by μ and we write μf (or μH when f = 1H and H ∈ A ) to denote that element of 
ba(A ) defined implicitly by letting

μf (A) =
∫

1Afdμ A ∈ A (2)

whenever f ∈ L1(μ). We often write μ(f) rather than 
∫
fdμ.

S (A ) designates the family of A -simple functions. A real valued function h on Ω is said to be λ
measurable if and only if there is a sequence 〈hn〉n∈N in S (A ) that λ-converges to h i.e.

lim
n

λ∗(|hn − h| > η) = 0 η > 0 where λ∗(B) = inf
{A∈A :B⊂A}

λ(A) B ⊂ Ω (3)

If μ, ν ∈ ba(A ) are such that for each η > 0 there exists A ∈ A such that |μ|(A) + |ν|(Ac) < η then we 
write μ ⊥ ν. The orthogonal complement of M ⊂ ba(A) is defined correspondingly as

M⊥ = {ν ∈ ba(A ) : ν ⊥ μ for every μ ∈ M }

and is known to be a normal sublattice of ba(A ), see e.g. [2, Definition 1.5.6 and Theorem 1.5.8].

2. A decomposition

We associate with M ⊂ ba(A ) the collections

A(M ) =
{∑

n

αn
|μn|

1 ∨ ‖μn‖
: μn ∈ M , αn ≥ 0 for n = 1, 2, . . . and

∑
n

αn = 1
}

(4)

L(M ) = {ν ∈ ba(A ) : ν � m for some m ∈ A(M )} (5)
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To obtain a simple generalization of Lebesgue decomposition, we start remarking that L(M ) is a normal 
sublattice of ba(A ) and so, by Riesz decomposition Theorem [2, 1.5.10], ba(A ) = L(M ) + L(M )⊥. To 
see this, take an increasing net 〈να〉α∈A in L(M ) with ν = limα να ∈ ba(A ), extract a sequence 〈ναn

〉n∈N

such that ‖ν − ναn
‖ = (ν − ναn

)(Ω) < 2−n−1, choose mn ∈ A(M ) such that mn � ναn
and define 

m =
∑

n 2−nmn ∈ A(M ). Since m � mn � ναn
for each n ∈ N, there is δn > 0 such that m(A) < δn

implies |ναn
|(A) < 2−n−1 and, therefore, |ν|(A) ≤ |ναn

|(A) +2−n−1 ≤ 2−n. This proves that if {να : α ∈ A}
is a nonempty family in L(M ) and if 

∨
α∈A

να exists in ba(A ), then necessarily 
∨

α∈A
να ∈ L(M ). Moreover, 

|ν1| ≤ |ν| and ν ∈ L(M ) imply ν1 ∈ L(M ). Noting that L(M )⊥ = A(M )⊥ we obtain the following:

Lemma 1. For each λ ∈ ba(A ) and M ⊂ ba(A ) there is a unique way of writing

λ = λc
M + λ⊥

M (6)

with λc
M ∈ L(M ) and λ⊥

M ⊥ A(M ). If λ is positive or countably additive then so are λ⊥
M and λc

M .

3. The Halmos–Savage theorem and its implications

The original result of Halmos and Savage follows quickly from Lemma 1 which helps circumventing the 
lack of countable additivity and its implications.

Theorem 1 (Halmos and Savage). M ⊂ ba(A ) is dominated if and only if M � m for some m ∈ A(M ).

Proof. λ dominates M if and only if λc
M does. In fact, choose μ ∈ M and ε > 0 and let δ be such that 

λ(A) < δ implies |μ|(A) < ε. Pick B ∈ A such that |μ|(Bc) + λ⊥
M (B) < (δ/2) ∧ ε. Then λc

M (A) < δ/2
implies λ(A ∩B) < δ and thus |μ|(A) ≤ |μ|(A ∩B) + ε ≤ 2ε. �

To rephrase the above theorem in the language of Halmos and Savage, observe that if M0 = {μ1, μ2, . . .}
is the subfamily of M generating m =

∑
n 2−n|μn|/(1 ∨ ‖μn‖) and 〈Ak〉k∈N is a sequence in A , then 

limk |μn|(Ak) = 0 for n = 1, 2, . . . if and only if limk |μ|(Ak) = 0 for all μ ∈ M and M0 may then be said to 
be equivalent to M . Thus, M is dominated if and only if it admits an equivalent, countable subset. In the 
original work of Halmos and Savage, the role of the set M is played by the family of probability measures 
relatively to which a given statistic may or may not be sufficient.

Dominated subsets of ba(A ) are easily constructed starting from some λ ∈ ba(A ) and a given subset 
K ⊂ L1(λ), by letting M = {λf : f ∈ K}. In the following section 4, e.g., K will be a family of indicator 
functions. In case λ is countably additive this is in fact the only possible case, by the Radon Nikodym 
theorem. This classical conclusion goes together with the characterization of absolute continuity in terms 
of null sets. Under finite additivity, however, neither of these properties hold.

Example 1. Let A be the algebra generated by the finite subsets of N and define λ ∈ ba(N) by letting 
λ(A) = 1 − λ(Ac) = 0 when A ∈ A is finite or empty. Given that A consists of finite sets or of their 
complements, λ is well defined. Denote by M the collection of all μ ∈ ba(A )+ vanishing on the finite 
subsets of N. It is then obvious that for any A ∈ A and 1 > ε > 0, λ(A) < ε implies λ(A) = 0 and thus that 
A is a finite set so that μ(A) = 0 for all μ ∈ M . In other words M � λ. Define ν ∈ ba(A ) implicitly by 
letting ν(A) =

∑
n∈A 2−n for all A ∈ A . Then, ν(A) = 0 implies A = ∅ and thus μ(A) = 0. However this 

is not enough to conclude that ν � M since ν({n ∈ N : n > N}) = 2−N while μ({n ∈ N : n > N}) = ‖μ‖.
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Example 2. Let Ω be a separable metric space, A its Baire σ-algebra and Ω0 = {ω1, ω2, . . .} a dense, 
countable subset. Define

λ(A) =
∑
ωn∈A

2−n A ∈ A

It is easily seen that λ is countably additive and that λ(A) > 0 whenever A is open (as then Ω0 ∩A �= ∅). 
With each decreasing sequence 〈An〉n∈N of open sets one may associate

μ(A) = LIM
n

λ(A ∩An)/λ(An) A ∈ A

(with LIM denoting a Banach limit) and let M be the corresponding collection. Then clearly λ(A) = 0
implies μ(A) = 0 for each μ ∈ M , while μ is either countably additive (and thus μ � λ), if limn λ(An) > 0, 
or purely finitely additive (and thus μ ⊥ λ), if limn λ(An) = 0, as μ(An) = 1 for all n ∈ N.

Common to the preceding examples and to the original applications imagined by Halmos and Savage (see 
also [1]), is the fact that the dominating λ is given. A natural question is then how to characterize dominated 
sets with no previous knowledge of the dominating element. An easy example in which the answer is well 
known is when M is relatively weakly compact. In the next two results we provide a separate answer for 
the cases ba(A ) and ca(A ), respectively.

Theorem 2. For M ⊂ ba(A ) to be dominated it is necessary and sufficient that every subset of

N = {ν ∈ ba(A )+ : 0 < ν ≤ |μ| for some μ ∈ M } (7)

which consists of pairwise orthogonal elements is at most countable.

Proof. (Necessity). If M is dominated then so is N . By Theorem 1, if N0 ⊂ N there exist ν1, ν2, . . . ∈ N0
such that ν �

∑
n 2−nνn/(1 ∨ ‖νn‖) = ν0 for every ν ∈ N0. However, if the elements of N0 are pairwise 

disjoint then any ν ∈ N0 other than ν1, ν2, . . . is necessarily orthogonal to ν0 and thus null, contradicting 
the inclusion N0 ⊂ N . We conclude that N0 = {νn : n ∈ N}.

(Sufficiency). Let M = {(Mα, M ′
α) : α ∈ A} be the family of all pairs (Mα, M ′

α) of countable subsets 
of M with Mα ⊂ M ′

α and with supμ∈M ′
α
‖μ⊥

Mα
‖ > 0. We can assume that the family M is non-empty, since 

otherwise M is dominated by any of its elements. Define the binary relationship ≺ on M and < on A by 
writing α < β and (Mα, M ′

α) ≺ (Mβ , M ′
β) whenever M ′

α ⊂ Mβ . One easily sees that ≺ is transitive and 
antisymmetric. By Hausdorff principle we obtain a maximal linearly ordered subfamily M0. Define,

A0 = {α ∈ A : (Mα,M
′
α) ∈ M0} and N0 = {να : α ∈ A0} (8)

where να =
∣∣(μα)⊥Mα

∣∣ for some μα ∈ M ′
α such that 

∥∥(μα)⊥Mα

∥∥ > 0. In passing, we observe for the sake of 
future reference that, independently of the current assumptions, the collection {μα′ : α′ ∈ A0, α′ < α}
so obtained, with α ∈ A0, consists of distinct elements and is contained in the countable set M ′

α so that 
each α ∈ A0 admits at most countably many predecessors relatively to the order <. More importantly, 
since N0 ⊂ N and its elements are pairwise orthogonal, by assumption A0 must be at most countable, so 
M∞ =

⋃
α∈A0

Mα is a countable subset of M . Assume the existence of μ∞ ∈ M such that 
∥∥(μ∞)⊥M∞

∥∥ > 0. 
Then, given that M∞ is countable and letting M ′

∞ = M∞ ∪ {μ∞}, the pair (M∞, M ′
∞) belongs to M

and the collection M0 ∪ {(M∞, M ′
∞)} is linearly ordered and contains M0 properly, a contradiction. One 

concludes from Lemma 1 that M ⊂ L(M∞) so that, M∞ being dominated because countable, M is a 
dominated set. �
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This characterization is fairly intuitive and becomes even more so if formulated in the language of decision 
theory where each μ ∈ M may be interpreted as a subjective belief. The statement suggests then, loosely 
speaking, that the individual beliefs of a group of agents admit a synthesis if and only if the extent of radical 
disagreement within the group is limited.

A version of the preceding claim can be formulated for the countably additive case.2

Theorem 3. Let A be a σ-algebra. Then for M ⊂ ca(A ) to be dominated it is necessary and sufficient that 
every collection H ⊂ A of pairwise disjoint sets with supμ∈M |μ|(H) > 0 for each H ∈ H is at most 
countable.

Proof. Necessity is obvious. The proof of sufficiency follows from that given for Theorem 2 in which the 
domination property was shown to be a consequence of the fact that the special, given family N0 = {να :
α ∈ A0} ⊂ N of pairwise orthogonal elements in (8), is countable. This conclusion will be reached by first 
showing that, under the present assumption, to any family N1 ⊂ N of pairwise orthogonal elements one 
can associate a family {Aν : ν ∈ N1} ⊂ H with the property that ν(Ac

ν) = ν′(Aν) = 0 whenever ν, ν′ ∈ N1
are different.

In fact, if N1 is as above, ν ∈ N1 and ν′ ∈ N1\{ν} let Bν′ ∈ A be such that ν(Bc
ν′) = ν′(Bν′) = 0. If a

is a countable subset of N1 not including ν (and A the corresponding collection) write

Ba =
⋂
ν′∈a

Bν′ ∈ A (9)

with the convention B∅ = Ω. The net 〈Ba〉a∈A is clearly decreasing if A is directed by inclusion. Consider 
the collection

X =
{

(a, a′) ∈ A × A : a ⊂ a′ and sup
μ∈M

|μ|(Ba\Ba′) > 0
}

partially ordered by writing (a, a′) ≺ (b, b′) whenever a′ ⊂ b. We can assume that X is nonempty since 
otherwise for given a0 ∈ A and any ν′ ∈ N1\{ν} we would have ν′(Ba0) = 0 if ν′ ∈ a and otherwise with 
a1 = a0 ∪ {ν′},

ν′(Ba0) ≤ ν′(Ba1) + sup
μ∈M

|μ|(Ba0\Ba1) = 0

and the claim would be true with Aν = Ba0 .
Let X0 be a maximal linearly ordered subset of X and let A0 = {a ∈ A : (a, a′) ∈ X0 for some a′ ∈ A}. 

Given that {Ba\Ba′ : a ∈ A0} is a disjoint collection in A and that supμ∈M |μ|(Ba\Ba′) > 0 for every 
a ∈ A0, then under the current assumption A0 may be enumerated as {an : n ∈ N}. Set a∞ =

⋃
n an and

Aν =
⋂
n

Ban
= Ba∞ ∈ A

Clearly, ν(Ac
ν) = 0. If ν′ ∈ a∞ then there is n ∈ N such that ν′ ∈ an so that ν′(Aν) ≤ ν′(Ban

) = 0. If 
ν′ /∈ a∞ then we obtain a pair (a∞, a∗) with a∗ = a∞ ∪ {ν′} which contradicts the maximality of X0 unless 
supμ∈M |μ|(Ba∞\Ba∗) = 0 so that 0 = ν′(Ba∗) = ν′(Ba∞) = ν′(Aν). In other words we have found Aν ∈ A

such that

ν(Ac
ν) = ν′(Aν) = 0 ν′ ∈ N1\{ν} (10)

2 I am grateful to Pietro Rigo for suggesting me the claim of Theorem 3 and to an anonymous referee for several corrections to 
its original proof.
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Returning to the family N0 = {να : α ∈ A0} defined in (8), we recall that A0 is linearly ordered by the 
order < and that, as we noticed soon after (8), every α ∈ A0 admits countably many predecessors. Let then

Hα = Aνα

∖ ⋃
{α′∈A0:α′<α}

Aνα′ ∈ A

Clearly, {Hα : α ∈ A0} is disjoint and να(Hα) = να(Aνα
) > 0. By assumption, then, A0 must be at most 

countable. �
In either case, ba(A ) or ca(A ), the possibility of reducing the corresponding family to a countable 

subfamily illustrates well the simplification that arises form the existence of a dominating measure.

4. Measure theoretic implications

When H ⊂ A , the collection {λH : H ∈ H } obtained by restricting λ to H for all H ∈ H is a 
typical example of a dominated family. Theorem 1 may be useful to identify some countable structure in A . 
A typical application is the following3:

Corollary 1. Let H be an arbitrary family of subsets of Ω and define the following class:

I(H ) =
{
E ⊂ Ω : inf

{α⊂H finite}
λ∗

(
E\

⋃
α

H
)

= 0
}

(11)

There exist H1, H2, . . . ∈ H such that the limit

λ∗(E) = lim
n

inf
{An∈A :

⋃
j≤n Hj⊂An}

λ∗(E ∩An) E ∈ I(H ) (12)

exists uniformly in E ∈ I(H ).

Proof. For each H ∈ H define the algebra

AH =
{
(H ∩A) ∪ (Hc ∩B) : A,B ∈ A

}
(13)

and λ̄H ∈ ba(AH) implicitly (see [2, Theorem 3.3.3]) via

λ̄H(D) = λ∗(H ∩D) D ∈ AH (14)

Designate by λ̂H the restriction of λ̄H to A . Then, λ̂H � λ. By Theorem 1 we can extract H1, H2, . . .
from H such that m =

∑
n αnλ̂Hn

/(‖λ̂Hn
‖ ∨ 1) � λ̂H for each H ∈ H . Write H̄n =

⋃
j≤n Hj . If 〈An〉n∈N

is a sequence in A with

H̄n ⊂ An and λ(An) < λ∗(H̄n) + 2−n n ∈ N (15)

then limn m(Ac
n) = 0 so that limn λ̂H(Ac

n) = 0 for every H ∈ H . By subadditivity of λ∗ this conclusion 
extends easily to

lim
n

λ∗(Hα ∩Ac
n) = 0 Hα =

⋃
α

H, α ⊂ H finite (16)

3 Remember λ ∈ ba(A )+.
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We deduce that choosing E ∈ I(H ) and letting α run over all finite subsets of H ,

λ∗(E) = sup
α

λ∗(E ∩Hα) = sup
α

lim
n

λ∗(E ∩Hα ∩An) ≤ lim inf
n

λ∗(E ∩An) ≤ lim sup
n

λ∗(E ∩An)

while the converse is obvious. Moreover, choose q > p > n and observe that

∣∣λ∗(E ∩Ap) − λ∗(E ∩Aq)
∣∣ ≤ λ(Ap �Aq)

= λ(Ap) + λ(Aq) − 2λ(Ap ∩Aq)

≤ 2−p + λ∗(H̄p) + 2−q + λ∗(H̄q) − 2λ∗(H̄p)

≤ lim
k

λ∗(H̄k) − λ∗(H̄n) + 2−(n−1) (17)

The same uniform bound applies if we replace each An with a decreasing net 〈Ad
n〉d∈D in A with each 

sequence 〈Ad
n〉n∈N satisfying (16). We conclude that

λ∗(E) = lim
d

lim
n

λ∗(E ∩Ad
n) = lim

n
lim
d

λ∗(E ∩Ad
n) = lim

n
inf

{An∈A :
⋃

j≤n Hj⊂An}
λ∗(E ∩An) (18)

and

λ∗(E) − lim
d

λ∗(E ∩Ad
n) = lim

k
lim
d
{λ∗(E ∩Ad

k) − λ∗(E ∩Ad
n)} (by (18))

≤ sup
d∈D, p,q≥n

∣∣λ∗(E ∩Ad
p) − λ∗(E ∩Ad

q)
∣∣

≤ lim
k

λ∗(H̄k) − λ∗(H̄n) + 2−(n−1) (by (17))

which proves uniform convergence. �
For the next result, define the λ-completion of A as follows

A (λ) =
{
B ⊂ Ω : inf

{A,A′∈A :A⊂B⊂A′}
λ(A′\A) = 0

}
(19)

It is clear that λ admits exactly one extension to A (λ) (still denoted by λ), defined by letting

λ(B) = sup
{A∈A :A⊂B}

λ(A) = inf
{A′∈A :B⊂A′}

λ(A′) B ∈ A (λ) (20)

It is also easily seen that A (λ) consists of all λ-measurable sets, i.e. those B ⊂ Ω for which the function 1B

is measurable and therefore admits a sequence 〈hn〉n∈N in S (A ) that λ-converges to 1B . In fact one 
may then choose η < 1/6 and Bn ∈ A such that {|1B − hn| > η} ⊂ Bn and λ(Bn) < 2−n and define 
An = {hn > 2η} ∩Bc

n and A′
n = An ∪Bn. Then, An ⊂ B ⊂ A′

n and A′
n\An ⊂ Bn. It is conversely obvious 

that each B ∈ A (λ) is λ-measurable. In particular, if A ∈ A and λ(A) = 0 then B ⊂ A implies B ∈ A (λ).
The following result establishes that a finitely additive set function is locally countably additive.

Theorem 4. There exists a disjoint sequence 〈An〉n∈N in A such that: (i) λ(B) =
∑

n λ(B ∩ An) when 
B ∈ A (λ), (ii) let B ⊂ Ω be a set with B ∩ An ∈ A (λ) for every n ∈ N, then B ∈ A (λ), (iii) A1 ≡
σ(A1, A2, . . .) ⊂ A (λ), (iv) λ is countably additive in restriction to A1, (v) if M ⊂ ba(A (λ)) is weak∗
compact and M � λ, then M is uniformly countably additive on A1.
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Proof. Put H = A in Corollary 1. We have that A (λ) ⊂ I(H ) and that and there is a sequence 〈Hn〉n∈N

in H satisfying (12). Let An = Hn\ 
⋃

j<n Hj . Thus

λ(B) =
∑
n

λ(B ∩An) B ∈ A (λ) (21)

Moreover,

inf
{A′∈A :

⋃
n An⊂A′}

λ(A′) ≤ λ(Ω) =
∑
n

λ(An) ≤ sup
{A∈A : A⊂

⋃
n An}

λ(A) (22)

which proves that 
⋃

n An ∈ A (λ). Let A0 =
⋂

n A
c
n and observe that λ(A0) = 0. Fix B ⊂ Ω and assume 

that B ∩ An ∈ A (λ) for n = 1, 2, . . . and write Bk = B ∩
⋃k

n=0 An. Of course B ∩ A0 ∈ A (λ) so that 
Bk ∈ A (λ) for k = 1, 2, . . . . The inclusion 

⋃
n An ∈ A (λ) and (i) imply

lim
N

λ∗ (B\BN ) ≤ lim
N

λ
( ⋃

n>N

An

)
= lim

N

∑
n>N

λ(An) = 0

Therefore the sequence 〈Bk〉k∈N λ-converges to B, and so B ∈ A (λ). This proves (ii). Each element in A1
will be of the form Aα =

⋃
n∈α An for some α ⊂ N ∪ {0} so that (iii) follows from (ii). Moreover, from (i),

λ(Aα) =
∑
n

λ(Aα ∩An) =
∑
n∈α

λ(An)

from which (iv) follows easily. If M ⊂ ba(A (λ)) is weak∗ compact and M � λ then M1 = {μ|A1 : μ ∈ M }
is a weak∗ compact subset of ba(A1) and M1 � λ|A1. (v) then follows from [13, Theorem 1.1]. �

In the last claim, the set obtained by restricting M to A1 is weak∗ closed and uniformly countably 
additive. It is thus weakly compact as a subset of ca(A1) [9, IV.9.1]. The claim requires, however, weak∗

compactness in the space ba(A (λ)), a somewhat unconventional property in applications where it is in fact 
more common to establish weak∗ compactness in the space ba(A ). The problem is that, even when M � λ

is weak∗ compact in ba(A ) the family obtained by extending (uniquely) each m ∈ M to A (λ), may fail 
to be weak∗ compact as a subset of ba(A (λ)). In fact we can only establish a partial result, assuming the 
Seever property. A is said to possess the Seever property [2, p. 210] whenever for every pair of sequences 
〈Cn〉n∈N and 〈Bn〉n∈N in A with Cn ⊂ Cn+1 ⊂ Bn+1 ⊂ Bn there exists A ∈ A with Cn ⊂ A ⊂ Bn. Of 
course σ-algebras possess the Seever property.

Lemma 2. Let M ⊂ ba(A ) be weak∗ compact and M � λ. Denote by μ̄ the extension of μ ∈ M from A
to A (λ). If either (i) A possesses the Seever property or (ii) M ⊂ ba(A )+ then M̄ = {μ̄ : μ ∈ M } is a 
weak∗ compact subset of ba(A (λ)) and M̄ � λ.

Proof. Let 〈μ̄α〉α∈A be a net in M̄ . Passing to a subnet if necessary 〈μα〉α∈A converges weak∗ to μ0 ∈ M . 
Let μ̄0 be the extension of μ0 to A (λ). Assume that A has the Seever property. Then it is easily seen that 
each B ∈ A (λ) admits A ∈ A such that λ(A �B) = 0. Then,

μ̄0(B) = μ0(A) = lim
α

μα(A) = lim
α

μ̄α(B)

If, on the other hand, M ⊂ ba(A )+, then A, A′ ∈ A , B ∈ A (λ) and A ⊂ B ⊂ A′ imply

μ0(A) ≤ lim inf μ̄α(B) ≤ lim sup μ̄α(B) ≤ μ0(A′)

α α
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so that limα μ̄α(B) exists and coincides with μ̄0(B). Setwise convergence of a bounded net is clearly equiv-
alent to weak∗ convergence. �
5. A theorem of Drewnowski and weak compactness

Theorem 4 delivers an interesting extension of a celebrated result originally due to Drewnowski [8] but 
popularized by Diestel and Uhl [7, Theorem, p. 38]. The main insight of this theorem is that the sequence 
mentioned in Theorem 4 may be extracted from a given one.

Theorem 5 (Drewnowski). A disjoint sequence 〈Bn〉n∈N in A admits a subsequence 〈Cn〉n∈N such that 
A1 = σ(C1, C2, . . .) ⊂ A (λ) and λ is countably additive in restriction to A1.

Proof. Denote by S the set of rarefying subsequences, i.e. of those functions σ : N → N which are strictly 
increasing and such that limk σ(k + 1) − σ(k) = ∞. For each σ ∈ S write Bσ =

⋃
k Bσ(k). In the notation 

of Corollary 1, let H = {Bσ : σ ∈ S} and write ABσ
and λ̄Bσ

(as defined in (13) and (14)) more simply 
as Aσ and λ̄σ, respectively. Recall that Bσ ∈ Aσ and that λ̄σ(Bσ) = λ∗(Bσ). Given that H ⊂ I(H ), we 
rewrite (12) as

λ∗(Bσ) = lim
n

inf{
An∈A :

⋃
j≤n Bσj

⊂An

}λ∗(Bσ ∩An)

= lim
n

inf{
An∈A :

⋃
j≤n Bσj

⊂An

} λ̄σ(Bσ ∩An)

= lim
n

λ̄∗
σ

(
Bσ ∩

⋃
j≤n

Bσj

)
(23)

where λ̄∗
σ denotes the outer measure induced by λ̄σ as in (3) (and thus relatively to the algebra Aσ). Consider 

first the eventuality that 
⋃

j Bσj
=

⋃
j≤N Bσj

for some N ∈ N. Given that the sequences σ1, . . . , σN

are rarefying it would then be easy to construct σ ∈ S such that the image {σ(k) : k ∈ N} of σ is 
disjoint from the union of the images of σ1, . . . , σN and so, given that the original sequence 〈Bi〉i∈N is 
disjoint, that Bσ ∩

⋃
j≤N Bσj

= ∅. To this end it is enough to observe that if k is sufficiently large so that 
minj≤N, k′≥k σj(k′ + 1) − σj(k′) > N and if jk = arg maxj≤N σj(k) then there exists at least one integer 
σjk(k) < n ≤ σjk(k) + N which does not appear in none of the sequences σ1, . . . , σN . For such choice of σ, 
(23) gives λ∗(Bσ) = 0 and the proof would be complete upon letting Cn = Bσ(n). Outside of this special 
case it is possible to form σ ∈ S by extracting from each sequence σj at most one index. As a consequence, 
Bσ ∩

⋃
j≤n Bσj

is the union of at most n sets of the original sequence 〈Bi〉i∈N and is thus an element of A . 
But then, applying (23) we obtain

λ∗(Bσ) = lim
n

λ̄∗
σ

(
Bσ ∩

⋃
j≤n

Bσj

)
= lim

k
λ
( ⋃

j≤k

Bσ(j)

)
=

∑
j

λ
(
Bσ(j)

)
≤ λ∗(Bσ) (24)

Let Ck = Bσ(k). Then, (24) implies that 
⋃

k Ck ∈ A (λ) and that λ(
⋃

k Ck) =
∑

k λ(Ck). If α ⊂ N the same 
conclusion applies to Cα =

⋃
k∈α Ck, either trivially (if α is finite) or by representing α in the form of a 

subsequence of σ, itself an element of S. �
The original claim of Drewnowski was formulated for the case in which A is a σ-algebra and, as a 

consequence, the inclusion A1 ⊂ A is trivial. The extension obtained in Theorem 5 seems interesting as it 
essentially allows to assume countable additivity in most proofs involving sequences of sets, in particular 
those related to weak compactness in the space ba(A ). The idea to exploit Drewnowski’s result to prove 
claims on weak compactness is due to Zhang [13]. The following is an extension of his Theorem 1.3.
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Theorem 6 (Zhang). A set M ⊂ ba(A ) is weakly compact if and only if the following conditions jointly 
hold: (i) λ � M for some λ ∈ ba(A )+ and (ii) the family M̄ = {μ̄ : μ ∈ M }, with μ̄ the extension of μ to 
A (λ), is a weak∗ compact subset of ba(A (λ)).

Proof. If M is weakly compact then by [9, IV.9.12] there exists λ ∈ ba(A )+ such that M is uniformly 
absolutely continuous with respect to λ. Let 〈Bn〉n∈N be a sequence in A (λ) and limn λ(Bn) = 0. Let 
for each n = 1, 2, . . . , A′

n, A
′′
n ∈ A be such that A′

n ⊂ Bn ⊂ A′′
n and supμ∈M |μ|(A′′

n\A′
n) < ε. Then, 

limn λ(A′
n) = 0 so that limn supμ∈M μ(A′

n) = 0 and

lim
n

sup
μ∈M

μ̄(Bn) ≤ lim sup
n

sup
μ∈M

μ(A′
n) + ε = ε

so that M̄ is relatively weakly compact again by [9, IV.9.12]. If 〈μ̄α〉α∈A is a net in M̄ that converges 
setwise to μ̄0 ∈ ba(A (λ)) and μ0 = μ̄0|A then necessarily μ0 is the setwise limit of the net 〈μα〉α∈A, i.e. 
μ0 ∈ M and thus μ̄0 ∈ M̄ . Thus M̄ is weakly closed and then weakly compact. Weak∗ compactness follows 
trivially.

Assume that M̄ is weak∗ compact. It is then weakly closed and from [3, p. 284] and [7, Proposition 17, 
p. 8] it is enough to show that for no disjoint sequence 〈Bn〉n∈N in A (λ) one may have

lim
n

sup
μ∈M

|μ̄(Bn)| > 0 (25)

Of course, (25), if true, remains valid upon passing to any subsequence so that, by Theorem 5, we can assume 
that (λ and therefore) each μ̄ ∈ M̄ is countably additive in restriction to A1 = σ(B1, B2, . . .). However, the 
set {μ̄|A1 : μ ∈ M } is a weak∗ compact subset of ca(A1) dominated by λ and is thus uniformly countably 
additive by [13, Theorem 1.1], a fact contradicting (25). �

The extension of M to ba(A (λ)) as a weak∗ compact set is a delicate property, as we have seen already. 
The claim of Theorem 6 simplifies considerably in the two special cases considered in Lemma 2 as then 
condition (ii) may be replaced with the assumption that M is weak∗ compact. In general, finding conditions 
on M which imply weak∗ compactness of M̄ may be difficult.

The key step in the preceding proof is obtaining a weak∗ compact set of countably additive measures, 
such as the set {μ̄|A1 : μ ∈ M } above. In general it is easy to construct examples of bounded subsets of 
ca(A ) whose weak∗ closure contains non-countably additive elements.

Example 3. Let 〈An〉n∈N be a decreasing sequence in A with An �= ∅ =
⋂

n An. Define

mn(A) =
∑

{ωi∈A∩An} 2−i∑
{ωi∈An} 2−i

A ∈ A

〈mn〉n∈N is norm bounded sequence in ca(A ) and mn(Aj) = 1 for all n ≥ j. If m is a weak∗ cluster point 
then, necessarily m(Ω) = m(An) = 1, for all n and so m is purely finitely additive.

The preceding example may be used to prove the following:

Lemma 3. The following are equivalent: (i) every bounded sequence in ca(A ) has a weak∗ cluster point in 
ca(A ), (ii) A is a compact class (see [2, Definition 2.3.3]) and (iii) ba(A ) = ca(A ).

One should note that the implication (ii) ⇒ (iii) is just [2, Theorem 2.3.4].
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6. Additional implications

Another possible development of Theorem 1 is the following finitely additive version of a theorem of Yan 
[12, Theorem 2, p. 220] which is well known in stochastic analysis and mathematical finance:

Corollary 2 (Yan). Let K ⊂ L1(λ) be convex with 0 ∈ K, write C = K−S (A )+ and denote by C the closure 
of C in L1(λ). The following are equivalent:

(i) for each f ∈ L1(λ)+ with λ(f) > 0 there exists η > 0 such that ηf /∈ C;
(ii) for each A ∈ A with λ(A) > 0 there exists d > 0 such that d1A /∈ C;
(iii) there exists a finitely additive probability P on A such that

(a) K ⊂ L1(P ) and supk∈K P (k) < ∞,
(b) sup{A∈A :λ(A)>0} P (A)/λ(A) < ∞ and
(c) P (A) = 0 if and only if λ(A) = 0.

Proof. The implication (i) ⇒ (ii) is obvious. If A and d are as in (ii) there exists a continuous linear 
functional φA on L1(λ) and a and b such that

sup
x∈C

φA(x) < a < b < φA(d1A)

Given that C contains the convex cone −S (A )+, that S (A )+ is dense in L1(λ)+ and that φA is continuous, 
we conclude that supf∈L1(λ)+ φA(−f) < ∞ i.e. that φA ≥ 0. It follows from [5, Theorem 2] that φA admits 
the representation φA(f) = μA(f) for some μA ∈ ba(λ)+. Moreover,

sup
{B∈A :λ(B)>0}

μA(B)/λ(B) ≤ sup
{f∈L1(λ):‖f‖≤1}

φA(f) = ‖φA‖ < ∞

and supf∈C μ
A(f) < a < b < dμA(A) so that μA meets (a) and (b) above. The inclusion 0 ∈ C implies 

a > 0 so that μA(A) > 0. By normalization we can assume ‖φA‖ ∨ a ≤ 1. The collection M = {μA : A ∈
A , λ(A) > 0} so obtained is dominated by λ and therefore by some m ∈ A(M ), by Theorem 1. Thus 
m ≤ λ and suph∈C m(h) ≤ 1. If A ∈ A and λ(A) > 0 then m � μA implies m(A) > 0. The implication 
(ii) ⇒ (iii) follows upon letting P be the finitely additive probability obtained from m by normalization. 
Let P be as in (iii) so that L1(λ) ⊂ L1(P ), by (b). If f ∈ L1(λ)+ and λ(f) > 0 then f ∧ n converges to f
in L1(λ) [9, III.3.6] so that we can assume that f is bounded. Then, by [2, 4.5.7 and 4.5.8], there exists an 
increasing sequence 〈fn〉n∈N in S (A ) with 0 ≤ fn ≤ f such that fn converges to f in L1(λ) and therefore 
in L1(P ) too. For n large enough, then, λ(fn) > 0 and, fn being positive and simple, P (fn) > 0. But then 
P (f) = limn P (fn) > 0 so that ηf cannot be an element of C for all η > 0 as suph∈C P (h) < ∞. �

An application of Corollary 2 is obtained in [4, Lemma 3.1]. Theorem 5 eventually provides a finitely 
additive version of a useful result of Mukherjee and Summers [11, Lemma 3], illustrating the countable 
structure of the atoms of an additive set function.4

Corollary 3 (Mukherjee and Summers). Let λ have atoms. There exists a countable, pairwise disjoint collec-
tion G1, G2, . . . of λ-atoms of A such that for any λ-atom B ∈ A there exists n ∈ N such that λ(BΔGn) = 0.

Proof. Apply Theorem 5 with H the collection of all λ-atoms of A . Let 〈Hn〉n∈N be the corresponding 
sequence in H and put Gn = Hn\ 

⋃
i<n Hi. Upon passing to a subsequence if necessary we may assume 

4 I am in debt with an anonymous referee for calling my attention on this paper.
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λ(Gn) > 0 so that Gn ∈ H for each n ∈ N. If B ∈ H it follows from (12) that λ(B ∩Gn) > 0 for some n. 
Given that B and Gn are atoms then λ(B\Gn) = λ(Gn\B) = 0. �
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