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1. Introduction

In this paper we investigate the boundary behavior of strictly convex solutions of the following singular 
boundary value problem:

{
detD2u = b(x)f(−u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊆ R
n (n ≥ 2) is a smooth bounded convex domain with positive boundary Gauss curvature and f

admits a singularity at zero. Precisely we assume that f satisfies:
(f1) f ∈ C1(0, ∞), f(s) > 0, f(s) → ∞ as s → 0, and is decreasing on (0, ∞);
(f2) There exists Cf > 0 such that

lim
s→0+

H ′(s)
s∫

0

dτ

H(τ) = −Cf , (1.2)
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where

H(τ) = ((n + 1)F (τ))1/(n+1), ∀ 0 < τ < a

and

F (τ) =
a∫

τ

f(s)ds, ∀ 0 < τ < a

for some constant a > 0. Since we will investigate the boundary behavior of u and u = 0 on the boundary, 
we only need concern the behavior of F (τ) and f(τ) as τ → 0. That is, the choice of a is not essential to 
our results. For convenience, we define ϕ by

ϕ(t)∫
0

dτ

H(τ) = t, ∀ 0 < t < α, (1.3)

where ϕ(α) = a. Actually, the existence of ϕ is obvious since 1
H is increasing and integrable on (0, a].

We also assume that b satisfies:
(b1) b ∈ C3(Ω) and is positive in Ω;
(b2) There exist k(t) ∈ C1(0, δ0) (for some δ0 > 0), which is positive, monotone and integrable, and two 

positive constants b and b such that

b = lim inf
x∈Ω

d(x)→0

b(x)
kn+1(d(x)) ≤ lim sup

x∈Ω
d(x)→0

b(x)
kn+1(d(x)) = b,

where d(x) = dist(x, ∂Ω), and there exists Ck ∈ [0, ∞) such that

lim
t→0+

(
K(t)
k(t)

)′
= Ck,

where K(t) =
t∫
0
k(s)ds, 0 < t < δ0.

The boundary behavior of solutions of (1.1) may involve the curvatures of ∂Ω. For convenience, we intro-
duce some quantities related to boundary curvatures. For every x ∈ ∂Ω, we denote by κ1(x), · · · , κn−1(x)
the principal curvatures of ∂Ω at x, which are positive. We set

M0 = max
x∈∂Ω

n−1∏
i=1

κi(x), m0 = min
x∈∂Ω

n−1∏
i=1

κi(x). (1.4)

The boundary estimates of solutions of (1.1) are related to M0 and m0.
Our main results are summarized as follows.

Theorem 1.1. Let Ω ⊆ R
n (n ≥ 2) be a smooth bounded convex domain with positive boundary Gauss 

curvature. Suppose that f satisfies (f1) and (f2), b satisfies (b1) and (b2). If

Cf > 1 − Ck, (1.5)

where Cf and Ck are the constants defined in (f2) and (b2) respectively, then there exists a unique convex 
solution u of (1.1) and it holds
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1 ≤ lim inf
x∈Ω

d(x)→0

u(x)
−ϕ(ξK(d(x)))

, lim sup
x∈Ω

d(x)→0

u(x)
−ϕ(ξK(d(x)))

≤ 1, (1.6)

where ϕ is defined by (1.3),

ξ =
(

b

M0(1 − C−1
f (1 − Ck))

)1/(n+1)

, ξ =
(

b

m0(1 − C−1
f (1 − Ck))

)1/(n+1)

. (1.7)

Remark 1.2. (i1) The existence of solutions doesn’t need the conditions (f2) and (1.5). We will adopt the 
following Lemma 2.9, Theorem 2.1 in [16] and Theorem 3.1 in [3] to prove it. For more general existence 
results, readers can also refer to [17].

(i2) In (f2), we assume that Cf > 0. If Cf = 0, in some cases, our results still hold. Actually, if b is 
positive and bounded on Ω, we can choose k(t) = 1 in (b2). Then, K(t) = t, k′(t) = 0 and Ck = 1. (1.6) is 

valid for ξ =
(

b
M0

)1/(n+1)
and ξ =

(
b

m0

)1/(n+1)
. If b is unbounded on ∂Ω, there exists a nonincreasing 

function k(t) such that (b2) holds. That is, k′(t) ≤ 0 and Ck ≥ 1. Then we take ξ =
(

b
m0

)1/(n+1)
and the 

second inequality of (1.6) holds. If b = 0 on ∂Ω, there exists a nondecreasing function k(t) such that (b2)

holds. That is, k′(t) ≥ 0 and 0 ≤ Ck ≤ 1. Then we take ξ =
(

b
M0

)1/(n+1)
and the first inequality of (1.6)

holds. All proofs are similar to those of Theorem 1.1. Note that, in the last case, although the supersolution 
−ϕ(ξ

ε
K(d(x))) may not be convex, the first inequality of (1.6) still holds since the comparison principle 

(Lemma 3.1) doesn’t require the supersolution being convex.

Boundary asymptotic behavior of solutions of singular elliptic boundary value problem has been greatly 
studied for the classical Laplace operator. We refer the reader to the papers [8,9,12,22,24] and references 
therein.

Now let us review several important results related to our problem on Monge–Ampère equations.
If f(s) = s−(n+2) and b(x) = 1, the existence of solutions of problem (1.1) was obtained for n = 2 in [14]

and for n ≥ 2 in [3].
Later in the paper [13], Lazer and McKenna considered the problem (1.1) with f(s) = s−γ , γ > 1 and a 

positive b ∈ C∞(Ω), their results are: there exists a unique solution u ∈ C2(Ω) ∩ C(Ω) of (1.1). Moreover, 
there exist two negative constants c1 and c2, such that u satisfies

c1d(x)β ≤ u(x) ≤ c2d(x)β in Ω,

where β = n+1
n+γ and d(x) = dist(x, ∂Ω).

Next, Mohammed [16] established the existence and estimates of solutions of problem (1.1) with f ∈
C∞(0, ∞) being positive and decreasing, and b ∈ C∞(Ω) being positive in Ω. The author showed the 
following results:

(i1) Problem (1.1) admits a convex solution if and only if the problem

{
detD2u = b(x), u < 0 in Ω,

u = 0 on ∂Ω,
(1.8)

admits a convex solution. The existence of convex solutions of problem (1.8) is well known (see [3, Theo-
rem 3]). Based on these results, we will show that there exists a convex solution of (1.1).

(i2) Let f satisfy (f1) and b ∈ C∞(Ω) be positive. Suppose that u is a convex solution of (1.1). Then 
there are positive constants C1 and C2 such that
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C1ϕ(d(x)) ≤ −u(x) ≤ C2ϕ(d(x)) in Ωα,

| Du(x) |≤ C2
ϕ(d(x))
d(x) in Ωα,

where ϕ is the solution of (1.3) and Ωα = {x ∈ Ω : d(x) < α} for some α > 0.
In this paper, we study the asymptotic behavior of solutions of (1.1) for more general b. Here b may be 

unbounded or may vanish on ∂Ω. The above results in [13,16] are special cases of Theorem 1.1. In particular, 
if b is bounded on Ω, the assumption (b2) implies that K(t) = t. For f(s) = s−γ(γ > 1), we deduce 
from (1.3) that 0 < c̃1t

n+1
n+γ ≤ ϕ(t) ≤ c̃2t

n+1
n+γ for two positive constants c̃1 and c̃2. Our results infer that 

C̃1d(x)
n+1
n+γ ≤ u(x) ≤ C̃2d(x)

n+1
n+γ for two negative constants C̃1 and C̃2, which is consistent with Theorem 3.1 

in [13]. For f only satisfying (f1), from our results, we can derive that C1ϕ(d(x)) ≤ u(x) ≤ C2ϕ(d(x)) with 
C1 and C2 being negative constants, which is consistent with Theorem 3.2 in [16].

Cîrstea and Rădulescu [4–6] first introduced the Karamata regular variation theory to study the boundary 
behavior and uniqueness of solutions of boundary blow-up elliptic problems. Since then, this method was 
developed by several authors to research boundary behavior of solutions of singular elliptic problem, see 
[1,7,18,19,22–24] and references therein. In this paper, also by Karamata regular variation theory and 
constructing upper and lower solutions, we investigate the asymptotic behavior of solutions of problem 
(1.1) near the boundary.

The present paper is organized as follows. In Section 2 we provide some preliminary results that will be 
needed later. The proof of Theorem 1.1 is provided in Section 3.

2. Preliminaries

Our approach relies on Karamata regular variation theory established by Karamata in 1930 which is a 
basic tool in stochastic processes (see [2,11,15,20,21] and the references therein). In this section, we first list 
some basic facts with respect to Karamata regular variation theory. For the proofs, we refer to [2,21].

Definition 2.1. A positive measurable function f defined on (0, a), for some a > 0, is called regularly varying 
at zero with index ρ, written f ∈ RV Zρ, if for each ξ > 0 and some ρ ∈ R,

lim
s→0+

f (ξs)
f (s) = ξρ. (2.1)

In particular, when ρ = 0, f is called slowly varying at zero.

Clearly, if f ∈ RV Zρ, then L(s) = f(s)
sρ is slowly varying at zero.

Definition 2.2. A positive measurable function f defined on (0, a), for some a > 0, is called rapidly varying 
at zero, if lim

s→0+
f(s) = ∞, and for each ρ > 1,

lim
s→0+

f(s)sρ = ∞; (2.2)

if lim
s→0+

f(s) = 0, and for each ρ > 1,

lim
s→0+

f(s)
sρ

= 0. (2.3)

Proposition 2.3. (Uniform convergence theorem). If f ∈ RV Zρ, then (2.1) holds uniformly for ξ ∈ [c1, c2]
with 0 < c1 < c2.
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Proposition 2.4. (Representation theorem). A function L is slowly varying at zero if and only if it may be 
written in the form

L(s) = ψ(s) exp

⎛⎝ a1∫
s

y (τ)
τ

dτ

⎞⎠ , s ∈ (0, a1) (2.4)

for some a1 ∈ (0, a), where the functions ψ and y are measurable and for s → 0+, y(s) → 0 and ψ(s) → c0, 
with c0 > 0.

We say that

L̂(s) = c0 exp

⎛⎝ a1∫
s

y (τ)
τ

dτ

⎞⎠ , s ∈ (0, a1) , (2.5)

is normalized slowly varying at zero and

f(s) = sρL̂(s), s ∈ (0, a1), (2.6)

is normalized regularly varying at zero with index ρ (and write f ∈ NRV Zρ).

Proposition 2.5. A function f ∈ RV Zρ belongs to NRV Zρ if and only if

f ∈ C1(0, a1), for some a1 > 0 and lim
s→0+

sf ′ (s)
f (s) = ρ.

Proposition 2.6. If functions L, L1 are slowly varying at zero, then

(i1) Lρ for every ρ ∈ R, c1L + c2L1 (c1 ≥ 0, c2 ≥ 0 with c1 + c2 > 0), L ◦L1 (if L1(s) → 0 as s → 0+), are 
also slowly varying at zero.

(i2) For every ρ > 0 and s → 0+,

sρL(s) → 0, s−ρL(s) → ∞.

(i3) For ρ ∈ R and s → 0+, ln(L(s))
ln s → 0 and ln(sρL(s))

ln s → ρ.

Proposition 2.7. If f1 ∈ RV Zρ1 , f2 ∈ RV Zρ2 , then f1f2 ∈ RV Zρ1+ρ2 and f1 ◦ f2 ∈ RV Zρ1ρ2 .

Proposition 2.8. (Asymptotic behavior) If a function L is slowly varying at zero, then for a > 0 and t → 0+,

(i1)
t∫
0
sρL (s) ds ∼= (1 + ρ)−1

t1+ρL (t), for ρ > −1;

(i2)
a∫
t

sρL (s) ds ∼= (−1 − ρ)−1
t1+ρL (t), for ρ < −1.

Based on the above results, we show the following three lemmas that will be used to prove Theorem 1.1.

Lemma 2.9. Let k and K be the functions given by (b2). Then

(i1) If k is non-decreasing, 0 ≤ Ck ≤ 1; and if k is non-increasing, Ck ≥ 1;
(i2) lim K(t)

k(t) = 0 and lim K(t)k′(t)
k2(t) = 1 − Ck;
t→0+ t→0+
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(i3) If Ck > 0, K ∈ NRV Z1/Ck
and k ∈ NRV Z(1−Ck)/Ck

;
(i4) If Ck = 1, k is normalized slowly varying at zero;
(i5) If Ck = 0, k is rapidly varying at zero.

Proof. (i1) Since K ′(t) = k(t) and then 
(

K(t)
k(t)

)′
= 1 − K(t)k′(t)

k2(t) , (i1) holds.

(i2) If k is non-increasing, it is clear that lim
t→0+

K(t)
k(t) = 0 since lim

t→0+
K(t) = 0. If k is non-decreasing, by

0 ≤ K(t)
k(t) ≤ k(t)t

k(t) = t,

we deduce

lim
t→0+

K(t)
k(t) = 0.

Since

lim
t→0+

K (t)k′(t)
k2 (t) = 1 − lim

t→0+

(
K (t)
k (t)

)′
,

the second equality in (i2) holds.
(i3) Since

lim
t→0+

tk(t)
K(t) = lim

t→0+

t
K(t)
k(t)

= lim
t→0+

1(
K(t)
k(t)

)′ = 1
Ck

and

lim
t→0+

tk′(t)
k(t) = lim

t→0+

tk(t)
K(t)

K(t)k′(t)
k2(t) = lim

t→0+

tk(t)
K(t) lim

t→0+

K(t)k′(t)
k2(t) = 1 − Ck

Ck
, (2.7)

we have, by Proposition 2.5, K ∈ NRV Z1/Ck
and k ∈ NRV Z(1−Ck)/Ck

.
(i4) It can be obtained immediately from (i3), (2.5) and (2.6).
(i5) If Ck = 0, it follows from (2.7) that lim

t→0+

tk′(t)
k(t) = +∞. That is, for any M > 1, there exists tM > 0

small enough such that

k′(t)
k(t) >

M + 1
t

, ∀ 0 < t < tM .

Integrating the above inequality with respect to t,

ln(k(tM )) − ln(k(t)) > (M + 1)(ln tM − ln t), ∀ 0 < t < tM .

Therefore,

0 <
k(t)
tM

<
k(tM )

(tM )M+1 t, ∀ 0 < t < tM .

Let t → 0+ and then we obtain that k is rapidly varying at zero by Definition 2.2. �
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Lemma 2.10. Let f satisfy (f1) and (f2), and F be defined in (f2). We have

(i1) Cf ≤ 1;
(i2) If 0 < Cf < 1, f satisfying (f2) is equivalent to F ∈ NRV Z(n+1)Cf/(Cf−1),

and moreover, it implies f ∈ RV Z(nCf+1)/(Cf−1);
(i3) If Cf = 1, F is rapidly varying to infinity at zero.

Proof. (i1) Since

H(t) = ((n + 1)F (t))1/(n+1) and F (t) =
a∫

t

f(τ)dτ, ∀ 0 < t < a,

we have

H(t) ≥ H(s) and
s∫

0

dt

H(t) ≤ s

H(s) , ∀ 0 < t ≤ s < a.

Hence

0 ≤ H(s)
s∫

0

dt

H(t) ≤ H(s) s

H(s) = s.

It follows that

0 ≤ lim
s→0+

H(s)
s∫
0

dt
H(t)

s
= lim

s→0+
H ′(s)

s∫
0

dt

H(t) + 1 = 1 − Cf , (2.8)

i.e. Cf ≤ 1.
(i2) If f satisfies (f2), we see, by (2.8),

lim
s→0+

sH ′(s)
H(s) = lim

s→0+

s

H(s)
s∫
0

dt
H(t)

H ′(s)
s∫

0

dt

H(t) = Cf

Cf − 1 . (2.9)

Besides,

Cf

Cf − 1 = lim
s→0+

sH ′(s)
H(s) = lim

s→0+

−sf(s)
(n + 1)F (s) = lim

s→0+

sF ′(s)
(n + 1)F (s) . (2.10)

Therefore, H ∈ NRV ZCf/(Cf−1) and F ∈ NRV Z(n+1)Cf/(Cf−1) by Proposition 2.5. That is, f satisfying 
(f2) implies that F ∈ NRV Z(n+1)Cf/(Cf−1).

Now we assume that F ∈ NRV Z(n+1)Cf/(Cf−1). Then H ∈ NRV ZCf/(Cf−1), i.e.,

lim
+

sH ′(s) = Cf
s→0 H(s) Cf − 1



86 D. Li, S. Ma / J. Math. Anal. Appl. 454 (2017) 79–93
by Proposition 2.5. Therefore, from (2.8),

lim
s→0+

H ′(s)
s∫

0

dt

H(t) = lim
s→0+

sH ′(s)
H(s) lim

s→0+

H(s)
s

s∫
0

dt

H(t)

= Cf (1 − Cf )
Cf − 1 = −Cf .

That is, f satisfies (f2).
If F ∈ NRV Z(n+1)Cf/(Cf−1), we see, by (2.5) and (2.6),

F (s) = s(n+1)Cf/(Cf−1)L̂(s), ∀ 0 < s < a1

for some a1 > 0 and L̂ being normalized slowly varying at zero. Taking the derivative with respect to s,

f(s) = s(nCf+1)/(Cf−1)
(

(n + 1)Cf

1 − Cf
+ y(s)

)
L̂(s), ∀ 0 < s < a1,

where y(s) → 0 as s → 0+. It follows from Definition 2.1 and Proposition 2.4 that f ∈ RV Z(nCf+1)/(Cf−1).
(i3) If Cf = 1, we deduce, from (2.10),

lim
s→0+

sF ′(s)
F (s) = −∞.

That is, for an arbitrary M > 1, there exists l = l(M) > 0 small enough such that

F ′(s)
F (s) < −M + 1

s
, ∀ 0 < s < l.

Integrating the above inequality with respect to s, we obtain

lnF (l) − lnF (s) < −(M + 1)(ln l − ln s), ∀ 0 < s < l.

Consequently,

F (l)
F (s) <

(
l

s

)−(M+1)

, ∀ 0 < s < l,

i.e.,

F (s)sM >
F (l)lM+1

s
, ∀ 0 < s < l.

Let s → 0+ and then we see that F is rapidly varying to infinity at zero by Definition 2.2. �
Lemma 2.11. Let f satisfy (f1) and (f2). Recall that ϕ satisfies

ϕ(t)∫
0

((n + 1)F (τ))−1/(n+1)
dτ = t, ∀ 0 < t < α (2.11)

with ϕ(α) = a. We have

(i1) ϕ(0) = 0, ϕ(t) > 0, ϕ′(t) = ((n + 1)F (ϕ(t)))1/(n+1),
and ϕ′′(t) = − ((n + 1)F (ϕ(t)))(1−n)/(n+1)

f(ϕ(t));
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(i2) lim
t→0+

ϕ′(t)
tϕ′′(t) = − 1

Cf
;

(i3) ϕ ∈ NRV Z1−Cf
;

(i4) ϕ′ ∈ NRV Z−Cf
;

(i5) If (1.5) holds, lim
t→0+

t
ϕ(ξK(t)) = 0 for ξ ∈ [c1, c2] with 0 < c1 < c2.

Proof. (i1) By (2.11), it is easy to see that (i1) holds.
(i2) Since

H(t) = ((n + 1)F (t))1/(n+1) and H ′(t) = −((n + 1)F (t))−n/(n+1)
f(t),

we have, by (2.11),

lim
t→0+

ϕ′ (t)
tϕ′′ (t) = lim

t→0+

1
−t((n + 1)F (ϕ (t)))−n/(n+1)

f (ϕ (t))

= lim
t→0+

1

−
ϕ(t)∫
0

((n + 1)F (τ))−1/(n+1)
dτ((n + 1)F (ϕ (t)))−n/(n+1)

f (ϕ (t))

= lim
s→0+

1

H ′ (s)
s∫
0

(H(τ))−1
dτ

= − 1
Cf

.

(i3) From (i1), (2.8) and (2.11), we derive

lim
t→0+

tϕ′(t)
ϕ(t) = lim

t→0+

tH(ϕ(t))
ϕ(t) = lim

s→0+

H(s)
s

s∫
0

(H(τ))−1
dτ = 1 − Cf .

That is, ϕ ∈ NRV Z1−Cf
.

(i4) It can be directly obtained from (i2).
(i5) If (1.5) holds, by Lemma 2.10(i1), we have Ck > 0. Lemma 2.9(i3) and (i3) imply that

K ∈ NRV Z 1
Ck

, ϕ ∈ NRV Z1−Cf
.

From Proposition 2.7,

ϕ(K(t)) ∈ NRV Zρ,

where ρ = 1−Cf

Ck
< 1 and then

t

ϕ(ξK(t)) ∈ NRV Z1−ρ

with 1 − ρ > 0. That is, there exists L̂(t) being normalized slowly varying at zero, such that

t

ϕ(ξK(t)) = t1−ρL̂(t), 0 < t < a1

for some small a1 > 0. Therefore, it follows from Proposition 2.6(i2) that

lim
t→0+

t

ϕ(ξK(t)) = 0. �
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3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We first present the following Lemma and refer to Lemma 2.1 in 
[13] for its proof.

Lemma 3.1. (The comparison principle) Let Ω be a bounded domain in Rn with n ≥ 2, and u1, u2 ∈
C2(Ω) ∩C(Ω). Suppose that g(x, η) is defined for x ∈ Ω and η in some interval containing the ranges of u1
and u2. If

(i1) g(x, η) is increasing in η for all x ∈ Ω;
(i2) the matrix D2u1 is positive definite in Ω;
(i3) detD2u1 ≥ g(x, u1) in Ω;
(i4) detD2u2 ≤ g(x, u2) in Ω;
(i5) u2 ≥ u1 on ∂Ω,

then we have

u2 ≥ u1 in Ω.

Before giving the proof of Theorem 1.1, we recall some results on the distance function. Let d(x) =
dist(x, ∂Ω) = inf

y∈∂Ω
|x− y|. For any δ > 0, we define

Ωδ = {x ∈ Ω : 0 < d(x) < δ}.

If Ω is bounded and ∂Ω ∈ Cm for m ≥ 2, by Lemma 14.16 in [10], there exists δ1 > 0 such that

d ∈ Cm(Ωδ1).

Let x ∈ ∂Ω, satisfying dist(x, ∂Ω) = |x− x|, be the projection of the point x ∈ Ωδ1 to ∂Ω, and κi(x)(i =
1, · · · , n − 1) be the principal curvatures of ∂Ω at x, then, in terms of a principal coordinate system at x, 
we have, by Lemma 14.17 in [10],

{
Dd(x) = (0, 0, · · · , 1),

D2d(x) = diag
[

−κ1(x̄)
1−d(x)κ1(x̄) , · · · ,

−κn−1(x̄)
1−d(x)κn−1(x̄) , 0

]
.

(3.1)

Proof of Theorem 1.1. The existence of solutions of (1.1) can be obtained by the following way. We consider 
two cases: Ck > 0 and Ck = 0, which is defined by (b2).

If Ck > 0, we see from Lemma 2.9(i3) that

k ∈ NRV Z(1−Ck)/Ck
.

By (2.5) and (2.6),

k(t) = t
1

Ck
−1

L̂(t), ∀ 0 < t < a1

for some a1 > 0 and L̂ being normalized slowly varying at zero. Furthermore, by Proposition 2.6(i2), we see 
that for 0 < α̃ < 1

Ck
, L̂(t)tα̃ → 0 as t → 0+. Therefore, by (b2), there exists δ̃ > 0 sufficiently small such 

that
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b(x) ≤ 2bd(x)
(

1
Ck

−1
)
(n+1)

(
L̂(d(x))

)n+1
≤ 2bd(x)

(
1

Ck
−α̃−1

)
(n+1) in Ωδ̃.

It follows that

b(x) ≤ C̃d(x)(
1

Ck
−α̃−1)(n+1) in Ω, (3.2)

for some positive constant C̃ since b(x) ∈ C3(Ω). By Theorem 3 in [3], problem (1.8) admits a convex 
solution. Therefore problem (1.1) admits a convex solution u by Theorem 2.1 in [16].

If Ck = 0, by Lemma 2.9(i5), k is rapidly varying to zero. Definition 2.2 implies that for any ρ > 1, 
k(t)
tρ → 0 as t → 0+. Hence (3.2) holds with 1

Ck
− α̃− 1 being replaced by any ρ > 1. That is, problem (1.1)

also admits a convex solution.
The uniqueness of solutions of (1.1) can be derived immediately by Lemma 3.1.
Now we prove the estimates (1.6).
For any ε > 0, let

ξ
ε

=
(

(b− ε)(1 − ε) − ε

M0(1 − C−1
f (1 − Ck))

)1/(n+1)

(3.3)

and

ξε =
(

(b + ε)(1 + ε) + ε

m0(1 − C−1
f (1 − Ck))

)1/(n+1)

, (3.4)

where b, b and Ck, M0 and m0, and Cf are given by (b2), (1.4) and (f2) respectively. Define

uε(x) = −ϕ(ξ
ε
K(d(x))) and uε(x) = −ϕ(ξεK(d(x))) in Ω. (3.5)

Choose v ∈ C2(Ω) such that

D2v > 0 on Ω, v = 0 on ∂Ω. (3.6)

By Δv > 0 on Ω and the Hopf lemma, there exist negative constants c1 and c2 such that

c1d(x) ≤ v(x) ≤ c2d(x) on Ω. (3.7)

We claim

u + Mv ≤ uε in Ωδε (3.8)

and

uε + Mv ≤ u in Ωδε , (3.9)

where M and δε are positive constants (depending on ε) which will be determined later.
First, we prove that uε is a supersolution and uε is a subsolution of (1.1) in Ωδε . By Lemma 2.9(i2),

lim
x∈Ω

K(d(x))k′(d(x))
k2(d(x)) = 1 − Ck. (3.10)
d(x)→0
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Since

K ∈ C2(0, δ0) ∩ C[0, δ0), K(0) = 0

and

K(d(x)) =
ϕ(K(d(x)))∫

0

((n + 1)F (τ))−1/(n+1)
dτ ,

we see, by Lemma 2.11(i1) and Lemma 2.11(i2),

lim
x∈Ω

d(x)→0

((n + 1)F (ϕ (K (d (x)))))n/(n+1)

K (d (x)) f (ϕ (K (d (x)))) = 1
Cf

. (3.11)

Since, by (3.3),

ξn+1
ε

M0(1 − C−1
f (1 − Ck)) − (b− ε)(1 − ε) = −ε, (3.12)

we deduce from (3.10)–(3.12) that there is δε > 0 sufficiently small such that for x ∈ Ωδε ,

ξn+1
ε

M0

(
1 − K(d(x))k′(d(x))

k2(d(x))

(
(n+1)F

(
ϕ
(
ξ
ε
K(d(x))

)))n/(n+1)

ξ
ε
K(d(x))f

(
ϕ
(
ξ
ε
K(d(x))

))
)

−(b− ε)(1 − ε) < 0.
(3.13)

Similarly, for x ∈ Ωδε ,

ξ
n+1
ε m0

(
1 − K(d(x))k′(d(x))

k2(d(x))

(
(n+1)F

(
ϕ
(
ξεK(d(x))

)))n/(n+1)

ξεK(d(x))f
(
ϕ
(
ξεK(d(x))

)) )
−(b + ε)(1 + ε) > 0.

(3.14)

Since

lim
x∈Ω

d(x)→0

n−1∏
i=1

(1 − d (x)κi (x)) = 1,

where x is the point on ∂Ω such that d(x) = |x − x|, we also have, for x ∈ Ωδε ,

1 − ε <

n−1∏
i=1

(1 − d (x)κi (x)) < 1 + ε. (3.15)

Moreover, it follows from (b2) that for x ∈ Ωδε ,

(b− ε)kn+1(d(x)) < b(x) < (b + ε)kn+1(d(x)). (3.16)

In view of (3.5), we see, obviously,

uε(x) < 0 in Ωδε , uε(x) = 0 on ∂Ω.
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By direct computation,

(uε (x))ij = (−ϕ(ξ
ε
K(d(x))))ij

= −ξ
ε

[
ξ
ε
ϕ′′

(
ξ
ε
K (d (x))

)
k2 (d (x)) + ϕ′

(
ξ
ε
K (d (x))

)
k′ (d (x))

]
didj

− ξ
ε
ϕ′

(
ξ
ε
K (d (x))

)
k (d (x)) dij

= ξ2
ε
k2(d(x))f(ϕ(ξ

ε
K(d(x))))

(
(n + 1)F

(
ϕ
(
ξ
ε
K (d (x))

)))(1−n)/(n+1)

×
[
1 − K(d(x))k′(d(x))

k2(d(x))

(
(n+1)F

(
ϕ
(
ξ
ε
K(d(x))

)))n/(n+1)

ξ
ε
K(d(x))f

(
ϕ
(
ξ
ε
K(d(x))

))
]
didj

− ξ
ε
k (d (x))

(
(n + 1)F

(
ϕ
(
ξ
ε
K (d (x))

)))1/(n+1)
dij .

The last equality is obtained from Lemma 2.11(i1). Using (3.10), (3.11) and (1.5),

1 − lim
x∈Ω

d(x)→0

K(d(x))k′(d(x))
k2(d(x))

(
(n+1)F

(
ϕ
(
ξ
ε
K(d(x))

)))n/(n+1)

ξ
ε
K(d(x))f

(
ϕ
(
ξ
ε
K(d(x))

))
= 1 − 1−Ck

Cf
> 0.

Therefore, for δε sufficiently small,

1 − K (d (x)) k′ (d (x))
k2 (d (x))

(
(n + 1)F

(
ϕ
(
ξ
ε
K (d (x))

)))n/(n+1)

ξ
ε
K (d (x)) f

(
ϕ
(
ξ
ε
K (d (x))

)) ≥ 0 in Ωδε .

Since the matrix (didj) is nonnegative definite and the matrix (dij) is nonpositive definite, we have,

D2uε ≥ 0 in Ωδε .

Therefore, by (3.1), (3.13) and (3.15), we derive that for x ∈ Ωδε ,

detD2uε (x) − (b− ε) kn+1 (d (x)) f (−uε (x))

= (−1)n
(
ξ
ε
ϕ′

(
ξ
ε
K (d (x))

)
k (d (x))

)n−1 n−1∏
i=1

−κi(x)
1−d(x)κi(x)

×
[
ξ2
ε
ϕ′′

(
ξ
ε
K (d (x))

)
k2 (d (x)) + ξ

ε
ϕ′

(
ξ
ε
K (d (x))

)
k′ (d (x))

]
− (b− ε)kn+1 (d (x)) f

(
ϕ
(
ξ
ε
K (d (x))

))
≤ (1 − ε)−1

kn+1 (d (x)) f
(
ϕ
(
ξ
ε
K (d (x))

))
×
[
ξn+1
ε

M0

(
1 − K(d(x))k′(d(x))

k2(d(x))

(
(n+1)F

(
ϕ
(
ξ
ε
K(d(x))

)))n/(n+1)

ξ
ε
K(d(x))f

(
ϕ
(
ξ
ε
K(d(x))

))
)

− (b− ε) (1 − ε)
]

≤ 0,

i.e.,

detD2uε (x) ≤ (b− ε) kn+1 (d (x)) f (−uε (x)) ≤ b(x)f (−uε (x)) in Ωδε . (3.17)

Analogously,

detD2uε (x) ≥
(
b + ε

)
kn+1 (d (x)) f (−uε (x)) ≥ b(x)f (−uε (x)) in Ωδε . (3.18)
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Next, we choose a sufficiently large constant M > 0, such that

u + Mv ≤ uε on Γ = {x ∈ Ω : d(x) = δε}.

Since

u = v = uε = 0 on ∂Ω

and

detD2(u + Mv) ≥ detD2u = b(x)f(−u) ≥ b(x)f(−(u + Mv)) in Ω,

we deduce, from (3.17) and Lemma 3.1,

u + Mv ≤ uε in Ωδε ,

i.e., (3.8) holds. In the same way, we show (3.9) holds.
Finally, (3.5), (3.7) and (3.8) imply that

u

−ϕ(ξ
ε
K(d(x))) ≥ 1 − c1d(x)

−ϕ(ξ
ε
K(d(x))) in Ωδε .

Since, by Lemma 2.11 (i5),

lim
x∈Ω

d(x)→0

d(x)
ϕ(ξ

ε
K(d(x))) = 0,

we have

1 ≤ lim inf
x∈Ω

d(x)→0

u(x)
−ϕ(ξ

ε
K(d(x))) .

Let ε → 0 and then we conclude

1 ≤ lim inf
x∈Ω

d(x)→0

u(x)
−ϕ(ξK(d(x))) .

Similarly, we obtain

lim sup
x∈Ω

d(x)→0

u(x)
−ϕ(ξK(d(x)))

≤ 1.

This completes the proof of (1.6). �
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