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In [3] S.J. Bhatt and H.V. Dedania exposed certain classes of Banach algebras 
in which every element is a topological divisor of zero. We identify a new (large) 
class of Banach algebras with the aforementioned property, namely, the class of non-
unital Banach algebras which admits either an approximate identity or approximate 
units. This also leads to improvements of results by R.J. Loy and J. Wichmann, 
respectively. If we observe that every single example that appears in [3] belongs 
to the class identified in the current paper, and, moreover, that many of them 
are classical examples of Banach algebras with this property, then it is tempting to 
conjecture that the classes exposed in [3] must be contained in the class that we have 
identified here. However, we show somewhat elusive counterexamples. Furthermore, 
we investigate the role completeness plays in the results and show, by giving a 
suitable example, that the assumptions are not superfluous. The ideas considered 
here also yields a pleasing characterization: The socle of a semisimple Banach algebra 
is infinite-dimensional if and only if every socle-element is a topological divisor of 
zero in the socle.

© 2017 Elsevier Inc. All rights reserved.

1. Identities, approximate identities and TDZ

An element y in a normed algebra (A, ‖ · ‖) is called a topological divisor of zero (or TDZ ) if there exists 
a sequence (xn) ⊆ A such that ‖xn‖ = 1 for all n ∈ N and either yxn → 0 or xny → 0. Furthermore, if 
yxn → 0 then y is called a left TDZ, and similarly, if xny → 0 then y is a right TDZ. If y is a left and right 
TDZ (where the sequences need not coincide), then y is a two-sided TDZ. The collection of all topological 
divisors of zero in a normed algebra A will be denoted by Z(A).

In [3] S.J. Bhatt and H.V. Dedania established the following result concerning complex Banach algebras 
in which every element is a TDZ:
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Theorem 1.1. [3, Theorem 1] Every element of a complex Banach algebra A is a TDZ, if at least one of the 
following holds:

(i) A is infinite dimensional and admits an orthogonal basis.
(ii) A is a non-unital uniform Banach algebra in which the Shilov boundary ∂A coincides with the carrier 

space M(A).
(iii) A is a non-unital hermitian Banach ∗-algebra with continuous involution.

We now expose another class of Banach algebras in which every element is a TDZ. Firstly, however, we 
need to recall the following definitions:

A net (eλ)λ∈Λ in a normed space A is called a left approximate identity in A if lim eλx = x for all x ∈ A. 
Similarly (eλ)λ∈Λ is a right or two-sided approximate identity in A if lim xeλ = x for all x ∈ A or lim eλx = x

and lim xeλ = x for all x ∈ A, respectively. An approximate identity (eλ)λ∈Λ is said to be bounded if there 
exists a positive constant K such that ‖eλ‖ ≤ K for each λ ∈ Λ.

Theorem 1.2. Let A be a Banach algebra without a unit (resp. left unit, resp. right unit). Assume that A has 
a two-sided (resp. left, resp. right) approximate identity (eλ)λ∈Λ (which is not necessarily bounded). Then 
every element of A is a two-sided (resp. right, resp. left) TDZ.

Proof. We shall restrict ourselves to proving the two-sided case, as the other cases are obtained similarly. 
Firstly note that (eλ)λ∈Λ does not converge, for then A will have a unit which contradicts our hypothesis 
on A. Consequently, there exists a fixed ε > 0 such that the following holds true: For each λ0 ∈ Λ, there 
exist λ1, λ2 ∈ Λ such that λ1 ≥ λ0, λ2 ≥ λ0 and ‖eλ1 − eλ2‖ ≥ ε. If this was not the case then we obtain 
the contradiction eλ → eλ0 for some λ0 ∈ Λ. Let x ∈ A be arbitrary and denote by B(x, δ) the open ball 
centered at x with radius δ > 0. Since (xeλ)λ∈Λ converges to x, for each n ∈ N, we can find a λn ∈ Λ such 
that xeλ ∈ B (x, 1/n) whenever λ ≥ λn. Moreover, by the preceding paragraph, we can find αn, βn ∈ Λ
such that αn ≥ λn, βn ≥ λn and ‖eαn

− eβn
‖ ≥ ε. For each n ∈ N, let yn := eαn

− eβn
. Then xyn → 0 as 

n → ∞ and (yn) does not converge to 0. This is sufficient to conclude that x is a left TDZ. Similarly, it can 
be shown that x is a right TDZ. This completes the proof. �
Corollary 1.3. Let A be a Banach algebra without a unit (resp. left unit, resp. right unit). Assume that A has 
a two-sided (resp. left, resp. right) approximate identity (eλ)λ∈Λ (which is not necessarily bounded). Then 
there exists a net (yμ)μ∈Λ0

in A such that:

(i) yμx → 0 and xyμ → 0 for every x ∈ A (resp. yμx → 0, resp. xyμ → 0).
(ii) yμ � 0.

Proof. Suppose that the nonunital Banach algebra A has a two-sided approximate identity (eλ)λ∈Λ (the 
other cases follow similarly). Recall from the proof of Theorem 1.2 that there exists an ε > 0 such that for 
each λ0 ∈ Λ, there exist λ1, λ2 ∈ Λ such that λ1 ≥ λ0, λ2 ≥ λ0 and ‖eλ1 − eλ2‖ ≥ ε. We now define

Λ0 := {(α, γ) ∈ Λ × Λ : ‖eα − eγ‖ ≥ ε}

and for (α1, γ1) , (α2, γ2) ∈ Λ0, (α1, γ1) ≤ (α2, γ2) if and only if α1 ≤ α2 and γ1 ≤ γ2 in Λ. We claim that 
(Λ0,≤) is a directed set: Reflexivity and transitivity follows readily from the fact that Λ is directed. So let 
(α1, γ1) , (α2, γ2) ∈ Λ0. Since Λ is directed, there exists a λ0 such that λ0 ≥ αj and λ0 ≥ γj for j = 1, 2. Now, 
by hypothesis, there exists β1, β2 ∈ Λ such that β1 ≥ λ0, β2 ≥ λ0 and ‖eβ1 − eβ2‖ ≥ ε. Hence, (β1, β2) ∈ Λ0
and (αj , γj) ≤ (β1, β2) for j = 1, 2. This proves our claim. For each μ := (α, γ) ∈ Λ0, let yμ := eα − eγ . 
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We now show that (yμ)μ∈Λ0
is the desired net: Certainly (ii) is satisfied since ‖yμ‖ ≥ ε for all μ ∈ Λ0. It 

therefore remains to verify (i). Let x ∈ A be arbitrary, and recall that (eλx)λ∈Λ converges to x. Fix any 
δ > 0 and consider the open ball B (0, δ). Since eλx → x, there exists a λ0 ∈ Λ such that eλx ∈ B (x, δ/2)
whenever λ ≥ λ0. Moreover, there exists λ1, λ2 ∈ Λ such that λ1 ≥ λ0, λ2 ≥ λ0 and ‖eλ1 − eλ2‖ ≥ ε. Thus, 
(λ1, λ2) ∈ Λ0. Now, if (α, γ) ∈ Λ0 and (α, γ) ≥ (λ1, λ2), then α ≥ λ1 ≥ λ0 and γ ≥ λ2 ≥ λ0. Consequently,

‖(eα − eγ)x‖ = ‖eαx− x + x− eγx‖

≤ ‖eαx− x‖ + ‖eγx− x‖

<
δ

2 + δ

2 = δ.

This shows that (α, γ) ≥ (λ1, λ2) implies (eα − eγ)x ∈ B (0, δ). Hence, we conclude that the net (yμx)μ∈Λ0

converges to 0. Similarly, one can prove that (xyμ)μ∈Λ0
converges to 0 since xeλ → x. The result now 

follows. �
Remark. If a net in A satisfies both properties (i) and (ii) in Corollary 1.3, then A is said to consist entirely 
of joint topological divisors of zero (see [15, p. 88]).

Completeness plays a central role in the proof of Theorem 1.2. The next example emphasizes this. It 
exhibits a non-unital normed algebra which has a bounded two-sided approximate identity, but which has 
at least one element which is not a TDZ:

Example 1.4. Let B(H) be the Banach algebra of bounded linear operators from a infinite dimensional 
complex Hilbert space H into itself. Denote by A the C∗-subalgebra of B(H) generated by the identity 
operator IH and K(H), the ideal of compact operators on H. Fix any non-algebraic operator T ∈ K(H)
(for instance a compact operator with an infinite spectrum). We now define B to be the subalgebra of A
generated by the element T + IH . Finally, if we denote by F (H) the ideal of finite rank operators in B(H), 
then by [4, Proposition 3] C := F (H) +B is a dense non-unital subalgebra of the unital Banach algebra A. 
So there exits a non-unital normed algebra whose completion is unital. Let (En) be the sequence in C such 
that En → IH as n → ∞. Then (En) is a bounded two-sided approximate identity in C. However, if every 
element in C is a TDZ, then by the denseness of C every element of A is a TDZ. But this is absurd since 
IH ∈ A. Hence, C contains at least one element which is not a TDZ.

The closure of a set Y in a topological space X is denoted by cl(Y ). If (A, ‖ · ‖) is a normed space then 
we shall also write cl(A) for the completion of A under the norm ‖ · ‖. It is possible to deduce the following 
from Theorem 1.2:

Corollary 1.5. Let A be a normed algebra and assume that cl(A) does not have a unit (resp. left unit, 
resp. right unit). If A has a two-sided (resp. left, resp. right) approximate identity (eλ)λ∈Λ (which is not 
necessarily bounded), then every element of A is a two-sided (resp. right, resp. left) TDZ (in A).

Proof. If (eλ)λ∈Λ converges in cl(A), then we obtain a contradiction with the hypothesis on cl(A). The 
argument in the proof of Theorem 1.2 now readily establishes the result. �

A similar result holds true for algebras with approximate units. A normed algebra A is said to have left 
approximate units if for every x ∈ A and every ε > 0 there exists a u ∈ A (depending on x and ε) such 
that ‖x − ux‖ < ε. Similarly, in the obvious natural way, we can define the notions of right and two-sided 
approximate units in A. Furthermore we note that A is said to have, for instance, bounded left approximate 
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units if there exists a positive constant K such that for every x ∈ A and every ε > 0 there exists a u ∈ A

(depending on x and ε) such that

‖u‖ ≤ K and ‖x− ux‖ < ε.

Finally we mention that A has, for instance, pointwise-bounded left approximate units if for every x ∈ A

and every ε > 0 there exists a u ∈ A (depending on x and ε) and a positive constant K(x) such that

‖u‖ ≤ K(x) and ‖x− ux‖ < ε.

Theorem 1.6. Let A be a normed algebra such that cl(A) is not unital. If A has left (or right or two-sided) 
approximate units then every element of cl(A) is a TDZ. In particular, every element of a non-unital Banach 
algebra with left approximate units is a TDZ.

Proof. Suppose first a ∈ A is not a TDZ in cl(A). Since A has left approximate units there exists a sequence 
(un) in A such that limuna = a. If (un) is not Cauchy then we can find ε > 0, and two subsequences of (un), 
say (unk

) and (umk
), such that ‖unk

− umk
‖ ≥ ε for all k ∈ N. But then

lim
k

(unk
− umk

)a
‖unk

− umk
‖ = 0

shows that a is a TDZ which contradicts the hypothesis. Thus (un) must be Cauchy, with limit say u ∈ cl(A). 
From this it follows that (u2 − u)a = 0 and hence, if u is not an idempotent, a is a divisor of zero in cl(A)
and thus a TDZ which contradicts the assumption on a. So u is an idempotent satisfying ua = a. Necessarily 
u commutes with a because otherwise, if au − a 	= 0, we get that (au − a)a = 0 so that a is a divisor of 
zero in cl(A) which again contradicts the assumption on a. Thus ua = au = a. But, by assumption, there 
must exist some x ∈ cl(A) such that either ux − x 	= 0 or xu − x 	= 0. If the first instance occurs we have 
a(ux −x) = 0; and if the second case holds (xu −x)a = 0. Again this gives a contradiction. So cl(A) contains 
a dense set of topological divisors of zero, and it follows that each element of cl(A) is a TDZ. �
Remark. Example 1.4 also shows that the assumption that cl(A) is not unital in Theorem 1.6 is not 
superfluous.

In [10, Proposition 3] R.J. Loy proves that if a Banach algebra A does not consist entirely of right (left) 
topological divisors of zero and has a left (right) approximate identity, then it has a bounded left (right) 
approximate identity. In light of Theorem 1.2 much more is true:

Corollary 1.7. Let A be a Banach algebra which does not consist entirely of right (resp. left) topological 
divisors of zero. If A has a left (resp. right) approximate identity, then A has a left (resp. right) unit. In 
particular, if moreover A is commutative, then A is unital.

Loy remarks further, in his paper, that the converse of [10, Proposition 3] is not true. In particular he 
gives an example of a Banach algebra and then observes the following: “..., so that all the elements are 
topological divisors of zero, but has a (countable) bounded approximate identity”. We now know that every 
element is a TDZ (in his example) because it has an approximate identity. In a similar vein J. Wichmann 
states and proves in [14, Theorem 2] that a commutative normed algebra A which does not consist entirely 
of topological divisors of zero has pointwise-bounded approximate units if and only if A has a bounded 
approximate identity. So suppose A has at least one element, say a, which is not a TDZ in A. Then a is 
not a TDZ in the completion of A either. Now if A has a bounded approximate identity (eλ) in A, then 
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it is easy to see that (eλ) is also a bounded approximate identity for cl(A). So again, by Theorem 1.2, 
every element of cl(A) must be a TDZ. But this contradicts the fact that a is not a TDZ in cl(A). Hence, 
under the conditions above, it must in fact be the case that cl(A) is unital. This then is an improvement of 
Wichmann’s result:

Corollary 1.8. Let A be a commutative normed algebra which does not consist entirely of topological divisors 
of zero. If A has approximate units or an approximate identity, then cl(A) is unital.

It is easy to see that the class of Banach algebras identified in Theorem 1.2 contains those Banach algebras 
mentioned in (i) of Theorem 1.1. Indeed, let (en) be the orthogonal basis of A. For each positive integer n, 
set kn :=

∑n
i=1 ei. Then, since each x ∈ A can be expressed as x =

∑∞
m=1 αmem, where the αm’s are scalars, 

and since emen = δmnen, δmn being the Kronecker delta, it readily follows that

lim
n→∞

xkn = lim
n→∞

knx = x

for all x ∈ A. So, in this case, A has a two-sided approximate identity. In particular, S.J. Bhatt and 
V. Dedania pointed out in [3, Example 3.1] that the following algebras have orthogonal bases:

(i) For the unit circle T , the Banach convolution algebra (Lebesgue space) Lp(T ), 1 < p < ∞.
(ii) The Banach sequence algebras c0, 	p (1 ≤ p < ∞), with pointwise multiplication.
(iii) The Hardy spaces Hp(U) (1 < p < ∞) on the open unit disk U .

However, it is significantly more difficult to decide about the containment for the latter two classes of Banach 
algebras in Theorem 1.1. To emphasize this, we revisit some further examples which appear in [3]:

(1) For a locally compact nondiscrete abelian group G, the convolution algebra L1(G) is an example of a 
nonunital hermitian Banach ∗-algebra with continuous involution. Moreover, L1(G) has an approximate 
identity (see for instance [11, p. 321]).

(2) The subalgebras C(T ) (continuous functions) and Cm(T ) (Cm-functions) of L1(T ) with respective 
norms

‖f‖∞ = sup
t∈T

|f(t)| and ‖f‖m = sup
t∈T

m∑

j=0

∣∣f (j)(t)
∣∣

j! ,

are examples of nonunital hermitian Banach ∗-algebras with continuous involution. Moreover, these 
algebras are homogeneous on T . Consequently, it follows from [8, Theorem 2.11] that Fejér’s kernel is 
an approximate identity in both algebras.

The authors of [3] did not explicitly give an example of a Banach algebra satisfying condition (ii) in 
Theorem 1.1. However, by the Gelfand–Naimark Theorem it can straightforwardly be established that 
every non-unital commutative C∗-algebra A satisfies ∂A = M(A). Moreover, it is well known that every 
non-unital commutative C∗-algebra contains bounded approximate units and hence a bounded approximate 
identity (see [1, Lemma 2.10.1] and [5, Proposition 2.9.14(ii)], respectively).

In spite of the above, it turns out that each of the classes (ii) and (iii) in Theorem 1.1 contains a Banach 
algebra without an approximate identity. We discuss these examples below:

Example 1.9. Let D := {z ∈ C : |z| < 1}, cl(D) be the closure of D in C and let I := [0, 1]. Take B to be the 
so-called “tomato can algebra”; that is, B is the uniform algebra of all continuous complex-valued functions 
f on K := cl(D) × I such that the function z 
→ f (z, 1) from cl(D) into C is analytic on D (and continuous 
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on cl(D)). H.G. Dales and A. Ülger have observed in [6, Example 4.8(ii)] that B is natural, that is, K can 
be identified with M(B) via the mapping x 
→ χx, where χx is the evaluation functional at x. Moreover, 
they showed that the closed ideal

A := {f ∈ B : f (0, 1) = 0}

of B does not have an approximate identity. We now prove that ∂A = M(A). Recall that the hull of A
viewed as an ideal of B is given by

H(A) := {χ ∈ M(B) : χ (A) = {0}} .

Certainly, A contains the function

(z, α) 
→ z ((z, α) ∈ K) .

Moreover, since K is a compact Hausdorff space, it follows that K is normal. Hence, by Urysohn’s Lemma, 
for each x ∈ K − (cl(D) × {1}), there exists an f ∈ A such that f (cl(D) × {1}) = {0} and f(x) = 1. 
Consequently, since all the characters in M(B) are evaluation functionals, it readily follows that H(A) ={
χ(0,1)

}
. Now, by [5, Proposition 4.1.11] we may infer that the mapping χ 
→ χ|A from M(B) −H(A) into 

M(A) is a homeomorphism. So M(A) consists of evaluation functionals at the points in K − {(0, 1)}. By 
the definition of a weak∗-open set in M(A), it is easy to see that if xn → x as n → ∞ in K −{(0, 1)}, then 
χxn

→ χx as n → ∞ in M(A). Thus, in order to prove that ∂A = M(A), it will suffice to show that χy ∈ ∂A

for each y ∈ K − (cl(D) × {1}) (since ∂A is closed in M(A)). Let y ∈ K − (cl(D) × {1}) be arbitrary. As 
above we choose f such that f (cl(D) × {1}) = {0} and f(y) = 1. Observe that K is metrizable and denote 
by d its metric. Next we consider the continuous function g : K → C defined by

g(x) = 1
1 + d(x, y) (x ∈ K) .

If we let h(x) = f(x)g(x) for each x ∈ K, then h ∈ A. Moreover, |h(x)| < 1 whenever x ∈ K − {y} and 
h(y) = 1. Hence, |χ(h)| < 1 for all χ ∈ M(A) − {χy} and |χy(h)| = 1. It therefore follows that χy ∈ ∂A for 
each y ∈ K − (cl(D) × {1}), and so, ∂A = M(A) as advertised. This example shows that the hypotheses in 
part (ii) of Theorem 1.1 need not imply that A has an approximate identity.

Example 1.10. Denote by c0 the Banach algebra of all sequences of complex numbers which converge to 0, 
equipped with the norm

‖α‖∞ = sup
k∈N

|αk| (α = (αk) ∈ c0) .

For α = (αk) ∈ c0, set

pn (α) := 1
n

n∑

k=1

k |αk+1 − αk| (n ∈ N) .

Define A := {α ∈ c0 : supn∈N pn (α) < ∞} and

‖α‖ := ‖α‖∞ + p (α) (α ∈ A) ,

where p (α) := supn∈N pn (α). It can then be verified that (A, ‖·‖) is a non-unital complex Banach algebra. 
In fact, since termwise complex conjugation defines an involution on A and ‖α‖ = ‖α∗‖ for all α ∈ A, it 



F. Schulz et al. / J. Math. Anal. Appl. 455 (2017) 1627–1635 1633
readily follows that A is a non-unital hermitian Banach ∗-algebra with continuous involution. This example 
is due to J. Feinstein and is discussed in more rigorous detail in [5, Example 4.1.46]. In particular, it is 
shown there that

A2 := {αβ : α ∈ A, β ∈ A}

is separable, but that A is non-separable. Hence, A does not have an approximate identity. So this example 
shows that the hypotheses in part (iii) of Theorem 1.1 need not imply that A has an approximate identity.

We now proceed to show that there is a large class of normed algebras each containing a two-sided 
approximate identity, but whose completions are non-unital. The following results will be useful in this 
regard:

Theorem 1.11. Let A be a complex semisimple Banach algebra with a unit, and suppose that the socle of A, 
denoted Soc(A), is nonzero. Then Soc(A) has a two-sided approximate identity.

Proof. Let x1, . . . , xn ∈ Soc(A). By [12, Theorem 3.13] there exists a subalgebra B of Soc(A) such that

x1, . . . , xn ∈ B ∼= Mn1 (C) ⊕ · · · ⊕Mnk
(C) ,

where the operations in the latter algebra are all pointwise. Let e be the unit of B. Then xje = exj = xj

for each j ∈ {1, . . . , n}. By the remarks in [7, §1] this is sufficient to infer the existence of a two-sided 
approximate identity in Soc(A). �

Let A be a complex semisimple Banach algebra with a unit. By [13, Theorem 2.2] it follows that Soc(A)
is finite-dimensional if and only if it is closed in A. Moreover, by the remark after Theorem 2.2 in [13] it 
follows that if Soc(A) is finite-dimensional, then Soc(A) has the Wederburn–Artin structure; that is, Soc(A)
is isomorphic as an algebra to Mn1 (C) ⊕ · · · ⊕Mnk

(C) (where the operations in the latter algebra are all 
pointwise).

Proposition 1.12. Let A be a complex semisimple Banach algebra with a unit. Then Soc(A) is finite-
dimensional if and only if the closure of Soc(A) has an identity element.

Proof. By the paragraph preceding the proposition, the forward implication directly follows, and the reverse 
implication will be established if we can prove that if the closure of Soc(A) has an identity element, then 
Soc(A) is closed. To this end, denote by B the closure of Soc(A) in A and let e be the identity element of B. 
Then, since Soc(A) is an ideal, B = eAe. Hence, by [2, Lemma 2.5] it readily follows that B is a semisimple 
Banach algebra with identity e. But Soc(A) is dense in B. Hence, there exists a sequence (en) ⊆ Soc(A)
such that en → e as n → ∞. So, since e is the identity of B, it follows that en must be invertible in B for 
all n sufficiently large. Thus, since Soc(A) is an ideal, it follows that e ∈ Soc(A) and consequently we have 
B ⊆ Soc(A). So Soc(A) is closed which establishes the result. �
Theorem 1.13. Let A be a complex semisimple Banach algebra with a unit. Then Soc(A) is infinite-
dimensional if and only if every element of Soc(A) is a TDZ in Soc(A).

Proof. This follows immediately from Theorem 1.11, Proposition 1.12 and Corollary 1.5. �
A recent paper [6] of H.G. Dales and A. Ülger investigates (various notions of) approximate identities 

in function algebras. In Theorem 1.15 we show that every non-unital commutative Banach algebra A with 
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A 	= Z(A) generates a function (uniform) algebra which does not possess an approximate identity. We first 
need to establish Proposition 1.14.

If A is any Banach algebra, then denote by A1 the standard unitization of A. This turns A into a unital 
Banach algebra via extension.

Proposition 1.14. Let A be a non-unital Banach algebra, and let a ∈ A. Then a is a TDZ in A if and only 
if a is a TDZ in A1.

Proof. The forward implication is obvious. For the reverse implication assume a is a TDZ in A1. Then we 
can find, without loss of generality, a sequence (zn) in A, and a sequence of complex numbers (λn) such 
that

‖zn‖ + |λn| = 1 for all n ∈ N and, lim a(zn + λn1) = 0.

So, the sequence (λn) is bounded, and, by the Bolzano–Weierstrass Principle, we can assume without loss 
of generality that it converges. Say limλn = λ. Thus lim azn = −λa. If λ = 0, then lim azn/‖zn‖ = 0, and 
the proof is complete. Suppose λ 	= 0. Then there is a sequence, say (yn), in A such that lim ayn = a. If (yn)
does not converge then it is not Cauchy in A, and similar to the argument used in the proof of Theorem 1.6
we may conclude that a is a TDZ in A. Assume therefore that (yn) converges; if (yn) has limit, say y ∈ A, 
then a(y2 − y) = 0 from which it follows (as in the proof of Theorem 1.6) that a is a TDZ in A, unless y
is an idempotent of A commuting with a. But if the latter case prevails then, since A is non-unital, and 
y ∈ A, we can again argue as in the proof of Theorem 1.6 to conclude that a is a TDZ in A. �

For a commutative Banach algebra A we denote by x 
→ x̂ the Gelfand transform of A, and write 
Â := {â : a ∈ A}. Â is a normed algebra under the spectral radius ρA(·) for elements of A. That is, if â ∈ Â, 
then ‖â‖ = ρA(a) defines a (possibly incomplete) norm on Â.

Theorem 1.15. Let A be a non-unital commutative Banach algebra. If some a ∈ A is not a TDZ in A then 
cl(Â) does not have an approximate identity.

Proof. If a is not a TDZ in A, then, by Proposition 1.14, a is not a TDZ in A1. A result of Arens’ (see for 
instance [9, p. 48]) then says that a is invertible in some Banach superalgebra, say B, of A1. Thus â cannot 
be a TDZ in Â1. Observe that, since Â1 ∼= (Â)1, â is not a TDZ in Â, and thus also not a TDZ in cl(Â). 
So cl(Â) cannot have an approximate identity. �
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