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where 2 is a smooth bounded domain in R", n > 2s, s € (0,1), (—A)® is the well
2n —

known fractional Laplacian, u € (0,n), 2;, = 2# is the upper critical exponent

n—2s

in the Hardy-Littlewood—Sobolev inequality, 1 < ¢ < 2 and \,§ > 0 are real
parameters. We study the fibering maps corresponding to the functional associated
with (Py ) and show that minimization over suitable subsets of Nehari manifold
renders the existence of at least two non trivial solutions of (Py ) for suitable range
of A and 4.
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1. Introduction

Let Q C R™ be a bounded domain with smooth boundary 99 (at least C?), n > 2s and s € (0,1). We
consider the following nonlinear doubly nonlocal system with critical nonlinearity:
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Iy —

where Q is a smooth bounded domain in R", n > 2s, s € (0,1), u € (0,n), 2, = n
n—

exponent in the Hardy—Littlewood—Sobolev inequality, 1 < ¢ < 2, A\;§ > 0 are real parameters and (—A)®

H# is the upper critical
S

is the fractional Laplace operator defined as

“Aulzr) = n u(x) — u(y)
<A><>2@Rvggfaagd

n+2s
Srr((lis)), I" being the Gamma function.

The fractional Laplacian is the infinitesimal generator of Lévy stable diffusion process and arise in anomalous

where P.V. denotes the Cauchy principal value and C? = 7~ 222571

diffusion in plasma, population dynamics, geophysical fluid dynamics, flames propagation, chemical reactions
in liquids and American options in finance, see [3] for instance.
In the local case, authors in [5] studied the existence of ground states for the nonlinear Choquard equation

P
—Au+V(z)u = % dy | |u/P~%u in R", (1.1)
Q
where p > 1 and n > 3. Recently, Ghimenti, Moroz and Schaftingen [16] proved the existence of least action

nodal solution for the problem
—Au+u = (I, * [u|*)u in R™,

where * denotes the convolution and I, denotes the Riesz potential. Further results related to Choquard
equations can be found in the survey paper [24] and the references therein. Alves, Figueiredo and Yang [1]
proved existence of a nontrivial solution via penalization method for the following Choquard equation

—Au+V(z)u= (|z|™ * F(u))f(u) in R",

where 0 < p < N, N =3, V is a continuous real valued function and F' is the primitive of function f. In
the nonlocal case, Choquard equations involving fractional Laplacian is a recent topic of research. Authors
in [9] obtained regularity, existence, nonexistence, symmetry as well as decays properties for the problem

(=AY’ u+wu = (|J2|*™ * [ul?) |u[P~?u in R,

where w > 0, p > 1 and s € (0,1). Fractional Choquard equations also known as nonlinear fractional
Schrodinger equations with Hartree-type nonlinearity arise in the study of mean field limit of weakly in-
teracting molecules, physics of multi particle systems and the quantum mechanical theory, etc. These are
recently studied by some authors in [6,10,22]. We also refer [2] and [4] for the qualitative behaviour of
Choquard type problems in the semiclassical limit.

Concerning the boundary value problems involving the Choquard nonlinearity, the Brezis—Nirenberg type
problem that is
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2724 inQ, u=0inR"\ Q

|'U,|2*“

—Au = u+ —— dy | u
o
J [z —yl

where Q is bounded domain in R™, was studied by Gao and Yang in [14]. They proved the existence,
multiplicity and nonexistence results for a range of A. Moreover, in [13] authors proved the existence results
for a class of critical Choquard equations in critical case. Among the very recent works, we cite [29] where
Shen, Gao and Yang obtained the existence of multiple solutions for non-homogenous critical Choquard
equation using the variational methods when 0 < A < A1, where A\; denotes the first eigenvalue of —A with
Dirichlet boundary condition.

Coming to the system of equations, elliptic systems involving fractional Laplacian and homogeneous
nonlinearity have been studied in [17,20,11] using variational methods. We also refer [23] to readers for a
detailed study on variational methods for fractional elliptic problems. Guo et al. in [19] studied a nonlocal
system involving fractional Sobolev critical exponent and fractional Laplacian. We also cite [8,12,32] as
some very recent works on the study of fractional elliptic systems and [33] and [34] for Schrodinger type
nonlocal equations and [18] for problems involving singular nonlinearities with critical growth. However
there is a very few literature available on fractional elliptic system involving Choquard type nonlinearity
and fractional elliptic system with critical Choquard inequality has not been studied yet, to the best of our
knowledge.

In this present paper, we discuss the existence and multiplicity result for the problem (Pj ). We seek
help of the Nehari manifold techniques where minimization over suitable components of Nehari manifold
provide the weak solution to the problem. We divide the problem into two cases that is 0 < p < 4s and
1 > 4s and show existence of at least two solutions while bounding the parameters A and § optimally.
The existence results in the first case are completely new for the system case and optimal in the sense of
obtaining the constant © (defined in Lemma 3.3). We also reach the expected first critical level that is

~ 2n—p
n—p+2s (CRSHN nmi
2n — p 2

I s(up,vr) +

where (u1,v1) denote the first solution of (Pj 5), in this case (see Lemma 4.9) analogously to the local setting
case (refer Lemma 2.4 in [13]). Whereas in the latter case, we obtain the multiplicity for a smaller range of A
and ¢ that is ©¢ (defined in Theorem 4.13) as compared to ©. We use an accurate blow up analysis involving
the minimizers of the embeddings to achieve the goal. In the case 0 < p < 4s, our results are sharp in the
sense that the restrictions on the parameters A and 0 are used only to show that Nehari set is a manifold.
Moreover using an iterative scheme, regularity results known for nonlocal problems involving fractional
laplacian and strong maximum principle, we show the existence of a positive solution (see Proposition 4.8).

Theorem 1.1. Assume 1 < ¢ < 2 and 0 < p < n then there exist positive constants © and g such that

1. ifu<4s and 0 < ATd 467 < ©, the system (Py ) admits at least two nontrivial solutions,
2 2
2. if p>4s and 0 < A7 + §2-9 < Oy, the system (Py ) admits at least two nontrivial solutions.

Moreover, there exists a positive solution for (Pys).

Remark 1.2. We remark that the solution obtained for (Pj s) (other than the positive solution) is not even
semi trivial. The proof follows along the same line as section 5 (p. 841) of [7].

Our paper is organized as follows: Section 2 contains the functional setting and various asymptotic
estimates involving minimizers of best constants. We analyse the fibering maps associated to the Nehari
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manifold in section 3. Lastly, section 4 contains the proof of main result where we show the existence of at
least two non trivial solutions.

2. Function spaces and some asymptotic estimates

Consider the function space H*({2) as the usual fractional Sobolev space W2(Q) defined by

|u(z) — uy)?

o — gl

H*(Q) =< ue L*Q): /

Q Q

dxdy < +o0

Setting @ := R?™\ (CQ x CQ) where CQ = R™ \ Q, we define the Banach space

_ 2
X :=<{ u:R™ = R measurable : u € L*(9), %dxdy < 400
with the norm defined as
3 2
|u 1 s
ullx = [lull L2 |n+28 d dy | =llull2@) + on u(—A)’u dedy

If we set Xo:={u € X : u=0inR"\ Q}, then it can be shown that X, forms a Hilbert space with the
inner product

(u, v) = / (u(@) —uy))(v(@) = o) 44,

|z —y|nt2e

for u,v € Xy and thus the corresponding norm is

lu(x
Jullx, = 1l = / M = oy

Then Xy can be equivalently considered as completion of C§°(€2) under the norm || - |x. It holds that
n

Xo < L"(9) continuously for r € [1,2%] and compactly for r € [1,2%), where 2* = . Now consider
n—

the product space Y := Xy x Xy endowed with the norm ||(u, v)||? := ||u/|?> + ||v||?. Before deﬁmng the weak
solution for (P s), we need to certify that whenever u € Xy, the term

|u(x y) |
= l‘ =
/(|x| * ul? ndx = // |x — yl“ dzdy

is well defined. This is certified by the following well known Hardy—Littlewood—Sobolev inequality.

}L

Proposition 2.1. (Hardy-Littlewood—Sobolev inequality) [p. 106, Theorem 4.3, [21]] Let t,r > 1 and 0 <
p < n with 1/t +p/n+1/r =2, f € L'(R™) and h € L"(R"™). There exists a sharp constant C(t,n,u,r),
independent of f,h such that
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/ / PO 4z < e, e o o)

Ift=1“:22

C(t7n71u7 ) C(TL IU’) =72

In this case there is equality in (2.1) if and only if f = (constant)h and

—(2n—p)
2

h(z) = A(Y? + |z — af’)
for some A€ C,0#~€R and a € R™.

Remark 2.2. For u € H*(R"), if we let f = h = |u|P then by Hardy—Littlewood—Sobolev inequality,
/ / [u(@)Plu)” o
T
R" R7

is well defined for all p satisfying

2n — 2n —
2, = <p< =27,
. ( n >_p_<n25) "

Next result is a basic inequality whose proof can be worked out in a similar manner as proof of Proposition
3.2(3.3) of [15].

Lemma 2.3. For u,v € L7 % (R™), we have

P P P
|u(@)[P|v(y)[? ddy< |u(@)[P|u(y) [ ddy [v(@)Plo(y) P ddy ’
\x—yl“ \x—yl“ Im—yl”

where p € (0,n) and p € [2,,,27].

[N

Proof. We recall the semigroup property of the Riesz potential which states that if I, : R™ — R denotes
the Riesz potential given by

A, r("3%)

In(z) = where x € R" \ {0} and A, =

— )
|x|n «

Then I, satisfies [, = I3 * 1o /2. Using this alongwith Hélder’s inequality we obtain
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()P lo(y
= u—w - day

Rn ]R'L
=Y ) oPde = —— (T JufP)(Taos + [o]P)de
A, nTH A,y =t =t
R R”
1/2 1/2
1
< /(Iu % |ulP)?dx /(Iu * [v[P)2dx
An_p 2 3
Rn R'I‘L
[u(z)[Puly // [v(@)[Plo(y
= d dy d dy| . O
// |z — \” |z — y|“
R‘VL R‘!L R!L R‘IL

Therefore, it easily follows using Lemma 2.3 that for every (u,v) € Y, /(|33|_“ s Jul?) v ?rde < 4oc0.

Q
In the context of Hardy—Littlewood—Sobolev inequality that is Proposition 2.1, for any u € Xy we get a
constant C' > 0 such that

’LL
[l s s = / / [ |m_ |M [l VDE gy < ) (2.2

Q

For notational convenience, if u,v € Xy we set

/ ]~ 25 o5
Q

Definition 2.4. We say that (u,v) € Y is a weak solution to (P ) if for every (¢,%) € Y, it satisfies

C ((u, ) + (v, 9)) = /(Mu\q*w +0jv|" vy da

Q

+ / (e 5 o5l 2ugs da + / (e 5 [uf25) o[22~ 200) da,

Q Q

Equivalently, if we define the functional Iy s :Y — R as

2 B(u,v)

Y 2 1 q q
st = Gl = [+ o) - 3

Q

then the critical points of Iy s correspond to the weak solutions of (Pys). A direct computation leads to
I\s € C1(Y,R) such that for any (¢,1) € Y

(In5(u,0), (6, 9)) = CF ((u, @) + (v, 4)) — /(A|U|"_QU¢ +0[v|"?vy) da

Q
/|x\ e of?
Q

(2.3)

2 o2 201 da.

;A

20 do— [ (ol

Q
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We define
|u(@) — u(y)”
o — e dxdy ,
S, = inf E° = in lu .
u€Xo\{0} 2/2% u€Xo\{0} Hu”izg (R™)
u|? da
RTL
Consider the family of functions {U.} defined as
Uz) = T (f) , zeR" (2.4)
€
where u*(z) = u ( :; ; u(z) = ”a”% and @(z) = a(B2 + |z[>)~"=" with o € R\ {0} and 8 > 0 are
52 L2 ®n)
fixed constants. Then for each € > 0, U, satisfies
(=A)*u = |u|?*2u in R"
and verifies the equality
— 2 * n
/ / |U€|§C‘”)_ ﬁiﬂ” dzdy = / U % de = 2. (2.5)
R R™ Y Rn

For a proof, we refer to [28]. Next, in spirit of the inequality (2.2) we define the best constant

lu(z) — u(y)|?
|z — gyt dody

Si e o

inf . _—
u€Xo\{0} 25 u€Xo\{0} B(u u)ﬁ
(o] = Jul ) Ju|*e dac

Rn

Lemma 2.5. The constant ST is achieved by u if and only if u is of the form

n—2s

t
Cl——"—= R"
(Frm=ap) o
for some g € R™, C' > 0 and t > 0. Moreover,
Ss
S=—"7. (2.6)
C(n, )

Proof. By the Hardy—Littlewood—Sobolev inequality we easily get that
_ S
C(n, )

Also from Proposition 2.1 we know that the inequality in (2.1) is an equality if and only if u is of the form

SH >

S

M
t*"—‘

n—2s

t
Cl——— c R™.
(ﬂ+w—xw> 7
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While we know that if u is of this form then it also forms a minimizer for the constant Sy, thus we obtain
the result and (2.6) follows directly. O

We set

~ 2 2
I (w0l P (CROI
(u,v)€Y\{(0,0)} ( fﬂ(m—u % |u|23)|v 2% dx)ﬁ (u,v)€Y\{(0,0)} B(U,W)T;ﬁ

and show the relation between S¥ and S in the following lemma. The argument follows closely the line
of Lemma 3.3 of [7] but for sake of completeness, we include it here.

Lemma 2.6. There holds SI = 28!

Proof. Let {gr} C X, be a minimizing sequence for SZ. Let 71,75 > 0 be specified later and set the
sequences ur = r1gi and vg = r2gr in Xo. From the definition of Sf we have

~ r2 4 r2 gl r Ty a2
sy (L) (Al ) () (i), o
v B(gk, gk) 2 T \B(gk, gr)

Let us define the function f : Rt — RT by setting f(z) = x + 1. Then it is easy to see that f attains
its minimum at z¢ = 1 with the minimum value f(1) = 2. We choose 11,72 in (2.7) such that r; = 9 and
letting k — oo in (2.7) we get

SH < o8H, (2.8)

To prove the reverse inequality we consider the minimizing sequence {(u,v)} C Y \ {(0,0)} for S¥. We
set wy = vy for r, > 0 with B(ug, ux) = B(wk, wg). This along with Lemma 2.3 gives

=

B(uk,wk) < B(uk,uk)%B(wk,wk) = B(uk,uk) = B(wk,wk).

Thus we obtain

2 2 2 2
Uk, Vg U, Vk U _ W
Iit )IL — oy M )IL S T R [[wg]] _
B(uk,’l)k)2%*‘ B(uk,wk)QfL B(uk,uk)Qﬁ B(wk,wk)QTL
> f(re)SsT > 28]
Now passing on the limit as k — oo we get
281 < §H. (2.9)

Finally from (2.8) and (2.9) it follows that S =281, O

We recall the definition of U, from (2.4). Without loss of generality, we assume 0 € Q and fix § > 0 such
that Bys C Q. Let n € C°°(R™) be such that 0 <n < 1in R® =1 in Bs and n = 0 in R™\ Bas. For € > 0,
we denote by ue the following function

for x € R™, where U, is defined in section 2. We have the following results for u. from Proposition 21 and
22 of [28].
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Proposition 2.7. Let s € (0,1) and n > 2s. Then, the following estimates hold true as € — 0

o [ lele) — )l

oy dedy<SE + (),

2n

% dr = SF + 0(e"),

(if)

(iii)
Cs€? + O(en2%) if n > 4s
/\ue(aﬁ)|2 de> Coe[log el + O(®) ifn = 4s

Cse"™25 + O(e2%) if n < 4s

for some positive constant Cy, depending on s.

Using (2.6), Proposition 2.7(i) can be written as

n
n—2s

/M dady < S + O(e" %) = ((C(n,u))m55> ¥ 0.

|z — gyt

R~

Proposition 2.8. The following estimates hold true:

n—2s
9% 2n—p
U’G Ue H n(n—2s n—2s
/ / D gy ) < (O HiZ (525 0,
and
n—2s

2n —
o* nTH n—2s

/ / AP gy 2 (1m0 - 0e) T

Proof. By Hardy-Littlewood—Sobolev inequality, Proposition 2.7(ii) and 2.6, we get

2
// |u€ |uE )| d.rdy
Iw —yl

< (O, ) 575 el B ) = (Cln, ) 375 (53 + 0(em)

n—2s

n—2s
n(n—2s T

= (Cln,m)F5 ((Cln, w) FEZ5 (S E +0(em)

n(n—2s) n 2s

= (C(n, p)=em=m (S7) "=

+ O(€™).

Next, we consider

(2.10)
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-
//|U€ ‘uf )| " d.’L'dy
|z — y|~
Ix—yl“ Iw—yl“

55 B(s B& Bzi
o - (2.11)
/:/|U’ WE = t/|U- V) 4oa,
Iw - yl“ \w - yl“
R™ R™ R"\Bs Bs

L

]R"\B(s ]R"\B(s

We estimate the integrals in right hand side of (2.11) separately. Firstly to estimate the first integral, by
Lemma 2.5 we get that {U.} forms minimizers of S¥. Therefore using (2.5) we get

* 2
|U )2# |U 2 Sn/25 Iz s 20
[ [ RO - (W) - () —ctmmrrisys e

R R

Secondly, consider

2u
//U )21 |Ue(y) | dedy
|z — yl~

R"\B§ Bs
et 2n
S 02,8 / / 2n—p 2n—p dl‘dy
i B 12Ul (LHIEP) 7 (L+[2P) 2
2n 1
HCs,s — dady
= gl (€2 o+ [2]2) 7T (€2 + [yf2) 2

R \35 Bs

where Cy 5 is an appropriate positive constant. Let D := Bs x (R™ \ B;) then

1
e2n— u02 s / / ; — T dxdy
el i Tyl (@ )T (@ )

1
= HCy / + E= dxdy.
o=yl (2 + |2f2) T (2 + yl?)

Dn{lz—y|<1}  Dn{lz—y[>1}

Consider

L
=yl (2 + a]) T (2 4 [yl?)

62“7#&02,5

Dn{|z—y|>1}

< 62”71102,3

2n—p
ooy (€ 1277 (@ 4 yf2)
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dz d
< 62717“02,3/—27%H / —yzw
(e +[xf?) 2 (€2 +y?) 2

Bs ]R"\Bé

é/e

pongn—ldg d
S ezn_HCZ,S/ ‘ 2 2n—p / y2n [_L = O(En)
1
AR e S (O

Next we observe that the set D N {|x — y| < 1} is bounded and if z,y € D N {|z — y| < 1} then there exist
constants «, 8 > 0 such that a < |z, |y| < . This implies that

_ 1
62n HCQ,S 2" P dxdy

— gl (@4 [af?) T (2 4 [yf2)

Dn{|z—y|<1} |

1
< 62717#02,8 — dxdy

— gl (2?) T (yl?)

Dn{|z—y|<1} |

< O(e¥nny

Dn{|z—y|<1}

L - dzdy = O(e2"™H)

|z -y

since p € (0,n). Therefore

/ /|U D) |Ue(y) P dzdy < O(e™). (2.13)

|z —yl~
]R”’\35 Bs

Lastly, in a similar manner we have

[ e

R"\ Bs R"\ Bs

n—2n
<Cy, / S 7 dady
n e e =yt (L+22) T (1+]42) ®
R\Bs R™\Bs (2.14)

1
IOy / / - dxdy
R™\ Bs R"\ B |$ - y|M 62 + |(E| ) (62 + |y‘ )

1
2n—p v/ _ 2n—p
<0y, [ | ety = 0
R”\Bg;R"\Bg

where Cj ¢ is an appropriate positive constant. Using the estimates (2.12), (2.13) and (2.14) in (2.11), we
get

n—2s

Py

2% s n—2s
2% e (1) 2

/ / [uc(z lx_w drdy| > ((Cnp)E (855 —0()) "

This completes the proof. O
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3. Analysis of fibering maps

In this section we study the fibering maps and establish some preliminaries for the Nehari manifold. It
is easy to see that the energy functional I s is not bounded below on the whole domain Y, so we minimize
I 5 over proper subsets of the Nehari manifold. We define the set

Nas = {(u,v) € Y\{0}: (I} 5(u,v), (u,v)) = 0}
and find that the functional I s is bounded below on N 5.
Lemma 3.1. I, 5 is coercive and bounded below on Ny s for any A,6 > 0.
Proof. Let A\,0 > 0 and (u,v) € N 5. Then it holds that

) = 02 (5 = 532 ) W00 = (5 = 552 ) [l + iy

Q

1 9 1 1 25—q 2 2 _4q
—_ — _ Q 2% )\2,(1 62,11 S2 , q
(-2 Vol = (5= g5z ) 10 0 5200w

>C

@3

and this yields the assertion because 1 < ¢ < 2. O

From the definition of NV} s, it is obvious that (u,v) € Ny s if and only if (u,v) # (0,0) and

™l (u, )2 = /()\\u|q + 6]v]%)dz + 2B(u, v).
Q

Let us define the fibering map ¢, : RT — R as

t2cn 5 4 t22
Pun(t) = Dnsltusto) = 25 (w0 = = [l -+ 8lof)de - " B,
I
Q

This gives another characterization of Ny 5 as follows
Mys = {(tu, tv) € Y\ {(0,0)} = ¢, ,(t) =0}

because ¢, ,(t) = (I} 5(tu,tv), (u,v)). An easy computation yields

o) = 1CT I o) = 7 [Nl + 8ol — 262 B, o) .1
Q

and @Z,U(t) = C’;’H(u,v)”2 —(q— 1)tq*2 /()\\u|q + 0)v|?)dx — 2(22; - 1)t22;’2B(u, v). (3.2)
Q

If (u,v) € Ny then (3.1) and (3.2) gives
¢ho() = (2= q)CFI(u, )|* + 2(q - 22;,) B(u, v)

= (2 - 22,)C2 ()| + (225 — q) / (Alul? + 8]o|)da

Q
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Naturally, our next step is to divide N} s into three subsets corresponding to local minima, local maxima
and point of inflexion of ¢, , namely

Nis = A{(u,v) € Nas 9 ,(1) 2 0} and AR, = {(u,v) € Nas: @y ,(1) =0}

Our next lemma says that the local minimizers of I s on the Nehari manifold V) s are actually its critical
points. So it is enough to prove the existence of minimizers of I 5 on N 5.

Lemma 3.2. Let (u1,v1) and (ug,vs) are minimizers of Ins on N>\+5 and Ny 5 respectively. Then (u1,v1)
and (uz2,v2) are nontrivial weak solutions of (Ps).

Proof. Let (u1,v1) € Ny such that Iy s(up,vi) = iI}rf I and define V := {(u,v) € Y : (J} 5(u,v),
: N :

(u,v)) > 0} where Jy 5(u,v) = (I} 5(u,v), (u,v)). So, J\/’Ia = {(u,v) € V1 Jxs(u,v) = 0} because for each

(u,v) such that Jys(u,v) = 0, we have (J} 5(u,v), (u,v)) > 0 if and only if ¢ ,(1) > 0. Therefore there

exists a Lagrangian multiplier p € R such that

I&,é(uhvl) = pJ§75(u1,v1).

Since (u1,v1) € ./\/';5, (I3 s(u1,v1), (u1,v1)) = 0 and (J} s5(u1,v1), (u1,v1)) > 0. This implies p = 0. There-
fore, (u1,v1) is a nontrivial weak solution of (Py ). Similarly, we can prove that if (uz,vs) € Ny s is such
that Iy 5(ug,v2) = inf Iy 5 (./\/;:5) then (ug,v2) is also a nontrivial weak solution of (Pys). O

For fixed (u,v) € Y \ {(0,0)}, we write ¢, ,(t) = 2217 (Mo (t) — 2B(u,v)) where

M) 1= £ CT0) | = 7725 [ Olul? + ol
Q

Clearly, ¢, ,(t) = 0 if and only if m,, ,(t) = 2B(u,v) if and only if (tu,tv) € Ny 5. So in order to understand
the fibering maps, we study the map my, . Since 2 < 227 and 1 < ¢ < 2, we get

lim m, ,(t) = —oco and lim m, ,(t) = 0.
t—0+ t—+o0

Claim: The map m,, ,(¢) has a unique critical point at

(22~ ) [Olul? + 8117
Q
(225, = 2)C2 | (u,v)||?

tmax(ua 1)) =

This follows from

)

My (1) = (2= 22))t 726 (u, 0)|1* — (¢ — 225)107 1% //\IUIq+5lv\
Q

We can check that pyax(u, v) solves the equation m;, ,(t) = 0. Also we can verify that since 1 < ¢ < 2,

(=25 - 2>“”“q<0"||<u wlp)

mZ,v(tmax(u’v)) = 2 27 <0
(223 - ( Jo(Aul@ + 8|v|9)dz) > g
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implies that ¢yax(u, v) is the point of maximum for the map m,, ,(¢). The uniqueness of the critical point
of My, at tyax(u, v) guarantees that m,, ,(t) is strictly increasing in (0, tmax(u,v)) and strictly decreasing
in (tmax(u,v), +00). If (tu,tv) € Ny s then

2% “hml, () = @l (8) = 720, 1, (1)

which implies that (tu,tv) € N/\fé (or Ny 5) if and only if m, () >0 (or m;, ,(t) < 0).

Lemma 3.3. For every (u,v) € Y \ {(0,0)} and A, 0 satisfying 0 < ATd 40750 < ©, where

1
22* 2 25 -1

o 2%-1(Cm) oy 22, -2 S—q” P e 3.3
- C(n, ) 225 —q) \ 225 — ¢ ’ e ’ (3:3)

there exist unique t1,ta > 0 such that t1 < tma(u,v) < to, (t1u,t1v) € N;ﬁ and (tau, tav) € N/\_,a- Moreover,

I 5(tiu, t1v) = o tinf ]IAw(;(tu,tv) and I 5(tau, tov) = st1>1%) Iy s(tu, tv).
yemaz(u,v) >

Proof. Let (u,v) € Y \ {(0,0)}. Then we have already seen that
My () = 2B(u,v) (3.4)

if and only if (tu,tv) € N, s. Since B(u,v) > 0, we say that (3.4) can never hold if we choose A and d such
that 2B(u, v) > My, (tmax(u, v)) and vice-versa. In this case, (u,v) ¢ N s and hence not a weak solution
to (Pys). Using Holder’s inequality and the definition of S,, we get

/(Alul“ +oJo|%)de < S5 (Mull? + 8o )< S QI (w01 (AT + 6T L g5
Q

Also from the definition of S¥ and Lemma 2.6, we get

ST o * o 2% *
2B (u,v) < 2(S7) 7% [ (u, v) || = 21728, 7 Cn, )] (u, v) |2 (3.6)

Using (3.5) we can estimate my, ,(fmax) as follows

22% —2 22% —

(22u_2> e (22u_2> 2 (CE NI (w, 0)[|*) =3

22*% —q 22*% —q 2252

® ® (fQ A|ul? + d|v|e )dx) B
22% —2

% p n 2% —q
_ (2%2) ( 2—g¢ ) (C2|(u, 0)[[?) #5 (3.7)
225 — 22% — 2 '
1% q © q (fQ )\|u‘q+5‘v|‘1)dx) 2 q

My v (Emax (U, V)

*72 * —q *
y (22* —2) = ( 2_¢q ) (C1) 5 |, 0)
2 . * _ 2; -1 ap—-n  (25-9)(225-2) *
25 T () ()

Now if A and § satisfies 0 < A\Z>7 + §7°a < O, where © is given in (3.3), then




652 J. Giacomoni et al. / J. Math. Anal. Appl. 467 (2018) 638-672

22% _2 29% _

Lo 92% _9\ 25 [/ 9 _ on) 2
2=2u8, 2”C(n,,u) < . q (¢3) ii (3.8)
22 ¢ 22+ g ; A I L T T
12 1 ()\E +6ﬁ) I3 SS 2—q ‘Q| 25 (2—q)

which along with (3.7) implies that

0 < 2B(u,v) < 2172085 24 C(n, )| (w, v) |22 < M0 (brmax (1, V). (3.9)
Therefore there exist unique t1,ty > 0 with ¢1 < tyax(u,v) < to such that
My (t1) = My (te) = 2B(u, v)

and m/, ,(t1) > 0 and m/, ,(t1) < 0. This implies (t1u, t1v) € Ny ; and (tau, tyv) € Ny 5 and also ¢l ,(t1) > 0
and ¢ ,(t2) < 0. From the definition of ¢, ., we get

I,\75(t2u, tgv) > I>\75(tu,tv) > I)\,é(tlua tlv) for each t € [tl,tg};

I s(t1u, t1v) < I s(tu, tv) for each ¢ € [0,¢1].
Thus

Iy s(tiu, tiv) = inf I s(tu, tv) and Iy s(tou, tav) = sup Iy s(tu, tv),
’ £E[0,tmae (u0)] ’ >0

holds true. O

We end this section with the following important lemma.
Lemma 3.4. If 0 < ATG 407 < O, where © is as in (3.3) then N,\O’(; =
Proof. We prove this by contradiction, so let (u,v) € /\/}‘375. By Lemma 3.3 we know that there exist
t1,t2 > 0 such that ¢/, ,(t1) = 0 = ¢, ,(t2) and ¢, (t1) > 0 > @i/ ,(t2). But (u,v) € N} ; means that
@i (1) =0 = ¢, ,(1). This is possible when either t; = 1 or ¢, = 1. But this again implies that ¢} , (1) >0
or ¢y, (1) <0, a contradiction. O

4. Existence of minimizers on N/ ;"' s and N, N
9 9

Lastly, in this section we present the proof of Theorem 1.1. We divide this section into two subsections
where we prove existence of first and second solutions respectively.

Lemma 4.1. Let {(ug,vi)} CY be a (PS). sequence that is

Iy s(ug, vi) = cin R and I s(ug,vr) = 0in Y™ ask — oo.
Then {(ug,vr)} is bounded in Y.
Proof. Let {(ug,vr)} CY be a (PS). sequence for I 5 such that

Ins(ug,vr) = cin R and Iy 5(up,vp) = 0in Y* as k — oo.

This can be equivalently written as
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cn 1 1
Gl )l = ¢ [ Vgl + Slon[ e = 5 Blun,v) =+ on(D), (a.1)
Q I
€2k, wu) P = | Nl + o 1)k — 2B, ve) = on(l s, ) (4.2
Q

as k — 0o. We show the boundedness of the sequence {(ug,vr)} in Y using the method of contradiction.
So assume, on contrary, ||(ug,v)|| = 0o as k — oo and set
Uf Uk
Wg = ) 2= .
[ (e, v )| (e, o) |

Clearly, ||(wg, zr)|| = 1, for all k& which implies that there exists a subsequence, still denoted by {(wy, zx)},
such that (wyg,zr) = (w, z) weakly in Y as k — oo, for some (w, z) € Y. By fractional Sobolev embedding
results, we get

/()\|wk|q + 4|2 |T)dz — /(A\w|q +6|z|%)dx as k — oo. (4.3)
Q Q
Putting up = wg||(uk, vi)|| and vy = zg||(uk, vg)|| in (4.1) and (4.2) and solving we get

mn

C Up, 2) |72 1 .
2 )2 = LN F o+ zaf)e - o, 00) B, ) = an),
m

Q

O Nl (wrs 2017 = Il g wie) /(Alwqu + 0]z |")da — 2| (e, 0122 B(wr, 21) = ok (1).
Q

From above these two equations and (4.3), we get

n 2 _ (22; — q) q—2 q q
Coll(w, zi) 17 =~ = [ (u, vi) | (Alwg|? + 6] 2k |*)dz + 0k (1)

q(2;, —1)
Q

(22, —q) _

= w2 [ N+ 81 + 0 (1),

(25— 1)

Q
Since 1 < ¢ < 2 and ||(ux,vy)|| — oo we get ||(wg, zx)||> — 0 as k — oo which contradicts ||(wg, zx)|| = 1

for all k. This completes the proof. O

Lemma 4.2. If {(ug,vi)} is a (PS). sequence for Iy s with (ug,vr) — (u,v) weakly in' Y as k — oo, then
I/’\y(;(u, v) = 0. Moreover there exists a positive constant Do depending on u,q,s,n,Ss and Q such that

Ins(u,v) > —Do(AT7 4 6729), (4.4)

where

wle

D= 27902~ [(QQZC?Ss(nu+2s)> 0 zq] o

425, (2n —p) (225 —q)
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Proof. Let {(ux.vx)} CY be a (PS). sequence for I 5 such that (ug,vx) — (u,v) weakly in Y as k — oo.
This implies I} s(uk,vx) = 0x(1) in Y™ as k — oo. Let (¢,7) € Y. From weak convergence it follows that

lim (ug, @) = (u, ¢) and lim (v, ) = (v,9). (4.5)
k—o0 k—o0
For ¢’ = Ll we also have
|92y, — [u]? 2w, Jop|920p — 0|7 20 in L7 (Q) and ugp — u, vp — v in L% (Q) (4.6)

as k — oo, thanks to the embedding of Xy into L™(2) for all 1 < m < 2%. Since we assumed ¢, € Xy
which is contained in L9(Q) N L% (), so from (4.6) it follows that as k — oo

/|uk|q_2uk¢dx—>/|u|q_2u¢dx. (4.7
Q Q

_n—u+2s

Also since 2j, — 1 = — and |ug > — Jul?, Jvk|? — v in Lona (), we get

g |20~ 2w — |ul? 2w and|vg)?e 20, — 0?20 in L (Q).

By Hardy—Littlewood—Sobolev inequality, the Riesz potential defines a linear and continuous map from
L7 (Q) to L% (Q) which gives

2|7 % Jug e — || 7 % [u)®e and |27 * o2 — |@]7H  |v] %% in L%(Q) (4.8)

This implies that the sequences (|2~ * |ug|?#)|vg|* 20, and (|| =#  [vg|?) Jug|? ~2uy converges weakly
in Lwis (). Through Sobolev embedding we know that

22, — |ul% 2 2720, — v 20 in L7 Q). (4.9)

lug u and|vg

Taking into account (4.8) and (4.9), for any ¢ € L> () we obtain

R e e Ry [ R R
Q Q

and /(|x|7“ x Jog [20) Jug | ~2uptp do — /(|a:|*“ s [v]20) [u) 2 2ug) da.
Q

Q

2% -2

Therefore the sequences (|z]|=# * |ug|?)|vg v and (|27 * |uk)?% ) ug > ~2uy, converges in the distribu-
tional sense. Since the weak limit and the distributional limit coincides, for ¢, € Xo(Q) C L% (), we get

that as k — oo
/<|a:|*” i Ju

(|7 % Jow ) Jur P2 upd da — /(Iﬂclf“ * [0 ) |ul* " 2u¢ da.
Q

%) )P0y da,

Vi v

27200 do — /(|x|*“ * |u
“ (4.10)

EO\‘Q

So using (2.3), (4.5), (4.7) and (4.10) we get (I} 5(uk, vi) —I} 5(u,v), (¢,9)) — Oas k — oo, for all (¢,9) € Y
which implies that I} ;(u,v) = 0. Therefore (u,v) is a weak solution of (P s) and (u,v) € Ny s, that is
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CY Nl (u, w)lI* = /(AIUI" + 0Jv[")dz + 2B(u, v)
Q

which gives

2% — 1O 22% —
st ) = P D w2 = 2 [ gl + ol (@.11)
22% 22%q
Q
-1
2 — 2 1 1
Let D = |- nopts (— — —) . Using the Hoélder inequality, the fractional Sobolev inequality,
q 2@2n-—p) \q¢ 22

the definition of S5 and the Young’s inequality we get the following estimate

25—a

J Ol +8lol7)do < 10175 STE Ol + 8o
Q

- (Dt i) (0tu

" .
254 25
25

(€357 ) + (DHED ) (Dol

q

3574

! (4.12)
Tl—u—|—23 1 —1 B n 2 2 ~ 2 2
n—praes (1 2 2
T 2(2n—p) (q 227 C3 (full® + ol )+D(>\2 7442 q)
-1
n—p+2s (1 1 , - , ,
“20n—uw \g . D(\2=d +§2~¢
2(27’l — /,L) (q 22;) Cs ||(U7U)H + ( 2 + 902 ) ,

2

~ 2— g, 24 ¢\ 274
where D := Tq <D2|Q = (C’fSS)Z’) . Using (4.12) in (4.11), we finally obtain (4.4) with Dy =

22% — -
w4 D. This completes the proof. O
22;q

As a consequence of Lemma 3.4 we infer that for any \,§ satisfying 0 < AT 4070 < O,
Nas = N5 UNGs.
In spirit of Lemma 3.1, we define the following

— + _
l,\)(; = j%[nf I)\75 and l)\,é = ':/nif I)\75.

X,8 s

Then we have the following result.
Lemma 4.3. The following holds true:

(i) If0 < AT + 8777 < ©, then Iy5 < I ; <0,
(i) inf{[[(w, V)| : (u,v) € N5} > 0 and sup{||(u,v)|| : (w,v) € Ny Ins(u,v) < M} < +oo for each
M > 0.

Proof. (i) Let (u,v) € N/\fé implying that ¢, ,(1) = 0 and ¢}, (1) > 0. Therefore

(2—q)C?

2(22;, — q)

1(u, )| > Bu, v).
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Using this we deduce that

11N L, . (2 1
Bt ) = (5= 3 ) ezl o+ (2= 5 ) Blwo)
-2 2—q 2 _2—-q (1 2
— c? =—[—-1 0.
< (%7 + ) oxln ol = 222 (2 =1) ol <

This along with the definition of [ 5 and l:\"’(S implies that [ s < l)'t(; < 0.
(ii) Let (u,v) € Ny 5. Then using Lemma 2.3 and (2.2) we get

0>y, (1) = (2 = @) CF || (w, 0) > = 2225, — a)(ST) 7% | (u, 0) P25

This gives

(2-g)Cy =
|(u,v)|| > (2(222_(1)(55)—2;) >0

which implies that inf{|[(u,v)[| : (u,v) € Ny} > 0. Therefore inf{||(u,v)| : (u,v) € Ny s} > 0. Now
let In 5(u,v) < M for some M > 0 then an easy computation yields

11\ ., ) 11 .
g — . <
(3 22Z)cSn(u,v)n Ko 22Z)n(u,v)n <M

_a. 2%—a
where K 5 = S5 . |2 25 (A + 6) which completes the proof. O

Our next result is established by using the implicit function theorem and it plays a crucial role in proving
Theorem 4.5.

Proposition 4.4. Assume 0 < AT 7 + 677 < © and w = (u,v) € Nyxs. Then there exist € > 0 and a
differentiable function ¢ : B.(0) C Y — R (Bc(0) denotes ball of radius € with center origin) such that
¢(0)=1, ¢(2)(w—2) € N\s and

2((u, z1) + (v, z2)) — T 5(w, 2) — 2M (2)

02 = == = ey P — 2(22,) Bl

(4.13)
for all z = (21, 22) € Be(0), where

Ths(w,z) = q/()\|u\q_2uzl + 5|v|q_2vzg)dx,
Q

M(z) = /((Iw\_“ [0l ful? 2wz + (2] 7 fuf?) o] ~Pz) da.
Q

Proof. For w = (u,v) € Ny s, let us define §,, : R x ¥ — R" by

Suw(p, 2) = (I3 5(p(w = 2)), (p(w — 2)))

= POl — 21,0 — )2 = p° / (Alu = 2|7 + 6o — z|)da — 202 Blu — 21,0 — )
Q
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where p € RT and z = (21,22) € Y. Then clearly §,,(1,(0,0)) = (I} 5(w),w) = 0 since w € N 5. Also

d

%Sw(l, (0,0)) = 22| (u, v)|* - q/()\|u|q +0lv|T)dz - 2(22),) B(u, v)

Q

= (2-C(u,0)|* —2(22}, — q) /(MUI‘] +6Jv]")dz = @y , (1) # 0
Q

because of Lemma 3.4. Therefore we can apply the implicit function theorem to obtain a € > 0 and a
differentiable map ¢ : B(0) C Y — RT with ¢(0) = 1 and satisfies (4.13). Also §,(¢) = 0 for all z € B.(0)
which is equivalent to

(13\75(C(z)(w —2)),¢(2)(w—2)) =0, for all z € B.(0),
that is ¢(2)(w — 2) € Nas. O
Theorem 4.5. If 0 < A\T-a + 677 < © then there exists a (PS)1, 5 sequence {(ur,vi)} C Ny for Ins.

Proof. We use the Ekeland Variational principle to say that there exists a minimizing sequence {(ug,vg)} C
N, s such that

1 1
I os(ug, o) <lxs+ Z and Iy 5(ug,vr) < Ins(wi,ws) + E||(w17w2) — (uk, vg)|]s (4.14)

for each (w1, ws2) € Ny . From Lemma 4.3(i) we know that [y 5 < 0, therefore we can find k sufficiently
large such that

1 1 1 1 l
Ly s, vr) = (5 - 22*) CYl (ur 00) * — (5 ~ 5 ) / (k| + 8Jog|)da < =52 (4.15)
Iz I
Q

This gives us

2949 Il N 2 2-g
s < [ Ot dfulde < ST 0 4550 F . (216)
n
Q

Consequently (ug,v) # 0. From (4.16) we get

2*ql g _25-a 52\ ¢
||<uk,vk>||>(2§ffzsz|ﬂ| T (A 07 ) (4.17)
n

and from (4.15) we get

sl < (2=

sttt (gt ) ) 4
s 2% 2—¢q 2—q . 18

Claim: I} 5(ug,vr) — 0in Y* as k — oo.

Let us fix k € N then by applying Proposition 4.4 to wg = (ug,v), we get that there exists a function
Ck : Be, (0) — R for some €; > 0 such that ((h)(wr — h) € Ny s for b = (hy,h2) € B, (0). Let us take
7€ (0,ex) and z € Y with 2 Z0in Y. We set
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l\zz

H H and by = G(Z)(wi — 2).

Then Lemma 4.4 implies that Z € N, 5 and using (4.14) with (w1, w2) = h, we get
1
Dns(he) = Ing(w) 2 =2l (e = wi).
Now applying the mean value theorem we obtain

1
(I 5(wr); hy = wi) + o(|hr = wil)) = = llAr — will

Substituting the value of h, in this, we get

(I3 5(wr), =) + (C(2) — DI} 5(wn), we — 2) = —%Ilhr — wil| + o([lhr — wi))-

Then using the fact that ¢J,(h)(wy, — h) € N3 5, we get

r(Brstwnds 757 ) + (G0 = DTt = B o) = ) = = e = 1] + ol e = ]

Since [|hr — wi[| < 7|Cu(2)| + |Ck(2) — 1w and

m SO o)),

‘r~>

passing to the limit as 7 — 0 in (4.19), we get for some constant M > 0

(A(«wk) E |) < M s o,

This will prove our claim once we are able to show that sup ||¢},(0)]
k

using Hélder’s inequality we get

y+* < 4o00. Let w = (wy,wz) € Y. Then

/(Alwclq_lwl + 8o |* wa)dz < (A + 6)C | (ur, vi) |77 | (wr, w2)

Q

where Cy = sup{ [, [u|? : [lux| = 1}. Again using Holder inequality, Hardy-Littlewood-Sobolev inequality

and fractional Sobolev embeddings, we can estimate the following

[l s P2 da
Q
2n—p 2n L
2n on
§C’(n,,u) /(|’Uk:‘ IU1> /‘uk n2n—p
Q2 Q
2n—p 27,
<o | fu) T ( fr [
@ Q Q

< M| (ug, ve) [l (wr, w2 )],
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3n —2 2
where o = 27 n27,u+8> and M; > 0 is a constant. Similarly we can show that there exists My > 0
n
such that
/(\»ﬂ“ s [o |20 [u [~ wy da < Mo || (wk, ve)[|*]] (w1, w2)|- (4.22)
Q

Consequently using (4.20), (4.21) and (4.22) in (4.13) we get

M| (wy, wa)||
(2 — @) C2 [ (u, vi) I* — 2(225, — ¢) B(ug, vi.)|

(G (0), w)| < |

where M;z > 0 is a constant independent of (uy, vy ), thanks to (4.18).
Claim: There exists a My > 0 such that

[(2 = @) C2 | (ur, vi)[1* = 2(22;, — @) B(ug, vr)| > M.
On contrary, let us assume that there exists a subsequence still denoted by {(ux,vi)} C N5 such that
(2 = Q) CL |I(ur, vi) I = 2(22), — @) B(ug, vr)| = ox(1). (4.23)

Since (ug,vk) € N5, we have

227 —q
C (g, v) I = | 552 /(AIUqu+5lvqu)dx+0k(1)
22 — 2
Q
22F — _a 2:—4a
< (= d) ot (A 4 655) 5 |k, 0n) |0 + 0k (1)
22 — 2
which implies that
22% — _a,  Z—a —q
Ol (e wr) |27 < (ﬁ) S0 7E (AT +0770) " 4 0p (1), (4.24)
"

Also (4.23) gives us

2(22* — ¢ 20225 — )\ <1 e .
Cxlo w0l = (D) B )+ ou(1) < (2ZED) (8% ue, ) 7% +ox1)
which implies that
Cr(2—g)(SH)% | 7
. (¢ : 4.25
WWﬂM|< et +ou() (1.29

where we have used the fact that ||(ug,vg)|| # or(1) because of (4.17). From (4.24) and (4.25), for large k
we obtain

2—q

n(2 — g)(SH)2 | Rt 227 — iza o 2 2.4

op (GRS ) T (25T oo (g g et
2(227 — q) 22+ —2

Then using Lemma 2.6 and (2.6), the above inequality yields
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22% —2 oF 1

22*% —q
25 —1 ¢y _ ¥ _ o\ T3mq q@hi-n (F-a)(225,-2)
(A oty s |2 (CR) T [ 27g ) (22 73N R o D ) -
22y —q 225, —q

This contradicts the assumption that 0 < P%=r + 6723 < ©. Hence the claim holds true and we finally

obtain
M
I wk,i>g_.
(oo p) =

This establishes our first claim and completes the proof. O
4.1. First solution

We now prove the existence of first solution for the problem (P s).

Theorem 4.6. Let 0 < A*a + 671 < O. Then there exists a (u1,v1) € Ny such that (ui,v1) is a weak
solution of (Pys). Moreover, (u1,v1) satisfies I s5(u1,v1) =lrs = l;t(; < 0.

Proof. By Theorem 4.5 we know that there exists a (PS);, , sequence {(ug,vr)} C Ny for I 5 that is

lm Iy s(uk,ve) = las <Ii s <0and lim I} s(ug,vx) =0in Y™
k—o0 ) k—oo 77
By Lemma 4.1 we know that this sequence {(ug,vx)} is bounded in Y. Therefore there exists (uj,v1) € Y
such that upto a subsequence, (ug,vg) — (u1,v1) weakly in Y and (ug,vg) — (u1,v1) strongly in L™(2),
for m € [1,2%) as k — oo. Therefore klim JoAug|? + dlog|)dz = [,(Alul? + 6|v]?)dz. We already know
— 00

that (u1,v1) is a weak solution of (Pj 5), by Lemma 4.2. Since {(uy,vx)} C Ny s we obtain

1 1 1 1
Dustunon) = (5 - 530 ) O3l o0l? = (5 = 52 ) [ Ouelt + lox s
I I3
Q

> — (1 _ ! > /(/\\uk|q + 0|vg|?)dzx.
q 22
Q

From Lemma 4.3 we know that [) s < 0, so passing on the limit £ — oo we get

*

22
(Aug|? + 8|v1|)de > ———F—1\ 5 > 0.
/ (225, — q)
Q
This implies that (u1,v1) € Ny s is non-trivial solution of (Pj s).
Claim: (uy,vr) — (ug,v1) strongly in YV as k — oo and I s(u1,v1) = lj\ré.
Using (ug,v1) € /\/}\’5 and Fatou’s Lemma we have

9¢ 1 929* _ ¢
ns < Ins(ur,v1) = ( : )0:||<u17v1>|2 - (—) [l + apu) do
Q

227 2274
2% — 1 22* —
< limint (;2; )c:uuk,vk)nt(;qu) [ Ol + Sy
Q

= liminf I)\’g(uk, Uk) = l)\)(;.
k—oc0
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This implies that I s(u1,v1) = Ixs and ||(uk, vi)|| = |[(u1,v1)]|| as k — co. We have

(s, = wr, o = 01)lI* = || (g, v) 7 = [l (g, 1) 7 + 01 (1).

Therefore (ug,vy) — (u1,v1) strongly in ¥ as & — oo. To establish our claim, it remains to show that
(ug,v1) € N;(;. On the contrary, if (uq,v1) € N, ; then by Lemma 3.3, there exist unique t5 > t; > 0 such
that

(t1u,t1’U) S N;:é and (tzul,tg’U1) S N;(;

Particularly, t; < to = 1. Since gpﬁl’v(tl) = 0and ¢"(t1) > 0, so #; is local minimum of ¢, ,,. Therefore there
exists a € (t1,1] such that I s(tiug, tiv) < I)\yg(tAul,tAvl). Hence

Do < Ins(tiur, tivr) < Iys(fur, tor) < Iy s(ur,v1) = s
which contradicts that (uq,v1) € Ny O
Lemma 4.7. There exists a non negative local minimum of I 5.

Proof. Suppose (u1,v1) be as obtained in Theorem 4.6. Then it is also a local minimum for I, 5, the proof

follows as [p. 291, [31]]. If uy,v; > 0 then the lemma is proved. Else consider (Juil,|v1|) then by Lemma 3.3

we know that there exists a t; such that (¢1|uq|, t1]v1]) € N)\‘fé. Since My, | o, | (1) < My 0, (1) = 2B(ug,v1) =

2B(Jusl, [v1]) = My, | oy (1) and 0 <mi, o, (1) <mj, ., (1) This implies ¢; > 1 and thus we have
Ins(tilual,tifor]) < Ias(fuals [on]) < Ins(ur, 01) = inf Iy 5 (N ).

Hence we obtain a non negative local minimum of I 5 over N ;r 5. O

We now prove the positivity of the solution (u1,v1) of (Pys).

Proposition 4.8. The non negative weak solution (u1,v1) of (Pxgs) obtained in Lemma 4.7 is positive in
Q that is up,v1 > 0 in Q. Moreover for each compact subset K of Q, there exists a mg > 0 such that
u,v1 > mg in K.

Proof. We divide the proof into two cases. Consider u; first and v; can be shown to be positive in exactly
same way.

2% x
Case (1): Let s > ™ then there exists a sequence {uc}eso C C2°(Q) such that ue — vy in L% (Q) as

(¢g—1) " 2s

23
€ — 0. That means u¢~' — u¢~" in L@ 1 (Q) as € — 0. Now let

we := (—A) ¥l ™h).

Then using Proposition 1.4(7ii) of [27], we get that {w.} is a Cauchy sequence in C?(R") where § =
min {s, 25 — @} and
lwellcs mny < CHuZ_lHL (4.26)

"
25

@0 (Q)

We know that there exists a My > 0 such that sup, ||we|/cc < Moy, so by Lebesgue dominated convergence
theorem we get
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limsup/((fA)Swe)wE dz < +o00.
e>0

Rn

This implies that {w.} is bounded in Xy, hence up to a subsequence, w, converges weakly to a w € X in
Xo as € = 0. Furthermore w satisfies the equation

(—A)fw= uf{"inQ w=0inR"\Q

In addition we have w, — w in C#(R™) as ¢ — 0 and passing to the limit in (4.26) we obtain w € C(Q).
Since (u1,v1) solves (Py ) it is clear that uy satisfies

(=A)uy > Mu? M in Q, uy = 0in R™\ Q.

Therefore u; > w in 2, thanks to comparison principle (refer Proposition 4.1 in [26]). Also now by strong
maximum principle (refer [30]), we conclude that w > 0 in  and there exists a mg > 0 for each K compact
subset of  such that w > mg in K.

Case (2): Let ( 2 0 < 22 and consider the following iterative scheme
q- s

(=A)*wy, = Mo”1 in Q, wy = 0in R™\

with wy = u;. Then take k = 1 at first and let {wo} C C2(Q) such that wo, — wo = up in L% () as

23
¢ — 0 which means wl_' — u¢™" in L71(Q) as € — 0. We define

w! = (—A)_S(Awggl).

€
o
Set q1 = q_sl

— ngi
©= g0 >N and

and we get using Proposition 1.4(ii) of [27] that {w!} is a Cauchy sequence in L9 () where

-1
lwell Lz 9y < Cllwg Lo @)- (4.27)

Necessarily w! — wy as € — 0 in L9 (1) so passing on the limit as € — 0 in (4.27) we obtain w; € L9(1).
Proceeding similarly, at each stage we get wy € LI (Q2) where q = % and note that wy # 0 for
each k. Clearly {qx} forms an increasing sequence and the map ¢ — nfés ; has no fixed point. So obviously

there exists a ko > 0 such that gy, > 4= and for this ko we get wy,41 € C?(R™), by Proposition 1.4(iii)

of [27]. By comparison principle we already know that {wy} forms a non increasing sequence and u; > wy.

Thus arguing same as Case (1) we get
Ul > Wy ZU}QZ...ZU}]%+1 > 0in Q.
Also there exists a mg > 0 for each K compact subset of {2 such that wg,4+1 > mg in K. O

This result suggests that there is no harm to consider (u1,v1) as positive (as this property of the first
solution will be used further while proving the existence of second solution in the case p < 4s).

4.2. Second solution

Now, we establish the existence of second solution for (Py s). We prove this by showing that minimum
of I s is achieved over N, WL We consider two cases separately that is when pu < 4s and when g > 4s. In
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the first case we are able to show that when 0 < A\T7 + 73 < O, (P,s) has two weak solutions whereas

in the other case for u > 4s we get another threshold Oy which may be ‘less than or equal to’ © such that
2 2

whenever 0 < AZ-1 + §2=¢ < O, (P) 5) possesses two weak solutions.

Lemma 4.9. If u < 4s and 0 < AT +67°0 < ©, then there exists (wo, z0) € Y\{(0,0)} such that wg,zg > 0
and

- 2n—p
n— -+ 2s ngsg n—pt2s
sup In s ((u1,v1) + t(wo, 20)) < 1 := Iy s(u1,v1) + a ( £ > )
t>0 2n—p 2
Proof. Using (2.10), we can find r; > 0 such that
— 2 n—2s o
|Ue(x) ue(y)| dxdyS ((C(n,u))ﬁSsH) 2 + T1€n72s. (428)
|z — y|n 2
2n
Also using Proposition 2.8, we can find 75 > 0 such that
/(‘xr" i Jue 2 [ue % d > C(n, p) 3 (SI) 55" — e, (4.29)
Q
From proof of Lemma 5.1 of [25], we know that for fixed p such that 1 < p < we have
n—2s
/Iuel” <rseE (4.30)
Q
where r3 > 0 is an appropriate constant. Now let 0 < € < § then u, = U, in B.(0).
Claim: There exists a constant r4 > 0 such that
251 2% o
/ [uc(@)] [uc(v) dzdy > rae T (4.31)
|z —yl

lei<e ©

To show this, we split the left hand side of (4.31) into two integrals and estimate them separately. We recall
the definition of u. and firstly consider

[ [ e,

|z — y|#
|z|<e|y|<e
* (2s—n)(22% —1)
O[QZH_l Efu
= H~”22;—1 (29,1 (n—2s)27, dydz
U - 2\ — =2 2 2
L% (R™) |o|<e |y|<e ) . ) Y
|z —ylm | B2+ T B* + T
65525 ESSZS
(25771,)(22;71)
e 2z~
> El (n—2s)(25,—1) (n—2s)2} dydw

pielyize (LHIERZ) 2 (L+[22) 2

n—2s

€ 2 n—2s
=F / / R RN dydx:O(e 3 )
i<t i<y 1222 (L +[y?)
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where F7 > 0 is appropriate constant that changes value at each step. Secondly, in a similar manner we
get

Jue () [P+ Jue () P

dydx
|z —yl#
|z|<e |y|>e
. (2s—n)(22% —1)
0(22“_1 Gfu
= I ~||22;_1 (n—2s)(2, 1) (n—2s)2}, dydz
u * 2\ — 2 2 2
L% (R™) [z <e |y|>e ) . 2
|z —yl* | 5%+ | p* +
ESSQS ES 25
(2377z)(22;71) B
/ € 2
Z El / (n—2s)(2}, —1) (n—2s)2% dydx

wlzeyise (Wl +er (L4212 2 (1+[Lp2) 2

" n—2s
/ / )(2 - 2q)2; dydz = O (6 2 )

i<t ppis1 (L 122) (L+ |yl )

where E] > 0 is appropriate constant that changes value at each step. This establishes our claim. We can
find appropriate constants pi x, p1,s, p2 > 0 such that the following inequalities hold:

q q P q q P

uywwﬂﬁCwq>zmﬂwd%@ﬂﬁcwq>zmw

i>0 q q r3 q q T3
> 0.

(2) For each € > 0, m < uj,v; on compact subsets of 2 where m > 0 is a constant, we get

, for all ¢> 0,

1 . 22y, (2)tu,
—B(m + tue, vy + tue) — — B(ug,v1) // [ua(y K v(@)[* "o (@)tu(@) dydx
2" 2u |z —yl~
// o1 ()% Jug ()] 20 ~2uy () tue () dydz
|z —yl#

227 pot?2n . e -
S S L /ﬁ“'“>’dm.

2 22* -1) | — y|#

|:r|<e Q

We remark that such an m exists because of Proposition 4.8. From Theorem 4.6 we know that (u1,v;) is a
weak solution of (P s). Therefore, we have

I s((ur,v1) + t(ue, ue)) — In5(u1,v1)

= D s5((u1,v1) + t(ue, ue)) — Ins(ui, v1) t(m,ue (v1, ue)

/(/\|u1|q ute + 0o |17 2vue) d / || 7H % |u1|2 )|111|2 20 ue dz
Q Q
—/(|x\_“ * |vg 2;) u1|2;_2ulu6 dz

Q

t? tu 1 — s 14
— 50?”(“67“6)”2 _ /\/ <|U1 + Ueq ‘Ul‘ _ tu1|q2u1u6> dz
Q
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2*

5/ <|v1 + tu6 —|v|* t|vl|q_2v1ue> dp — (B(u1 + tue, vy + tue) — B(uy,vq)
o

Q

—/(|$|7# * |u1|2:1)|1}1|2;’2vltu€ dz — /(|J)|7‘u * \1}1|2;)|u1|22*2u1tu5 dx
Q Q

which on using inequality (2) with (4.28)—(4.31) gives

Ins((ur,v1) + t(ue, ue)) — Ins(ur, v1)

(n=20)0

n(n—2s) n
<*cr (C(naﬂ) ne=w (§7)% + 7”1671_28) (p1x + p1s)tle

t22; ( n 2n—p t22;_1p2 n—2s
= (O (SIS =) = e
2# (22;L - 1)

Now we define the function h, : [0,00) — R as

(n—=2s)p 2S)p

2 ln=2s) Hy 2= n—2s
he(t) = 202 (Cln, @) FED (SE) 412 ) 4 (pyx + prg)tie
t22;

2

*
t22“_1p2 n—2s
2

(22, - 1)

(0( ()% (SH) 5 —7“26") -

Then h. attains its maximum at

(n—=2s)(n—p)

_ (O iy — a2 oH - 2anon)
,(Cs)( ¥ >C’(n,,u) ( /)(53) (n—p+2s)

p—2n n-—2s n—2s

Cln, )~ 5 (SH) 55 "5 4 o(e" 7).

_ para(n —2s)
4(n — p+2s)

Therefore we get

sup(Ix,5((u1,v1) + t(ue, ue)) — In s(u1,v1))

t>0
n—2s
n—u+2s Hy 22 para€ 2 _nBn=2u42s) | (4=n)(3n—2u+2s) n-2s
< " C"S = - (C(n 4s(2n—p) S 4s(n—p+2s) + o(e 2
< S sy - B Cla ) (s#) ()
n—u+2s

DML ongH) T2 <C”SH> i
(2n =n) (2n —p) 2 :

Choosing (wo, 20) = (ue, ue), for appropriate choice of € as shown above, we obtain the result. O

Corollary 4.10. [t holds that Iy 5 < c1.

Proof. For each (u,v) € Y, by Lemma 3.3 we know that there exists a to(u,v) > 0 (notation changed to
show that ¢, depends on (u,v)) such that to(u,v)(u,v) € N, 5. We consider two sets

Uy = {(u,v) €Y ||(u,0)|| < ta (II(ZJ;)I)} and

)

(u,v)
Us = {(u,v) eY: |[(u,v)]] >t (%)}

Claim: Y\N):(; =U; UU,.
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For any (u,v) € Y we define (@4,0) := ﬁ Now let (u,v) € Ny ;5. Then we know that there exists a
ta(11,9) > 0 such that t2(@, 9) (a4, 8) € Ny . But (u,v) € Ny 5 implies that it must be that 2“2 = 1 which

llCw,0) I
means t2(4,0) = [|(u,v)||. On the other hand, let (u,v) € Y be such that t2(d,0) = ||(u,v)||. By definition
t2(1,0)(a, ) € Ny 5 which implies that (u,v) € N 5. This proves the claim.
Next let (u,v) € ./\/:\Jf(S then by Lemma 3.3 we know that there exists a t1 (@, 9) > 0 such that t1 (4, 9) (4, d
) (

) €
./\/;:5. But (u,v) € N;:[; implies that ﬁtiuJ;I)\ = 1. This gives ta(@,0) > t1(4, ) = ||(u,v)|| that is (u,v) € Uy.
Therefore N;,é C Uy and thus (ug,v1) € Us.

We consider the map vy € C([0,1],Y) defined by yar(t) := (u1,v1) + tM(wp, z9) for M > 0, where
(wo, 20) is defined Lemma 4.9. Clearly v(0) = (u1,v1) and v(1) = (u1,v1) + M (wo, 20). There exists a R > 0

such that 0 < t3(u,v) < R on the set {(u,v) € Y : ||(u,v)|| = 1}. Let us choose My > 0 such that

B2 — || (wr, v 2]

My >
[I(wo, 20) |2

Then

[ (ur, v1) + Mo (wo, 20)[I* > [[(u, v1)[|* + M| (wo, 20)|I* + O(Mo)

1> (o (e M0y

which implies (u1,v1) + Mo(wo, 2z0) € Us. Now since 7y, is a continuous path starting from (uy,v;) to
(u1,v1) + Mo(wo, 20) and Y \ W5 ; = Uy UUsz, there must exists a £ > 0 such that ||(u1,v1) +Mo(wo, 20)|| =

ug,v t Mo (wo,z . — 7 — . .
to (”EulviiﬁMgng!ZZ;”) that is va (f) € Ny 5+ Therefore (ur,v1) + tMo(wo,20) € N 5. Finally using

Lemma 4.9 we obtain

1;75 < Ins((ur,v1) + tMo(wo, 20)) < sg%)[)\’g((ul,vl) + t(wo, 20)) < c1.
t>

This completes the proof. O

Lemma 4.11. If p > 4s then there exists a Y > 0 such that whenever 0 < AT 4670 < T, we have

_2n—p
e (Cps) T
I < coi= ”(271“7:)3 < > ) — Dy (A7 4 67%7)

where Dy has been defined in Lemma /.2.

Proof. Let wy = 29 = u. and define

cn 1
Ins(u,v) = 75||(u7v)||2 — 2—*B(u,v) and f(t) = Jx s(two, tz0).
“w

1
2% C'[(wo,20) |17 ) 2@5 =D
2B(wo,20)

Then f(0) =0 and f(t) < 0ift € (0,7), f(t) > 0if ¢ > T where T = ( . It is next

Crlwo, 2ol

1
5B we2n) )2(2“71). Therefore using (2.10) and

easy thing to verify that f attains its maximum at ¢, = (
Proposition 2.8 we have
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sup Jy,s(two, t2o)
>0

«
2n

Ccr? t?: n—pu+2s C™||uc? R
= £t = Z2 (w202 - B(wo,zO):( " ) ol

* 1

2 2} n—p B(ue, ue) s
2
2’;171

- ("ﬂ+25) Cr(C(n,p) 30 % (SH) 3 4 O(=2))
- 2n — © 27L u ;171._—2;
C(n, M) 2s (SH) O(@z))

n H 2s n 2*}11 H n—2s 2*2* 1
< | — 1t [0)
- ( 2n — > (C3) (SS (e ))

2*

_ n_ﬂ+28 CglgsH 2* ! n—2s
() [(57) 7 o

667

(4.32)

Recalling the definition of ¢y, we note that if 0 < pe=r + 570 < T; where Y1 > 0 is chosen such that

co > 0 for example T1 =

n—p+2s (C”SH

n—p+2s
) . Since I 5(two, tz0) < & ||(wo, 20)|| for ¢ > 0, we

2Dg(2n — p) 2
can find ¢ > 0 such that sup Iy s(two,t29) < cop whenever 0 < AT 4 §7a < T;. Let us define function
t€[0,%]
1
Hys:Y - Ras Hys5(u,v) := - /()\|u\q + d|v|9)dz. Now using (4.32) we have
q

Q

sup Iy 5(two, tz9) = sup(Jx,s(two,tz0) — H s(two, tz0))
t>1 t>1

_ n QH 2* T Tq
< (M) (%) +O@E ) | - %(A+5)/|u5|q dz
RTI,

2n — u

o*

n—p+2s\ (CTSHN T t4 i
S ( M ) ( 325 ) +O(€n72s)*g(>\+5)/|ue|q dx
0

2n —p

for any d, > 0. Fix 6, < ¢ and letting 0 < € < §, we estimate

n—1
|7 dar = / U9 dz > Ci|Su_1]en" ”‘/T— dr
(14 r2) =3

)(n 2s)q
B(0,64) B(0,8,)

5_
>02|Sn 1|6n_7/ ’ﬂ 2.Sq d?ﬂ

0
S CylS e pn=1=(=294 qrif n < (n— 2s)q

2[Pn—11€
(n=2%)a dr ifn > (n — 2s)q
n—(n 2 )q i (n _ 25)

~C39 e2|loge|, if n = (n—2s)q

(n—2s)q
2

, ifn > (n—2s)q
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where C7,Cs and C3 are appropriate positive constants. Therefore

sup I s (two, tzo)
t>to

s O(€"=25) — (A + 6)0(e" " =7%), ifn < (n — 2s)q

—p+2s\ [(SH\ =T n
<<E§#g%ﬁ><7?> +3 0(e7) — (A +8)0(e? |loge]), ifn = (n—2s)g
O(e=2) = (A +80)0(e "), ifn > (n — 2s)q.

Since ¢/2 < 1, this implies that when n > (n — 2s)q and 0 < AT 457 < T = min{Y, 0}, for small
enough € > 0 we can get that

o*

- 2
- 2 SHN 21
sup Iy s (t00, £20) < (L) (_> Ty (W ) —a
t>to 2n — u 2

In other case, for € = ()\ﬁ + 627%)”525 < 4, we get

o*

n— 425\ (CrSHNTT
sup I s(two, tzp) < ( ) ( 58 )
t>to 2n — 1% 2

(n—2s)q

+{ C(AT7 +670) — C(A+ 0)(AT 7 +670) = "= ifn < (n — 25)g

C(AT7 +87°0) — C(A+0)(A2"0 +0770) 202 |log((A? 1 + 6777 )7=27)

, ifn=(n—2s)q.

Let n < (n — 2s)q then 1+ m (n — W) < ﬁ which implies that we can choose a T2 > 0
small enough such that if 0 < AT 4670 < T, then

O (A7 +5757) - CO+ (AT +5720) = (I < _p (3 457 )

As A, 6 — 0, [log((A2"a + 074 )2
such that

— 00 80 in case n = (n — 2s)q we can obtain a Yo > 0 small enough

C(AT57 +§750) = C(A+ 0)(AT57 +6777) 7020 |log (A7 + §7°7) 777

< —D, (Aﬁ +5ﬁ) .
Setting T = min{ Yy, To,07 2*} > 0 we finally get that

sup I s (two, tz0) < ¢o
>0

whenever 0 < A7 + 6727 < T. To prove the last part of the Lemma, we note that there exists to > 0 such
that (fawo,t220) € Ny 5 and

s < I 5(tawo, tazg) < sup Iy s(two,tz0) < co
>0

when 0 < A\Z=7 + §2=a < Y. This concludes the proof. O

Before proving the existence of second solution, we make a remark at this stage.
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Remark 4.12. Using Lemma 4.2 it is easy to see that ¢; > ¢g, where ¢; is defined in Lemma 4.9 and ¢q is
defined in Lemma 4.11.

Theorem 4.13. There exists a (ug,v2) € /\/}:5 such that I s(ug,v2) = I 5 in each of the following cases:

(i) 0<Ad +673 <O when p < 4s and
(ii) 0 < AT 467 < O¢ := min{O, T} when u > 4s.

Moreover, (ug,v2) is a weak solution of (Ph.s).

Proof. Let {(ug,vk)} C Ny 5 be a minimizing sequence such that kh_}n(r)lo Iy 5 (uk, vi) = 1 5. By Lemma 4.3(id),
we know that {(ug,vk)} is a bounded sequence in X. Hence there exists a (ug,v3) € Y such that, upto a
subsequence, (ug,vg) — (ug,v2) weakly in Xy as k — oo.

Claim (1): As k — 00, up — ug and v — vy strongly in Xj.

If not, we define zp = ug — us and wi = v — vo and assume that as kK — oo

|z, wi) ||> = ¢ and B(zg, wy) — d?%,
for some c,d # 0. Then as k — oo we have

1 Cutie, v )I1* = 11 (2, wi ) I + [l iz, w2) [ + 01 (1)

Before proving claim (1) we state and prove the following.
Claim (2): As k — oo, B(ug,vr) — B(zk, wg) — B(ug,vs).
From fractional Sobolev embedding we have that

22 — Jup|2 — Juo|® and |wg|2 — |ug|2 — |va|® in L7o% (R™).
By Proposition 2.1, we have
2y, _ 2, _

2;) — x| 7 % |uz|22 and |z|7# * (|Jwg 2;) — x| 7 * |112|2; in L%(R”).

| (g™ = fu, v

Also from boundedness of {uy} and {v;} in Lt (R") we know that |z;/% — 0 and |wg|?* — 0 in
2n * * * * * *

L% (). This gives Jo (o] = 124/% — fus %) s % — 0 and [ (x| » (x| o[ )] | — 0 as

k — oo. This altogether proves claim (2) because we can write

B(uy,vx) — B(zg, wr) = B(ug, — 2g, v, — wg) + /(\xrﬂ x (gl — Jwi|?))] 2]

Q

" /(lfl_“ * (Junl e — [2|%)) g [+

Q

Since {(ur,vk)} C Ny, klirrgo @y v (1) = 0. This gives

Ph oy (1) + O — 2d%% = 0. (4.33)

Claim (3): (ug,v2) is non-trivial.
Suppose not and us = 0 = vy. This implies ¢ # 0 because of Lemma 4.3(ii). Also using definition of S
and C"¢? = 2d%%: (by (4.33)), we get



670 J. Giacomoni et al. / J. Math. Anal. Appl. 467 (2018) 638-672
227,
n .2 QH\ 2(2F 1)
Cre (Sl T
2 - 2 .

Therefore

S

2 22,

~ _2n—p
_ G (1 1 ) - (n—u+28> (cgsf) e
2 2; - 2n — i 2

If 4 < 4s, then using (4.34) with Lemma 4.9, we have that Iy 5(u1,v1) > 0 but this is a contradiction to
Iy s(up,v) = l+75 < 0 (by Lemma 4.3(4)). Otherwise if p > 4s, then using (4.34) with Lemma 4.11, we get
—DO()\ﬁ + 52%1) > 0 which is again a contradiction. This proves claim (3). Since (ug,v2) € Y\ {(0,0)}
and 0 < \77 + §7-7 < O for both the cases u < 4s as well as u > 4s, by Lemma 3.3 we know that there
exist t1, 15 such that 0 <ty < ty, t1(ug,v2) € Ny 5 and ta(ug, v2) € Ny 5. That is ¢, . (t1) = 0= ¢, ,, (ta).
Let us define the following two functions

Ccne? 2422

l;(; = lerI;o I 5 (ug, vg) = I,,5(0,0) +
(4.34)

CsnthQ d22;t22:
= - and g<t) = Puz,vz (t> + f(t)

ft) 5 o
o

Then we consider the three cases as below:

(1) to < 1,
(ii) t2 > 1 and d > 0,
(iii) t2 > 1 and d = 0.

(i) Using (4.33) we get ¢/(1) = ¢, (1) + C2c? — 2d**» = 0. Since {(uy, vi)} C Ny s, for all t > 0 we get

@ukﬂ)k (t) S Soulmvk (1) (435)

Since g(t) = klim Guy.vp (t) and passing to the limit as k — oo in (4.35), we obtain g(¢) < g(1), for ¢ > 0.
bde el

Therefore

3

5 (C1e? — 2d%2) > I s(taus, tavs) > s

l}T(; = lim @um’vk(l) = g(l) > g(tQ) > I)\75(t2u2,t2’02) +
) k—o0

which is a contradiction. )
n .2 22% 2
(ii) We define ¢, = SZTCM “47 and then it is easy to compute that f(£) attains its maximum at ¢ = t,.

Also we compute and find that

2 L G
n—pu+2s <C§‘cz)27l‘1 N pA2s (C;’Sf)%l

f(t) = m—p  \ 242 M — 1 2

Moreover f'(t) = t(C7¢® —2d*2:t?%:72) > 0 if t € (0,t,) and f'(t) < 0if t > t,. Moreover g(1) = max g(t) >
g(ts). So if t. <1 then
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o*

N i
_ n—p+2s (CHSHN 2T
Ixs= 9(1) > g(ts) = Ins(tsug, tiva) + f(ts) > Iy s(t1ug, tive) + 2n/l_ p ( > )
) ) (436)
n—p+2s (CPSHN 2T n—p+2s (CPSHN 2T
> l+ s Ms > I s Ms —
> 135 CT— ( 5 > Iys(ur,v1) + ST— 5 gl

which is a contradiction to Lemma 4.9 in the case p < 4s. Whereas when p > 4s, using Remark 4.12
and (4.36) we get that s = c1 > co which is a contradiction to Lemma 4.11. Therefore we must have
t. > 1. Since ¢'(t) < 0 for t > 1, whenever t € [1,t.] we get ¢, ,,(t) < —f'(t) < 0. This gives either
te <ty orty=1.1If t, <t then (4.36) holds true and we arrive at a contradiction whereas if to = 1 then
(u2,v2) € Ny 5 which implies CJ'c? = 2d?%: (by (4.33)). This gives

2},
_ . 1 n—p+2s (CrSHN T
_ _ 225 (1 2 ) > ==
l)\,6 g(l) I)\’(S(UQ77)2> —+ d (1 2:&) = I)\,5(u277}2> + 277, — < 2
B 2% ~ i
n—p+2s (CPGHY % n—p+2s (CrSI\ 5T
> I 5(tyug, t =
> )\75( 1Ug,t1v2) + 2 — 1 ( D) = >\,6(U17’U1)+ M — 1 9

which contradicts Lemma 4.9 in the case p < 4s. Whereas when p > 4s, using Remark 4.12 and (4.36) we
get that l;’ s = €1 > co which is a contradiction to Lemma 4.11.

Hence, only possibility is that (i#4) holds true that is t > 1 and d = 0. If ¢ # 0 then (4.33) implies
Py (1) = —c? < 0 and also ¢, , (1) < 0 which is a contradiction since ¢y > 1. Thus ¢ = 0 and this proves

claim (1). Therefore I 5(ug,ve) = Iy 5 and obviously (ug,v2) € N, 1.5 Finally, (ug,v2) is a weak solution of
(Py,s) follows from Lemma 3.2. 0O

4.8. Proof of main theorem

Proof of Theorem 1.1. By Theorem 4.6 and 4.13 we know that (Pys) has two solutions (ui,v1) € ./\/’;:5
and (ug,v9) € N/\jg whenever 0 < A2 + 5721 < O if © < 4s and whenever 0 < pe=r +6ﬁ < O if
it > 4s. Obviously they are distinct solutions because N, /\Jr s NN, W (). The proof is then completed using
Proposition 4.8. 0O
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