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We present two new proofs of the exchange theorem for the Laplace transformation 
of vector-valued distributions. We then derive an explicit solution to the Dirichlet 
problem of the polyharmonic operator in a half-space. Finally, we obtain explicit 
solutions to Cauchy-Dirichlet problems of iterated wave- and Klein-Gordon-
operators in half-spaces.
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1. Introduction

The exchange theorem for the Laplace transformation L states that

L (S ∗ T ) = L S · L T (S ∈ S ′(Γ), T ∈ O ′
C(Γ))

with notation as explained in Section 2 below (cf. [29, Prop. 7, p. 308]). A first task of this study is to present 
two new proofs for the exchange theorem for vector-valued distributions S and T . The original proof was 
given by L. Schwartz in his theory of vector-valued distributions. Our first proof follows an idea indicated at 
the beginning of L. Schwartz’ proof, namely to apply a proposition on the convolution of two vector-valued 
distributions S ∈ H (E), T ∈ K (F ), in which both the space H and its strong dual H ′

b are assumed 
to be nuclear. Our second proof relies on a theorem of R. Shiraishi on the convolution of vector-valued 
distributions that supposes only H (and not necessarily H ′

b ) to be nuclear.
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Our second goal is to use the Laplace transform of vector-valued distributions to deduce explicit solution 
formulae for the Cauchy-Dirichlet problem of the operators

(Δn + ∂2
y − ∂2

t )m (iterated wave operator)

(Δ2n+1 + ∂2
y − ∂2

t − ξ2)m (iterated Klein-Gordon operator)

in the half-space y > 0 (Propositions 14 and 16) by starting with the solutions of the Dirichlet problem of 
the elliptic operator

(Δn + ∂2
y − p2)m (iterated metaharmonic operator)

(Propositions 9 and 11). We assume the Cauchy data u|t=0, ∂tu|t=0, . . . , ∂2m−1
t u|t=0 to vanish. In the 

terminology of R. Courant and D. Hilbert such problems are called “transient response problems” [7, p. 224]. 
Compare also [14, p. 85]. The expression “metaharmonic” is borrowed from [11] and from [34].

In Proposition 7 we recall the distributionally formulated solution to the Dirichlet problem of the iterated 
Laplace (i.e., polyharmonic) operator (Δn + ∂2

y)m in the half-space y > 0, which was presented for the first 
time in [8].

We note that our method could also be used, e.g., to derive explicit formulae for the solution to the 
Cauchy-Dirichlet problem of the operator

(Δn + ∂2
y − ∂t)m (iterated heat operator)

in the half-space y > 0.
For m = 1, the solution of the Cauchy-Dirichlet problem can be found by an odd extension of the sought 

solution in the half-space, application of the distributional differentiation formula and convolution with the 
fundamental solution (in classical terms, by application of a representation theorem by means of Green’s 
function). If m > 2 the solution by extension is not known to us.

Our notation is standard, mostly following [26,28,29].

2. New proofs of L. Schwartz’ exchange theorem for the Laplace transform of the convolution of 
vector-valued distributions

Let us first recall L. Schwartz’ version [28, Prop. 43, p. 186]:

Theorem 1. Let Γ be a non-void open convex subset of Rn. Let E and F be separated locally convex topological 
vector spaces. Then there is a hypocontinuous (with respect to bounded sets) convolution mapping

∗
⊗ : S ′(Γ)(E) × S ′(Γ)(F ) → S ′(Γ)(E u⊗πF ).

For two Laplace-transformable distributions S ∈ S ′(Γ)(E), T ∈ S ′(Γ)(F ) with values in E and F , 
respectively, and their Laplace images LS, L T we have

L (S
∗
⊗ T ) = (L S)

·
⊗ (L T ).

We will now explain the notions appearing in this theorem. First, the mappings 
∗
⊗ and 

·
⊗ in Theorem 1

are defined as in [28, Proposition 3, p. 37] and would be denoted by ∗π and ·π there, respectively. Also, 
E u⊗πF denotes the quasi-completion of E ⊗π F .
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Definition 2 ([26, p. 58], [29, p. 303]). Let Γ ⊆ Rn be non-void and convex. The space of Laplace trans-
formable distributions S ′(Γ) is defined as

S ′(Γ) =
⋂
ξ∈Γ

eξxS ′
x = {S ∈ D ′ | ∀ξ ∈ Γ : e−ξxS(x) ∈ S ′

x},

where S ′ is the space of temperate distributions on Rn. S ′(Γ) is endowed with the projective topology 
with respect to the linear maps S ′(Γ) → S ′, S(x) �→ e−ξxS(x) for ξ ∈ Γ.

As usual, we denote by O ′
C the space of rapidly decreasing distributions on Rn. By defining

O ′
C(Γ) =

⋂
ξ∈Γ

eξxO ′
C,x

analogously to S ′(Γ) we have O ′
C(Γ) = S ′(Γ) if Γ 	= ∅ is convex and open [29, p. 303]. Also, for such Γ

the space O ′
C(Γ) is a commutative algebra with respect to convolution, which in turn is continuous [29, 

Corollaire, p. 304].
Let us recall L. Schwartz’ definition of the Laplace transformation of scalar valued distributions and the 

Paley-Wiener-Schwartz theorem:

Definition and Theorem 3 ([26, Prop. 22, p. 76], [29, Prop. 6, p. 306]). Let ∅ 	= Γ ⊆ Rn be open and convex 
and TΓ := Γ + iRn the tube domain over Γ. The Laplace transformation L is the mapping

L : O ′
C(Γ) → H (TΓ), S �→ L S(p) = 〈1(x), e−pxS(x)〉, p ∈ TΓ.

The vector-valued scalar product 〈 , 〉 is defined on OC × O ′
C(H (TΓ)) due to e−pxS(x) ∈ O ′

C,x(H (TΓ
p ))

[29, Cor., p. 302].
L is an isomorphism if H (TΓ) is endowed with the projective topology (with respect to the compact 

subsets K of Γ) of the inductive limits

H (TK) = {f : TK → C holomorphic | ∃m ∈ N0 : (1 + |p|2)−mf(p) ∈ L∞(TK)}.

Concerning the proof of Theorem 1, L. Schwartz remarks that it could be realized by applying Proposition 
3 in [28, p. 37] to the spaces S ′(Γ)(E) and S ′(Γ)(F ). But this procedure would require the proof of the 
nuclearity of the space S ′(Γ) “which is easy” and of the nuclearity of its strong dual “which is not so easy”. 
Thus, he proceeds differently [28, p. 187]. However, we aim at performing the proof in such a manner as 
L. Schwartz remarked. As a byproduct we sharpen Theorem 1 slightly.

Theorem 4. Let ∅ 	= Γ ⊆ Rn be an open and convex set and E and F separated locally convex topological 
vector spaces. There exists a unique bilinear, continuous mapping

∗
⊗ : O ′

C(Γ)(E) × O ′
C(Γ)(F ) → O ′

C(Γ)(E u⊗πF )

which extends the mapping

∗
⊗ : (O ′

C(Γ) ⊗ E) × (O ′
C(Γ) ⊗ F ) → O ′

C(Γ)(E ⊗π F )

(S ⊗ e, T ⊗ f) �→ (S ∗ T )e⊗ f,

wherein ∗ : O ′
C(Γ) × O ′

C(Γ) → O ′
C(Γ) is the continuous convolution and ⊗ : E × F → E ⊗π F the canonical 

bilinear and continuous mapping.
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If L : O ′
C(Γ)(E) → H (TΓ)(E) is the Laplace transformation of E-valued distributions then we have

L (S
∗
⊗ T ) = L S

·
⊗ L T

for S ∈ O ′
C(Γ)(E), T ∈ O ′

C(Γ)(F ). Summarizing, we have the commutative diagram

O ′
C(Γ)(E) × O ′

C(Γ)(F )
∗
⊗

L×L∼ =

O ′
C(Γ)(E u⊗πF )

L∼ =

H (TΓ)(E) × H (TΓ)(F )
·
⊗

H (TΓ)(E u⊗πF ).

Proof. The claim about the map 
∗
⊗ follows from Proposition 3 in [28, p. 37] because the space O ′

C(Γ) has 
the strict approximation property [26, Proposition 16, p. 59], is nuclear and its strong dual is nuclear (see 

Lemma 5 below), and because the convolution O ′
C(Γ) × O ′

C(Γ) ∗−→ O ′
C(Γ) is continuous. Concerning 

·
⊗, we 

note that the multiplication · : H (TΓ) × H (TΓ) → H (TΓ) is continuous, and since H (TΓ) ∼= O ′
C(Γ), we 

may again apply Proposition 3 in [28, p. 37]. Finally, commutativity of the diagram follows from that of its 
scalar variant, which holds due to [29, Proposition 7, p. 308]. �
Lemma 5. Let ∅ 	= Γ ⊆ Rn be open and convex.

(i) The space O ′
C(Γ) is nuclear and complete.

(ii) The strong dual (O ′
C(Γ))′b of O ′

C(Γ) is nuclear.

Proof. (i) The nuclearity of O ′
C(Γ) is an immediate consequence of [13, Corollaire 2, p. 48] and the nuclearity 

of O ′
C ([13, Théorème 16, p. 131]).

By [25, Proposition 5.3, p. 52] the space O ′
C(Γ) is complete.

(ii) The projective limit O ′
C(Γ) = S ′(Γ) is countable due to

⋂
ξ∈Γ

eξxS ′
x =

⋂
ξ∈Γ∩Qn

eξxS ′
x.

We only have to show the inclusion “⊇”, the rest being elementary. For this, given T ∈
⋂

ξ∈Γ∩Qn eξxS ′
x

and ξ ∈ Γ, choose ξ1, . . . , ξk ∈ Γ ∩Qn such that ξ is in the convex hull of {ξ1, . . . , ξk}. By [29, p. 301],

e−ξx = α(x, ξ)
k∑

j=1
e−ξjx

with α(., ξ) ∈ B, so we have

e−ξxT (x) = α(x, ξ)
k∑

j=1
e−ξjxT (x)︸ ︷︷ ︸

∈S ′
x

∈ S ′
x.

It follows that S ′(Γ) is given by the projective limit

S ′(Γ) = lim←−− S ′(Γf ).

Γf⊆Γ finite
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This limit is reduced because the inclusions D ⊆ S ′(Γ) ⊆ S ′(Γf ) and density of D in S ′(Γf ) imply that 
S ′(Γ) also is dense.

By [25, 4.4, p. 139] the dual (S ′(Γ))′ endowed with the Mackey topology τ((S ′(Γ))′, S ′(Γ)) can be 
identified with the inductive limit of the spaces

((S ′(Γf ))′, τ((S ′(Γf ))′,S ′(Γf ))).

Because S ′(Γ) is nuclear and complete it is semireflexive, hence the Mackey topology on its dual equals 
the strong topology [17, Prop. 4, p. 228 and Prop. 8, p. 218]. Hence, we have

(S ′(Γ))′b = lim−−→
Γf⊆Γ∩Qn

(S ′(Γf ))′b

and the nuclearity of (O ′
C(Γ))′b = (S ′(Γ))′b follows by [13, Cor. 1, p. 48] from the nuclearity of (S ′(Γf ))′b. 

To see that the latter space is nuclear we note that S ′(Γf ), as a finite projective limit of (DFS)-spaces, is 
itself a (DFS)-space because this class of spaces is stable under the formation of finite products and closed 
subspaces [20, Theorem A.5.13, p. 253]. Furthermore, S ′(Γf ) is nuclear by [13, Cor. 1, p. 48], hence its 
strong dual is nuclear by [13, Théorème 7, p. 40]. �

One can even show that O ′
C(Γ) is ultrabornological – however, this is quite intricate to prove and will 

therefore be published separately.

Remark 6. A third proof of Theorem 4 can be given by means of [32, Theorem 2, p. 196], see also [4, Theorem 
5, p. 18]. Compared to [29, Prop. 3, p. 37] it has the advantage that the nuclearity of O ′

C(Γ) = S ′(Γ) is 
sufficient (Lemma 5 (i)), while nuclearity of its strong dual O ′

C(Γ)′b need not be established. Instead, one 
has to show that O ′

C(Γ) is Ḃ-normal (which is straightforward) and that O ′
C(Γ) ⊗ E is strictly dense in 

O ′
C(Γ)(E), which in turn is implied by the strict approximation property of S ′(Γ) ([29, Proposition 16, p. 

59]). In fact, by using [4, Prop. 1, p. 19] we can even dispense with showing Ḃ-normality of O ′
C(Γ).

3. Poisson kernels for Dirichlet problems

Our next aim is to reformulate a known result on the Poisson kernels of the Dirichlet problems of 
polyharmonic operators in half-spaces and to apply the partial Fourier transformation in order to deduce 
the Poisson kernels of the Dirichlet problems of the iterated metaharmonic operators in half-spaces. Then 
the theory of vector-valued distributions is applied in order to continue the results analytically. This method 
goes back to H.G. Garnir [11].

We follow the terminology of [2, p. 635] and [31, p. 140]: The Poisson kernel of the j-th Dirichlet problem 
for the operator

(Δn + ∂2
y − ξ2)m, Δn = ∂2

1 + · · · + ∂2
n, m, n ∈ N, ξ ∈ R

in the half-space H = {(x, y) ∈ Rn+1 : x ∈ Rn, y > 0}, j = 0, . . . , m − 1, is the distribution Ej ∈ D′(H) for 
which

(Δn + ∂2
y − ξ2)mEj = 0 Ej ∈ OM (H) = {ϕ ∈ E(H) | ∀α ∈ Nn

0 ∃k ∈ N0 :

(1 + |x|2)−k/2∂αϕ ∈ C0(H)}

∂k
yEj |y=0 = δ(x)δjk, k = 0, . . . ,m− 1 in D′(Rn).
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Here, C0(H) = {ψ ∈ C(H) : lim|(x,y)|→∞ ψ(x, y) = 0}. The existence of the restrictions ∂k
yEj |y=0 will follow 

from the explicit form of Ej in Proposition 7 below (see also [16, Theorem 4.4.8, p. 115]).
For a more general notion of Poisson kernel we refer to [33, Section 4.5, p. 137].
To begin with, we use [8, Satz 3] to derive the following result:

Proposition 7. The Poisson kernel of the j-th Dirichlet problem for the polyharmonic (i.e., iterated Laplace) 
operator (Δn + ∂2

y)m is given by

Ej = 2
ωn+1

ym

j!(m− 1 − j)! (−∂y)m−j−1

(
1

(|x|2 + y2)n+1
2

)
,

where ωn+1 = 2π
n+1

2

Γ(n+1
2 ) denotes the surface measure of the unit sphere in Rn+1.

Proof. Let ϕ ∈ D(Rn
x), ϕ̌(x) = ϕ(−x), and denote by ∗ the convolution with respect to the x-variables. 

Then it follows from [8, Satz 3] that Ej ∗ ϕ̌ ∈ Exy(H) is the unique solution to

(Δn + ∂2
y)m(Ej ∗ ϕ̌) = 0

lim
y↘0

∂k
y (Ej ∗ ϕ̌)(x) = ϕ̌(x)δjk, k = 0, 1, . . . ,m− 1.

Consequently, (Δn + ∂2
y)mEj = 0 and limy↘0 ∂

k
y 〈Ej , ϕ〉 = ϕ(0)δjk, k = 0, 1, . . . , m − 1, i.e., limy↘0 ∂

k
yEj =

δ(x)δjk, k = 0, 1, . . . , m − 1. �
Remark 8. We point out the following particular cases of Proposition 7:

(a) For m = 1, j = 0 we obtain the well-known Poisson kernel of the Dirichlet-problem for Δn + ∂2
y in the 

half-space y > 0 to be

Γ
(
n+1

2
)

π
n+1

2

y

(|x|2 + y2)n+1
2

,

cf., e.g., [31, (1.2), p. 163] or [9, p. 37, Th. 14].
(b) The choice m = 2, j = 0, j = 1 gives the Poisson kernels of the Dirichlet problem for the biharmonic 

operator (Δn + ∂2
y)2 in the half-space y > 0:

E0 =
2Γ

(
n+3

2
)

π
n+1

2

y3

(|x|2 + y2)n+3
2

, E1 =
Γ
(
n+1

2
)

π
n+1

2

y2

(|x|2 + y2)n+1
2

.

In [8], J. Edenhofer cites [3] for this result.
The solution u to

(∂2
x + ∂2

y)2u = 0 in y > 0

u|y=0 = g0, ∂yu|y=0 = g1 (n = 1, m = 2, j = 0, 1),

in the form

u(x, y) = 2y3

π

∫
g0(x− ξ) dξ

(ξ2 + y2)2 + y2

π

∫
g1(x− ξ) dξ

ξ2 + y2

R R
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can be found in [22, (2.14), p. 262] (where a sign should be corrected and where the formula is attributed 
to L.F. Richardson in [23]). For a more recent, direct treatment of the Poisson kernel E0 for the 
biharmonic operator in the half-plane we refer to [1, p. 781].

(c) If n = 2, the Poisson kernel Em−1 of the Dirichlet problem for (∂2
x + ∂2

y)m in y > 0 (i.e., with the 
boundary conditions ∂k

yEm−1|y=0 = 0, k = 0, 1, . . . , m − 2, ∂m−1
y Em−1|y=0 = δ(x)) is given by the 

formula

Em−1 = 1
π(m− 1)!

ym

x2 + y2 ,

see Example 5 in [30, p. 275].

Next, let us derive the Poisson kernel of the j-th Dirichlet problem, j = 0, 1, . . . , m − 1, of the operator 
(Δn + ∂2

y − ξ2)m in H by Fourier transformation.

Proposition 9. Let m, n ∈ N. The Poisson kernel of the j-th Dirichlet problem, j = 0, 1, . . . , m − 1, for the
iterated meta-harmonic operator (Δn + ∂2

y − ξ2)m in H, ξ 	= 0, is given by

Ej = ym|ξ|n+1
2

2n−1
2 π

n+1
2 j!(m− 1 − j)!

(−∂y)m−j−1

(
Kn+1

2
(|ξ|

√
|x|2 + y2)

(|x|2 + y2)n+1
4

)
(1)

or

Ej = −ym|ξ|n−1
2

2n−1
2 π

n+1
2 j!(m− 1 − j)!

(−∂y)m−j−1
(

1
y
∂y

)(
Kn−1

2
(|ξ|

√
|x|2 + y2)

(|x|2 + y2)n−1
4

)
(2)

Here, Kλ is the modified Bessel function of the second kind of order λ.

Proof. Setting

Fj := 2
ωn+2

ym

j!(m− 1 − j)! (−∂y)m−j−1 1
(|x|2 + y2 + s2)n

2 +1

= − 2
nωn+2

ym

j!(m− 1 − j)! (−∂y)m−j−1
(

1
y
∂y

)
1

(|x|2 + y2 + s2)n
2
,

we obtain by means of Proposition 7:

(Δn + ∂2
y + ∂2

s )mFj = 0

∂k
yFj |y=0 = δ(x, s)δjk, k = 0, 1, . . . ,m− 1.

A partial Fourier transformation with respect to s yields for Ej =
∫
R e−iξsFj ds:

(Δn + ∂2
y − ξ2)mEj = 0

∂k
yEj |y=0 = δ(x)δjk, k = 0, 1, . . . ,m− 1.

By [12, 8.432 5, p. 917] we obtain

Ej =
Γ(n2 + 1)
π

n
2 +1

ym

j!(m− 1 − j)! (−∂y)m−j−1

(
2
√
π|ξ|n+1

2

2n+1
2 Γ(n + 1)

Kn+1
2

(|ξ|
√
|x|2 + y2)

(|x|2 + y2)n+1
4

)

2
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= ym|ξ|n+1
2

2n−1
2 π

n+1
2 j!(m− 1 − j)!

(−∂y)m−j−1

(
Kn+1

2
(|ξ|

√
|x|2 + y2)

(|x|2 + y2)n+1
4

)
,

establishing (1). The second claim follows from the functional relation ( 1
z∂z)(z

−λKλ(z)) = −z−λ−1Kλ+1(z)
(cf. [12, 8.486 15, p. 929]):

Ej =
−Γ(n2 + 1)ym

nπ
n
2 +1j!(m− 1 − j)!

(−∂y)m−j−1
(

1
y
∂y

)(
2
√
π|ξ|n−1

2

2n−1
2 Γ(n2 )

Kn−1
2

(|ξ|
√

|x|2 + y2)

(|x|2 + y2)n−1
4

)

= −ym|ξ|n−1
2

2n−1
2 π

n+1
2 j!(m− 1 − j)!

(−∂y)m−j−1
(

1
y
∂y

)(
Kn−1

2
(|ξ|

√
|x|2 + y2)

(|x|2 + y2)n−1
4

)
. �

Remark 10. Let us mention a particular case of Proposition 9: Setting m = 1, j = 0, the Poisson kernel E0
of the metaharmonic operator Δn + ∂2

y − ξ2 in H is given by

E0 = y|ξ|n+1
2

2n−1
2 π

n+1
2

Kn+1
2

(
|ξ|
√

|x|2 + y2
)

(|x|2 + y2)n+1
4

,

see [5, Rem. 2, p. 321].

Proposition 9 remains valid if we substitute p ∈ TΓ = R++iR (Γ = R+ = (0, ∞), TΓ the right half-plane) 
for ξ ∈ R \ {0}. We obtain by analytic continuation:

Proposition 11. The Poisson kernel Ej of the j-th Dirichlet problem, j = 0, 1, . . . , m − 1, of the iterated 
meta-harmonic operator (Δn + ∂2

y − p2)m, p ∈ TΓ, in the half-space H is given by

Ej = −ymp
n−1

2

2n−1
2 π

n+1
2 j!(m− 1 − j)!

(−∂y)m−j−1
(

1
y
∂y

)(
Kn−1

2
(p
√
|x|2 + y2)

(|x|2 + y2)n−1
4

)

(For even n the square root in p
n−1

2 is defined as usual.) Furthermore, Ej ∈ H(TΓ
p )(D′(Hxy)).

Proof. The integral representation

Kn−1
2

(p
√
|x|2 + y2)

(|x|2 + y2)n−1
4

= 1
2

∞∫
0

t−
n+1

2 e
− p

2

(
t+ |x|2+y2

t

)
dt

in [12, 8.432 7, p. 917] can be interpreted as a vector-valued scalar product

1
2

〈
1(t), t−

n+1
2 e−

p
2 t · e− p

2t
(
|x|2+y2)〉

on L∞(R+,t) × L1(R+,t)(H(TΓ
p )(D′(Hxy))). Here, e− p

2 t ∈ H(TΓ
p )(L1(R+,t)), and

S(p, t, x, y) := e−
p
2t

(
|x|2+y2)

t−
n+1

2 ∈ H(TΓ
p )(C0(R+,t)(D′(Hxy)))

= H(TΓ
p )⊗̂εC0(R+,t)⊗̂εD′(Hxy).

To prove this, we first show the following two auxiliary results:
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Lemma 12. Any complete, nuclear normal space of distributions has the ε-property.

Proof. By the Kōmura Theorem [18, 21.7.1, p. 500], any such space F is isomorphic to a closed subspace of 
sJ for some index set J . Since the ε-property is preserved under taking products and subspaces, this implies 
that F has the ε-property. �
Lemma 13. H(TΓ

p )⊗̂D′(Hxy) has the ε-property.

Proof. We have H(TΓ) ⊆ E(Γ × Rn), with the topology induced by E . Both E and D are nuclear normal 
spaces of distributions, so E⊗̂D′ is nuclear, normal, and complete and has the ε-property by Lemma 12. As 
the ε-property is inherited by topological subspaces, the claim follows. �

To establish S(p, t, x, y) ∈ (H(TΓ
p )⊗̂D′(Hxy))(C0(R+,t)) it therefore suffices to show that for μ ∈

M1(R+,t) we have

〈S(p, t, x, y), μ(t)〉 ∈ H(TΓ
p )⊗̂D′(Hxy).

Noting that H(TΓ
p ) has the ε-property, to see this it suffices in turn to show that

〈ϕ(x, y), 〈S(p, t, x, y), μ(t)〉〉 ∈ H(TΓ
p ), (3)

for each ϕ ∈ D(Hxy). By Fubini’s theorem ([26, p. 131, Corollaire]) this is equivalent to

〈〈S(p, t, x, y), ϕ(x, y)〉, μ(t)〉 ∈ H(TΓ
p ).

In fact,

〈t−n+1
2 e−

p
2t

(
|x|2+y2)

, ϕ(x, y)〉 =
∫

Hxy×R+,t

e−
p
2t

(
|x|2+y2)

t−
n+1

2 ϕ(x, y) dxdy

=
∫

Hxy×R+,t

e−
p
2
(
|ξ|2+η2)

ϕ(
√
tξ,

√
tη) dξdη,

so that

〈μ(t), 〈S(p, t, x, y), ϕ(x, y)〉〉 =
∫

Hxy×R+,t

e−
p
2
(
|ξ|2+η2)〈μ(t), ϕ(

√
tξ,

√
tη)〉 dξdη.

Since the map H → C, (ξ, η) �→ 〈μ(t), ϕ(
√
tξ, 

√
tη)〉 is bounded by ‖μ‖1‖ϕ‖∞, (3) follows by dominated 

convergence. Note that this argument in fact also shows that S(p, t, x, y) ∈ H(TΓ
p )(BCb(R+,t)(L1(Hxy))). 

Here, the subscript b refers to the Buck topology, so BCb(R+)′ = M(R+) (cf. [21, p. 6]).
Due to the continuity of the bilinear multiplication H(TΓ) ×H(TΓ) ·→ H(TΓ) and the continuity of the 

vector-valued multiplication C0(R+,t)(D′(Hxy)) ×L1(R+,t) 
·→ L1(R+,t)(D′(Hxy)) we conclude by means of 

[28, Proposition 3, p. 37] that

e−
pt
2 − p

2t
(
|x|2+y2)

t−
n+1

2 ∈ H(TΓ
p )(L1(R+,t)(D′(Hxy)).

Indeed, the assumptions ‘H(TΓ) nuclear’ and ‘(H(TΓ))′b nuclear’ are fulfilled because of H(TΓ) ∼= O′
C(Γ)

(Definition and Theorem 3) and Lemma 5.
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In virtue of

H(TΓ
p )(L1(R+,t)(D′(Hxy))) = L1(R+,t)(H(TΓ

p )(D′(Hxy))),

the final step consists in applying [27, Theorem 7.1, p. 31] to the vector-valued scalar product 〈 , 〉 : L∞ ×
L1(E) → E, with E = H(TΓ

p )(D′(Hxy)). �
4. Transient response Dirichlet problems

In this section we study the transient response Dirichlet problem for the iterated wave operator (Δn +
∂2
y − ∂2

t )m and the iterated Klein-Gordon operator (Δn + ∂2
y − ∂2

t − ξ2)m in the half-space y > 0, more 
precisely in Hyt = {(x, y, t) ∈ Rn+2 : y > 0, t > 0}.

We look for an explicit expression for the solution Ej to the j-th, j = 0, 1, . . . , m − 1, (mixed) Cauchy-
Dirichlet problem

(Δn + ∂2
y − ∂2

t − ξ2)mEj = 0 in D′(Hyt)

Ej |t=0 = ∂tEj |t=0 = · · · = ∂2m−1
t Ej |t=0 = 0 in D′(H1)

∂k
yEj |y=0 = δ(x, t)δjk, k = 0, . . . ,m− 1, in D′(H2),

where H1 = {(x, y) ∈ Rn+1 : y > 0}, H2 = {(x, t) ∈ Rn+1 : t > 0}.
For the general theory of the mixed problem for constant coefficient, linear partial differential operators 

see [15, 12.9, p. 162–179] and [24, p. 57–118]. We call Ej Poisson kernel of the Cauchy-Dirichlet problem 
for the iterated wave operator and the iterated Klein-Gordon-operator if ξ = 0 or ξ 	= 0, respectively ([24, 
p. 94]).

Proposition 14. The Poisson kernel Ej, j = 0, 1, . . . , m −1, of the Cauchy-Dirichlet problem for the iterated 
wave operator (Δn + ∂2

y − ∂2
t )m in the half space Hyt is given by

Ej = −ym

2n−1π
n
2 Γ(n2 )j!(m− 1 − j)!

(−∂y)m−j−1
(

1
y
∂y

)(
∂n−1
t (t2 − |x|2 − y2)

n
2 −1
+

(|x|2 + y2)n−1
2

Y (t)
)
,

where xλ
+ := xλY (x). Furthermore, Ej ∈ S ′(R+,t)(D′(H1,xy)).

Proof. Recall from Definition 2 that

S ′(R+,t) :=
⋂

τ∈(0,∞)

eτtS ′
t,

so by Definition and Theorem 3, the Laplace transform

L : S ′(R+,t)(D′(Hxy)) → H(TΓ
p )(D′(Hxy))

is an isomorphism.
Thus the inverse Laplace transform Ej := L −1Fj of the Poisson kernel Fj of the j-th Dirichlet problem 

in the half-space of the iterated metaharmonic operator in Proposition 11 yields

(Δn + ∂2
y − ∂2

t )mEj = 0

Ej |t=0 = ∂tEj |t=0 = · · · = ∂2m−1
t Ej |t=0 = 0

∂k
yEj |y=0 = δ(x, t)δjk, k = 0, . . . ,m− 1,
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and

Ej = −ym

2n−1
2 π

n+1
2 j!(m− 1 − j)!

(−∂y)m−j−1
(

1
y
∂y

)⎛
⎝L −1

(
p

n−1
2 Kn−1

2
(p
√
|x|2 + y2)

)
(|x|2 + y2)n−1

4

⎞
⎠ .

By [6, (5.19)] we have for any S ∈ H(TΓ): L −1(pn−1S) = ∂n−1
t L −1S. Hence, we obtain by means of the 

transform pair

L −1
(
p

n−1
2 Kn−1

2
(p
√
|x|2 + y2)

)
= ∂n−1

t L −1

(
Kn−1

2
(p
√
|x|2 + y2))

p
n−1

2

)

= ∂n−1
t

( √
π

Γ(n2 )
(t2 − |x|2 − y2)

n
2 −1
+

(2
√

|x|2 + y2)n−1
2

Y (t)
)
.

In fact, [6, (5.19)] is the inverse relation of〈
1(t), e−pt (t2 − |x|2 − y2)

(|x|2 + y2)n−1
4

Y (t−
√
|x|2 − y2)

〉 √
π

2n−1
2 Γ(n/2)

=
Kn−1

2
(p
√

|x|2 + y2)

p
n−1

2

(which can be seen using [12, 8.432 3, p. 917] or [35, §6.15. (4), p. 172]). That this identity is in fact valid in 
H(TΓ

p )⊗̂D′(Hxy) can be concluded similarly to the proof of Proposition 11. This yields the formula stated 
in the Proposition. The fact that Ej belongs to S ′(R+,t)(D′(H1,xy)) now follows by inspection.

It remains to show that ∂k
t Ej

∣∣
t=0 = 0 for 0 ≤ k ≤ 2m − 1. For this we first note that by [15, Th. 12.9.12, 

p. 176] we have Ej ∈ C∞([0, ∞), D′(Hxy)), so

∂k
t Ej(t) = const · ym(−∂y)m−j−1

(
1
y
∂y

)
∂k+n−1
t

Y (t)(t2 − |x|2 − y2)
n
2 −1
+

(|x|2 + y2)n−1
2

∈ D′(Hxy)

and for ϕ ∈ D(Hxy) we obtain

〈ϕ, ∂k
t Ej(t)〉 = const · ∂k+n−1

t Y (t)
〈
∂y

1
y
∂m−j−1
y (ymϕ),

(t2 − |x|2 − y2)
n
2 −1
+

(|x|2 + y2)n−1
2

〉

= const · ∂k+n−1
t

⎛
⎜⎝Y (t)

∫
|x|2+y2≤t2

φ(x, y) (t2 − |x|2 − y2)n
2 −1

(|x|2 + y2)n−1
2

dxdy

⎞
⎟⎠ ,

where φ(x, y) := ∂y
1
y∂

m−j−1
y (ymϕ). Applying the homothety x = tξ, y = tη, t > 0 shows that the latter 

equals

const · ∂k+n−1
t

⎛
⎜⎝tn+

∫
|ξ|2+η2≤1

φ(tξ, tη) (1 − |ξ|2 − η2)n
2 −1

(|ξ|2 + η2)n−1
2

dxdy

⎞
⎟⎠ ,

so

lim
t↘0

〈ϕ, ∂k
t Ej(t)〉 = const ·

∫
|ξ|2+η2≤1

[
lim
t↘0

∂k+n−1
t tn+φ(tξ, tη)

]
· (1 − |ξ|2 − η2)n

2 −1

(|ξ|2 + η2)n−1
2

dξdη.

As φ vanishes at t = 0, together with all its derivatives, we indeed arrive at ∂k
t Ej

∣∣ = 0 for all k. �

t=0
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Remark 15. We single out two important special cases:

(a) n = 1, m = 1, j = 0:
The Poisson kernel of the mixed problem

(∂2
x + ∂2

y − ∂2
t )E0 = 0, x ∈ R, y > 0, t > 0,

E0|t=0 = ∂tE0|t=0 = 0

E0|y=0 = δ(x, t)

in the half-space y > 0 is given by

E0 = − 1
π
∂y

Y (t)

(t2 − x2 − y2)
1
2
+

= −Y (t)
π

∂y

(
(t2 − x2 − y2)−

1
2

+

)
.

In [19, Ex. 405, p. 189] the solution U to the mixed problem with the temporally constant boundary 
value U |y=0 = δ(x) is presented. It emerges from E0 by convolution with δ(x) ⊗ Y (t), i.e.,

U = −Y (t)
π

∂y

(
(t2 − x2 − y2)−

1
2

+

)
∗ (δ(x) ⊗ Y (t)) = yt+

π(x2 + y2)(t2 − x2 − y2)1/2+
.

Note that our derivation differs essentially from that proposed in [19], where Fourier- and Laplace 
transformation are suggested to be applied with respect to different variables.

(b) n = 2, m = 1, j = 0:
The Poisson kernel of the mixed Cauchy-Dirichlet problem

(Δ2 + ∂2
y − ∂2

t )E0 = 0, x ∈ R2, y > 0, t > 0,

E0|t=0 = ∂tE0|t=0 = 0

E0|y=0 = δ(x, t)

in the half-space y > 0 is given by

E0 = −Y (t)
2π ∂y

(
1√

|x|2 + y2
∂t(Y (t2 − |x|2 − y2))

)
= −1

2πt∂y(δ(t−
√
|x|2 + y2)).

Note that E0 is the negative derivative in the direction normal to the boundary of the Green-function of 
the mixed problem of Δ2 +∂2

y −∂2
t in the half-space y > 0 (compare [10, p. 92]). We obtain the solution 

U of the mixed problem with a temporally constant boundary value, U |y=0 = δ(x), by convolution of 
E0 with δ(x) ⊗ Y (t):

U = −Y (t)
2π ∂y

(
Y (t2 − |x|2 − y2)√

|x|2 + y2

)
= −1

2π ∂y

⎛
⎝Y

(
t−

√
|x|2 + y2)

)
√
|x|2 + y2

⎞
⎠ ,

which coincides with [4, p. 7].

The main idea in deriving the Poisson kernel of the Cauchy-Dirichlet problem (Δn + ∂2
y − ∂2

t )m in the 
half-space y > 0 (cf. the proof of Proposition 14) is the application of the inverse Laplace transformation 
to the Poisson kernel of the Dirichlet problem of (Δn + ∂2

y − p2)m in y > 0. The Poisson kernel of the 
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Cauchy-Dirichlet problem of the iterated Klein-Gordon operator (Δ2n+1 + ∂2
y − ∂2

t − ξ2)m (ξ > 0) in the 
half-space y > 0 can be derived by the same method, using the Poisson kernel of (Δ2n+1 + ∂2

y − p2 − ξ2)m
in y > 0.

Proposition 16. The j-th Poisson kernel Ej, j = 0, 1, . . . , m − 1, of the Cauchy-Dirichlet problem of the
iterated Klein-Gordon operator (Δ2n+1 + ∂2

y − ∂2
t − ξ2)m (m ∈ N, n ∈ N0, ξ > 0) in the half-space H is 

given by

Ej = −ym

(2π)n+ 1
2 j!(m− 1 − j)!

(−∂y)m−j−1
(

1
y
∂y

)(
1

(|x|2 + y2)n
2

n∑
l=0

(
n

l

)
ξn−2l+1

∂2l
t (Y (t)(t2 − |x|2) − y2)

n
2 − 1

4
+ Jn− 1

2
(ξ
√
t2 − |x|2 − y2)

)
,

where Jλ denotes the Bessel function of the first kind of order λ.

Proof. Similar to the proof of Proposition 14 we have by means of Proposition 11

Ej = −ym

2nπn+1j!(m− 1 − j)! (−∂y)m−j−1
(

1
y
∂y

)
(

L −1

(
(p2 + ξ2)n

2 Kn(
√

(p2 + ξ2)(|x|2 + y2))
(|x|2 + y2)n

2

))

= −ym

2nπn+1j!(m− 1 − j)! (−∂y)m−j−1
(

1
y
∂y

)
(

n∑
l=0

(
n

l

)
ξ2n−2l∂2l

t L −1

(
Kn(

√
(p2 + ξ2)(|x|2 + y2))

((p2 + ξ2)(|x|2 + y2))
n
2

))
.

By the formula

L −1

⎛
⎝Kn

(
β
√

(p2 + ξ2)
)

(p2 + ξ2)n
2

⎞
⎠ =

√
π

2Y (t)ξ−n+ 1
2β−n(t2 − β2)

n
2 − 1

4
+ Jn− 1

2

(
ξ
√
t2 − β2

)

in [6, p. 125] we obtain

Ej = −ym

(2π)n+ 1
2 j!(m− 1 − j)!

n∑
l=0

(
n

l

)
ξn−2l+ 1

2 (−∂y)m−j−1
(

1
y
∂y

)
∂2l
t

(
Y (t)

(|x|2 + y2)n
2

(t2 − |x|2 − y2)
n
2 − 1

4
+ Jn− 1

2

(
ξ
√

t2 − |x|2 − y2
))

,

establishing our claim. �
Remark 17.

(a) In the special case n = 0, m = 1, j = 0 we obtain

E0 = Y (t)√
2π

ξ1/2∂y

⎛
⎝J−1/2

(
ξ
√

t2 − x2 − y2
)

(t2 − x2 − y2)1/4

⎞
⎠ = Y (t)

π
∂y

⎛
⎝cos

(
ξ
√
t2 − x2 − y2

)
(t2 − x2 − y2)1/2

⎞
⎠

+ +
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as the Poisson kernel of the Cauchy-Dirichlet problem of ∂2
x+∂2

y −∂2
t −ξ2 (ξ > 0) in y > 0. The solution 

U to this problem in y > 0 with the temporally constant boundary value U |y=0 = δ(x) emerges from 
E0 by convolution with δ(x) ⊗ Y (t), i.e., U = E0 ∗ (Y (t) ⊗ δ(x, y)).
Note that for the Cauchy-Dirichlet problem of the related operator ∂2

x + ∂2
y − ∂2

t − b∂t in y > 0 with a 
temporally constant boundary value, the solution is given explicitly in [19, Ex. 406, p. 189] in terms of 
elementary functions.

(b) The Poisson kernel of the Cauchy-Dirichlet problem of the iterated Klein-Gordon operator (Δ2n +∂2
y −

∂2
t − ξ2)m in odd space dimensions can be deduced from that in Proposition 16 by J. Hadamard’s 

method of descent, i.e., by integration with respect to the variable x2n+1.
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