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We reprove the existence of extremals for the critical Trudinger-Moser inequality 
on a smooth bounded domain of R2 via the method of energy estimate, which 
was recently developed by Malchiodi-Martinazzi [11], Mancini-Martinazzi [12] and 
Mancini-Thizy [13]. For this purpose, unlike [12,13], it suffices to calculate local 
energy of maximizers for subcritical Trudinger-Moser functionals near the blow-up 
point.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a smooth bounded domain of R2 and W 1,2
0 (Ω) be a Sobolev space, the completion of all smooth 

functions with compact support in Ω under the norm

‖u‖W 1,2
0 (Ω) = ‖∇u‖2 =

⎛⎝∫
Ω

|∇u|2dx

⎞⎠1/2

,

where ∇ denotes the gradient operator. In literature, the Trudinger-Moser inequality [17,14,16,15,22] is 
written as

Cα(Ω) = sup
u∈W 1,2

0 (Ω), ‖∇u‖2≤1

∫
Ω

eαu
2
dx < ∞, ∀α ≤ 4π. (1)

A direct method of variation gives extremals of Cα(Ω) for any α < 4π. When α = 4π, the Trudinger-Moser 
functional J4π(u) =

∫
Ω e4πu2

dx does not satisfy the Palais-Smale condition for u ∈ W 1,2
0 (Ω) with ‖∇u‖2 ≤ 1. 

As a consequence, whether extremals for C4π(Ω) exist or not is a rather delicate problem. It was proved by 
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Carleson-Chang [2] that C4π(B) has an extremal, where B is the unit disc in R2. This result was generalized 
by Flucher [7] to the case of general domain Ω. In particular, there holds the following:

Theorem A. ([2,7]). The supremum C4π(Ω) is attained by some function u0 ∈ W 1,2
0 (Ω) ∩ C2(Ω) such that 

‖∇u0‖2 = 1.

Motivated by Ding-Jost-Li-Wang [3] and Adimurthi-Struwe [1], Li [9] was able to prove Theorem A by 
the method of blow-up analysis. Both methods of [2] and [9] are essentially the same. Roughly speaking, 
under the assumption that C4π(Ω) has no extremal (or blow-up occur), an exact upper bound C∗ of C4π(Ω)
can be derived; but a direct calculation shows C4π(Ω) > C∗, which is impossible unless no blow-up occur. 
Anyway C4π(Ω) must be attained.

Based on works of Malchiodi-Martinazzi [11], Mancini-Martinazzi [12] were able to give a new proof of 
Theorem A in the case Ω = B by the method of energy estimate. This method can be described as follows. 
For any k ∈ N, there exists some radially symmetric function uk ∈ W 1,2

0 (B) ∩ C2(B) such that

C4π−1/k(B) =
∫
B

e(4π−1/k)u2
kdx

and that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δuk = 1

λk
uke

(4π−1/k)u2
k in B,

‖∇uk‖2 = 1, uk > 0 in B,

λk =
∫
B u2

ke
(4π−1/k)u2

kdx.

(2)

Set vk =
√

4π − 1/k uk. Assume ck = maxΩ vk → +∞ as k → ∞. Using blow-up analysis and the topological 
fixed point theorem, they obtained the energy estimate

4π + 4π
c4k

+ o

(
1
c4k

)
≤

∫
B

|∇vk|2dx ≤ 4π + 6π
c4k

+ o

(
1
c4k

)
. (3)

This immediately leads to

4π + 4π
c4k

+ o

(
1
c4k

)
≤

∫
B

|∇vk|2dx = 4π − 1
k
, (4)

which is impossible for large k. Therefore ck must be bounded. Applying elliptic estimates to (2), one gets 
an extremal of C4π(B).

Our aim is to improve [12] to the case of general smooth bounded domain Ω. Similarly as above, by a 
direct method of variation, for any k ∈ N, there exists some uk ∈ W 1,2

0 (Ω) ∩ C2(Ω) such that

C4π−1/k(Ω) =
∫
Ω

e(4π−1/k)u2
kdx (5)

and that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δuk = 1

λk
uke

(4π−1/k)u2
k in Ω,

‖∇uk‖2 = 1, uk > 0 in Ω,

λ =
∫

u2e(4π−1/k)u2
kdx.

(6)
k Ω k
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Then we shall prove the following:

Theorem 1. Let uk ∈ W 1,2
0 (Ω) ∩ C2(Ω) satisfy (5) and (6), and let vk =

√
4π − 1/k uk. Suppose that 

ck = maxΩ vk → +∞ as k → ∞. Then we have∫
Ω

|∇vk|2dx ≥ 4π + 4π
c4k

+ o

(
1
c4k

)
. (7)

Clearly, by an obvious analog of (4), Theorem A follows from Theorem 1. The proof of Theorem 1 is 
based on techniques in [13]. We give its outline as follows. Let xk be such that ck = maxΩ uk = uk(xk). We 
assume up to a subsequence, xk → x0 ∈ Ω as k → ∞. By a result of Gidas-Ni-Nirenberg [8], x0 lies in the 
interior of Ω. Let Bk be a function radially symmetric with respect to xk solving⎧⎨⎩−ΔBk = ΛkBke

B2
k in R2,

Bk(xk) = ck,
(8)

where Λk = 1/λk and λk be defined as in (6). Firstly we expand Bk to a Taylor formula up to an error 
O(c−7

k ) near xk, while in ([13], Step 3.2), only Taylor expansion up to an error O(c−5
k ) are given. Secondly, 

as in ([13], Step 3.3), we compare the behavior of vk and Bk near xk by employing ([5], Proposition 3.1). 
Finally we obtain (7) by combining the above two steps.

It should be mentioned that as we did in [20], the argument in this note can be adapted to reprove 
[10,19]. In view of [21], it can also be modified to reprove [18,6]. The remaining part of this note is to prove 
Theorem 1. Throughout this note, sequence and subsequence are not distinguished, various constants are 
often denoted by the same C, and Bx(r) ⊂ R2 always denotes the disc centered at x with radius r.

2. Proof of Theorem 1

We now prove Theorem 1 by using the method of energy estimate [11–13]. To begin with, we let uk ∈
W 1,2

0 (Ω) ∩ C2(Ω) satisfy (5) and (6). Then vk =
√

4π − 1/k uk solves

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−Δvk = Λkvke
v2
k in Ω,

vk > 0 in Ω, vk = 0 on ∂Ω,

‖∇vk‖2 =
√

4π − 1/k,

Λk = 1/λk.

(9)

By our assumption, ck = maxΩ vk = vk(xk) → +∞ as k → ∞. According to Gidas-Ni-Nirenberg [8], one 
may assume xk → x0 ∈ Ω as k → ∞. Let

r2
k = 4Λ−1

k c−2
k exp(−c2k). (10)

It is known [1,4] that rk → 0 as k → ∞, and that there exists a sequence of positive numbers (sk) satisfying 
sk → +∞ and

‖ck(vk(xk + rk·) − ck) − T0‖C2(B0(sk)) → 0 (11)

as k → ∞, where T0(x) = − log(1 + |x|2) is a solution of
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−ΔT0 = 4 exp(2T0) in R2.

Let S0 be a function radially symmetric with respect to the origin satisfying⎧⎨⎩−ΔS0 = 4 exp(2T0)(2S0 + T 2
0 + T0) in R2,

S0(0) = 0.
(12)

Hereafter, we slightly abuse some notations. When a function u is radially symmetric with respect to 
a ∈ R2, we sometimes denote u(|x − a|) = u(x − a) for x ∈ R2. Note that S0 can be explicitly written out 
by Malchiodi-Martinazzi [11]. In particular

S0(r) = O(log r) as r → ∞, (13)

and ∫
R2

ΔS0(y)dy = −4π. (14)

Let W0(x) = W0(|x|) be the radial solution of⎧⎨⎩−ΔW0 = 4 exp(2T0)(S0 + 2S2
0 + 4T0S0 + 2S0T

2
0 + T 3

0 + 1
2T

4
0 + 2W0) in R2,

W0(0) = 0.
(15)

According to Mancini-Martinazzi [12], there holds

W0(r) = O(log r) as r → ∞, (16)

and ∫
R2

ΔW0(x)dx = −12π − 2
3π

2. (17)

We define three sequences of functions

Tk(x) = T0

(
x− xk

rk

)
, Sk(x) = S0

(
x− xk

rk

)
, Wk(x) = W0

(
x− xk

rk

)
. (18)

Let τ ∈ (0, 1) be a fixed real number. Take rk,τ > 0 such that Tk(rk,τ ) = −τc2k. Obviously we have

r2
k,τ = r2

k exp(τc2k + ok(1)). (19)

Let Bk be defined as in (8). Then Bk has the following expansion:

Proposition 2. For any yk ∈ Bxk
(rk,τ ), there holds

Bk(yk) = ck + Tk(yk)
ck

+ Sk(yk)
c3k

+ Wk(yk)
c5k

+ O

(
1 − Tk(yk)

c7k

)
.
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Proof. We write

Bk = ck + Tk

ck
+ Sk

c3k
+ W1,k

c5k
. (20)

Let ρ1,k > 0 be defined by

ρ1,k = sup {r ∈ (0, rk,τ ] : |W1,k(s) −Wk(s)| ≤ 1 − Tk(s) for all s ≤ r} . (21)

We calculate on Bxk
(ρ1,k) that

Bk = ck + Tk

ck
+ Sk

c3k
+ O

(
1 − Tk

c5k

)
,

that

B2
k = c2k + 2Tk + T 2

k + 2Sk

c2k
+ 2W1,k + 2TkSk

c4k
+ O

(
1 + T 2

k

c6k

)
,

and that

ΛkBk exp(B2
k) = Λkck exp(c2k) exp(2Tk)

{
1 + T 2

k + 2Sk + Tk

c2k

+
Sk + 2W1,k + 4TkSk + T 3

k + 2T 2
kSk + 2S2

k + 1
2T

4
k

c4k

+O

(
(1 + T 4

k ) exp(T 2
k /c

2
k)

c6k

)}
.

This together with (10) and (20) gives

−ΔW1,k = −c5k

{
ΔBk + 1

ck
ΔTk − 1

c3k
ΔSk

}

= 4 exp(2Tk)
r2
k

{
2W1,k + 4TkSk + 1

2T
4
k + 2T 2

kSk + 2S2
k + Sk − T 3

k

+O

(
(1 + T 4

k ) exp(T 2
k /c

2
k)

c2k

)}
.

In view of (15) and (18),

−ΔWk = 4 exp(2Tk)
r2
k

(
2Wk + 4TkSk + 1

2T
4
k + 2T 2

kSk + 2S2
k + Sk − T 3

k

)
.

Hence on Bxk
(ρ1,k), the difference between W1,k and Wk satisfies

−Δ(W1,k −Wk) = 4 exp(2Tk)
r2
k

{
2(W1,k −Wk) + O

(
(1 + T 4

k ) exp(T 2
k /c

2
k)

c2k

)}
. (22)

Since on Bxk
(rk,τ ), 0 ≥ Tk ≥ −τc2k, and thus 2 + Tk/c

2
k ≥ 2 − τ > 1. Hence we have for r ≤ ρ1,k,
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∫
Bxk

(r)

(1 + T 4
k ) exp(2Tk + T 2

k /c
2
k)

r2
k

dx ≤
∫

Bxk
(r)

(1 + T 4
k ) exp((2 − τ)Tk)

r2
k

dx

≤ C

∫
B0(r/rk)

1
(1 + |y|2) 3−τ

2
dy

≤ C
(r/rk)2

1 + (r/rk)2
, (23)

and by the differential mean value theorem,∫
Bxk

(r)

exp(2Tk)
r2
k

|W1,k −Wk|dx ≤ ‖(W1,k −Wk)′‖C0([0,ρ1,k])

∫
Bxk

(r)

exp(2Tk)
r2
k

|x− xk|dx

= ‖(W1,k −Wk)′‖C0([0,ρ1,k])rk

∫
B0(r/rk)

|y|
(1 + |y|2)2 dy

≤ Crk‖(W1,k −Wk)′‖C0([0,ρ1,k])
(r/rk)3

1 + (r/rk)3
. (24)

Using the divergence theorem, we have∫
Bxk

(r)

Δ(W1,k −Wk)dx = 2πr(W1,k −Wk)′(r). (25)

Combining (23)-(25), we obtain for r ≤ ρ1,k,

r|(W1,k −Wk)′(r)| ≤
C(r/rk)2

c2k(1 + (r/rk)2)

+Crk‖(W1,k −Wk)′‖C0([0,ρ1,k])
(r/rk)3

1 + (r/rk)3
. (26)

Now we claim that

rkc
2
k‖(W1,k −Wk)′‖C0([0,ρ1,k]) ≤ C. (27)

For otherwise we have

Θk = rkc
2
k‖(W1,k −Wk)′‖C0([0,ρ1,k]) = rkc

2
k|(W1,k −Wk)′(ak)| → +∞. (28)

We may assume ρ1,k/rk → θ0 ∈ [0, +∞] as k → ∞. It follows from (26) that

Θk ≤ Cak/rk
1 + (ak/rk)2

+ Θk
C(ak/rk)2

1 + (ak/rk)3
.

This together with (28) leads to

1/C ≤ ak/rk ≤ C (29)

for some constant C > 0, and thus θ0 > 0. We set a sequence of functions
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wk(t) = c2k
Θk

(W1,k −Wk)(rkt). (30)

In view of (22), wk satisfies

−Δwk = 4 exp(2T̃k)
{

2wk + O

(
(1 + T̃ 4

k ) exp(T̃ 2
k /c

2
k)

Θk

)}
, (31)

where T̃k(t) = Tk(rkt). Since |w′(t)| ≤ 1 for all t ∈ [0, ρ1,k/rk] and wk(0) = 0, we have that wk is uniformly 
bounded in (0, ρk/rk). Then applying elliptic estimates to (31), we conclude

wk → w0 in C1
loc(B0(θ0)), (32)

and w0 is a solution of ⎧⎨⎩−Δw0 = 8 exp(2T0)w0 in B0(θ0)

w0(0) = 0.

Note also that w0 is radially symmetric with respect to 0. The uniqueness of solutions to the ordinary 
differential equation (31) leads to w0 ≡ 0 on [0, θ0). This together with (30), (32) and the Lebesgue dominated 
convergence theorem gives∫

Bxk
(ρ1,k)

exp(2Tk)
r2
k

|W1,k −Wk|dx = Θk

c2k

∫
|y|≤ρ1,k/rk

exp(2T̃k)|wk|dy

= o(Θk/c
2
k). (33)

Replacing (24) with (33) in the proof of (26) and keeping in mind (28), we have

r|(W1,k −Wk)′(r)| ≤ o(Θk/c
2
k) (34)

for all r ∈ [0, ρ1,k]. Taking r = ak in (34), we conclude ak/rk = o(1), which contradicts (29). This confirms 
our claim (27).

Inserting (27) into (26), we have

r|(W1,k −Wk)′(r)| ≤
C

c2k

(r/rk)2

1 + (r/rk)2
(35)

for all r ∈ [0, ρ1,k]. If 0 ≤ r ≤ rk, then (35) gives |(W1,k −Wk)′(r)| ≤ Cr/(r2
kc

2
k), and thus

|(W1,k −Wk)(r)| ≤
r∫

0

Ct

r2
kc

2
k

dt ≤ C

c2k
;

While if rk < r ≤ ρ1,k, then it follows from (35) that |(W1,k −Wk)′(r)| ≤ C/(c2kr), which leads to

|(W1,k −Wk)(r)| ≤
r∫
C

c2k

1
t
dt = C

c2k
log r

rk

rk
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Combining the above two cases, we obtain

(W1,k −Wk)(r) = O

(
1 − Tk(r)

c2k

)
uniformly in r ∈ [0, ρ1,k]. This together with (21) leads to ρ1,k = rk,τ and ends the proof of the proposi-
tion. �

Now we compare the values of vk and Bk on Bxk
(rk,τ ). By (11), there exists a sequence of positive 

numbers (sk) such that sk → +∞ and vk(x) = (1 + ok(1))ck uniformly in x ∈ Bxk
(rksk). For any positive 

number τ ′ < 1 − τ , we let 	k,τ ′ > 0 be defined as

	k,τ ′ = sup{s : vk(r) ≥ τ ′ck for all r ≤ s}.

Clearly 	k,τ ′ ≥ rksk. In particular 	k,τ ′/rk → +∞. By ([4], Proposition 2), there exists some constant C
such that |x − xk||∇vk(x)|vk(x) ≤ C for all x ∈ Ω. Hence we have for all x ∈ Bxk

(	k,τ ′),

|x− xk||∇vk(x)| ≤ Cc−1
k .

It then follows from Proposition 2 and ([5], Proposition 3.1) that 	k,τ ′ ≥ rk,τ and

|vk(x) −Bk(x)| ≤ C|x− xk|
ckrk,τ

for all x ∈ Bxk
(rk,τ ). (36)

From now on, we restrict our considerations on the balls Bxk
(rk,τ ). Since (36) together with Proposition 2

leads to

vk = ck + Tk

ck
+ Sk

c3k
+ Wk

c5k
+ O

(
1 − Tk

c7k

)
+ O

(
| · −xk|
ckrk,τ

)
,

there holds

v2
k = c2k + 2Tk + T 2

k + 2Sk

c2k
+ 2TkSk + 2Wk

c4k
+ O

(
1 − Tk

c6k

)
+ O

(
| · −xk|
rk,τ

)

= c2k

(
1 + 2Tk

c2k
+ T 2

k + 2Sk

c4k
+ O

(
1 + T 2

k

c6k

)
+ O

(
| · −xk|
c2krk,τ

))
. (37)

By an inequality | exp(t) − 1 − t − t2/2| ≤ t3 exp(t) for all t ≥ 0, it follows from (37) that

exp(v2
k) = exp(c2k + 2Tk)

{
1 + T 2

k + 2Sk

c2k
+

2TkSk + 2Wk + 1
2 (T 2

k + 2Sk)2

c4k

+O

(
(1 + T 6

k ) exp(T 2
k /c

2
k)

c6k

)
+ O

(
| · −xk|
rk,τ

)}
. (38)

Combining (10), (37) and (38), we obtain

Λkv
2
k exp(v2

k) = 4 exp(2Tk)
r2
k

{
1 + T 2

k + 2Sk + 2Tk

c2k

+
T 2
k + 2Sk + 2Wk + 1

2T
4
k + 2T 2

kSk + 2S2
k + 2T 3

k + 6SkTk

4
ck
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+O

(
(1 + T 6

k ) exp(T 2
k /c

2
k)

c6k

)
+ O

(
| · −xk|
rk,τ

)}
. (39)

We now calculate integrals of all terms on the righthand side of (39). Firstly, by the definition of T0 and Tk

(see (18) above), there holds∫
Bxk

(rk,τ )

4 exp(2Tk)
r2
k

dx =
∫

B0(rk,τ/rk)

4 exp(2T0(y))dy

=
∫

B0(rk,τ/rk)

4
(1 + |y|2)2 dy = 4π + O

(
rk
rk,τ

)
. (40)

Secondly, in view of a direct calculation∫
R2

4 exp(2T0(y))T0(y)dy = −
∫
R2

4 log(1 + |y|2)
(1 + |y|2)2 dy = −4π,

we have by (12), (13) and (14) that∫
Bxk

(rk,τ )

4 exp(2Tk)
r2
k

T 2
k + 2Sk + 2Tk

c2k
dx

= 4
c2k

∫
B0(rk,τ/rk)

exp(2T0(y))(T 2
0 (y) + 2S0(y) + 2T0(y))dy

= 4
c2k

∫
R2

exp(2T0(y))(T 2
0 (y) + 2S0(y) + 2T0(y))dy + O

(
rk

c2krk,τ

)

= 1
c2k

⎛⎝∫
R2

(−ΔS0(y))dy +
∫
R2

4 exp(2T0(y))T0(y)dy

⎞⎠ + O

(
rk

c2krk,τ

)

= O

(
rk

c2krk,τ

)
. (41)

Thirdly, since Mancini-Martinazzi [12] calculated∫
R2

4 exp(2T0)(T 2
0 + T 3

0 + S0 + 2S0T0)dy = −8π − 2
3π

3,

we obtain by employing (15), (16) and (17),

∫
Bxk

(rk,τ )

4 exp(2Tk)
r2
k

T 2
k + 2Sk + 2Wk + 1

2T
4
k + 2T 2

kSk + 2S2
k + 2T 3

k + 6SkTk

c4k
dx

= 4
c4k

∫
B0(rk,τ/rk)

exp(2T0)(T 2
0 + 2S0 + 2W0 + 1

2T
4
0 + 2T 2

0 S0 + 2S2
0 + 2T 3

0 + 6S0T0)dy

= 1
c4k

⎧⎨⎩
∫

(−ΔW0)dy +
∫

4 exp(2T0)(T 2
0 + T 3

0 + S0 + 2S0T0)dy + O

(
rk
rk,τ

)⎫⎬⎭

R2 R2
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= 1
c4k

{
(12π + 2

3π
3) + (−8π − 2

3π
3) + O

(
rk
rk,τ

)}
= 4π

c4k
+ O

(
rk

c4krk,τ

)
. (42)

Fourthly, it is easy to estimate∫
Bxk

(rk,τ )

4 exp(2Tk)
r2
k

(1 + T 6
k ) exp(T 2

k /c
2
k)

c6k
dx = O

(
1
c6k

)
. (43)

Finally, in view of (19), we get∫
Bxk

(rk,τ )

4 exp(2Tk)
r2
k

|x− xk|
rk,τ

dx = rk
rk,τ

∫
B0(rk,τ/rk)

4 exp(2T0(y))|y|dy

= o

(
1
c4k

)
. (44)

Combining (39)-(44), we conclude∫
Bxk

(rk,τ )

Λkv
2
k exp(v2

k)dx = 4π + 4π
c4k

+ o

(
1
c4k

)
. (45)

Since Λk ≥ 0, we have by multiplying both sides of the equation (9) by vk and integration by parts,∫
Ω

|∇vk|2dx =
∫
Ω

Λkv
2
k exp(v2

k)dx ≥
∫

Bxk
(rk,τ )

Λkv
2
k exp(v2

k)dx. (46)

Clearly (7) follows from (45) and (46), and the proof of Theorem 1 is completed. �
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