J. Math. Anal. Appl. 481 (2020) 123462

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The Hajek-Rényi-Chow maximal inequality and a strong law )

Check for

of large numbers in Riesz spaces

Wen-Chi Kuo !, David F. Rodda ?, Bruce A. Watson **

School of Mathematics, University of the Witwatersrand, Private Bag 3, P O WITS 2050, South Africa

ARTICLE INFO ABSTRACT
Article history: In this paper we generalize the Hajek-Rényi-Chow maximal inequality for submartin-
Received 27 May 2019 gales to LP type Riesz spaces with conditional expectation operators. As applications

Available online 2 September 2019

' we obtain a submartingale convergence theorem and a strong law of large numbers
Submitted by U. Stadtmueller

in Riesz spaces. Along the way we develop a Riesz space variant of the Clarkson’s
inequality for 1 < p < 2.

Keywords:

Riesz spaces

Vector lattices

Maximal inequality
Clarkson’s inequality
Submartingale convergence
Strong law of large numbers

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In a Dedekind complete Riesz space E with weak order unit, say e, we say that T is a conditional
expectation on E if T is a positive order continuous linear projection on F which maps weak order units to
weak order units and has range, R(T'), a Dedekind complete Riesz subspace of E, see [13] for more details. It
should be noted that the only conditional expectation operator which is also a band projection is the identity
map. A conditional expectation operator T is said to be strictly positive if T'| f| = 0 implies that f = 0. Every
Archimedean Riesz space E can be extended uniquely (up to Riesz isomorphism) to a universally complete
space E*, see [23]. It was shown in [13] that the domain of a strictly positive conditional expectation
operator T' can be extended to its natural domain L!(T) in E*. In particular L' (T) = dom(T) — dom(T)
where f € dom(T) if f € EY, the positive cone of E*, and there is an upwards directed net f, in £} with
the net T'f, order bounded in E* and in this case the value assigned to T'f is the order limit in E* of the
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net T'f,. Given that the above extensions can be made we will assume throughout that T is a conditional
expectation operator acting on L!(T). The space E" is an f-algebra with multiplication defined so that the
chosen weak order unit, e, is the algebraic unit. Further, it was shown in [18] that R(T) = {T'f|f € L}(T)}
is an f-algebra and L!(T) is an R(T)-module with R(T)-valued norm ||f||1 7 := T|f|. The space L*(T)
was introduced in [19] and generalized to L?(T) = {z € L (T) : |z|P € L*(T)},1 < p < oo, in [2] where
functional calculus was used to define f(x) = a? for x € E'. Much of the mathematical machinery needed
to work in LP(T),1 < p < oo, was developed in [10] even though such spaces were not considered there.
Again these spaces are R(T)-modules with associated R(T)-valued norms | f||, 7 = (T|f|?)*/?. We note
that in [18] the R(T)-module L>°(T) = {z € LY(T) : |z| < y for some y € R(T)} was considered, with
R(T)-valued norm || fllco,r := inf{y € R(T)+ : |f| < y}. Here we have that L>°(T') is an f-algebra order
dense in L(T) and having L>°(T) C LP(T) C LY(T) for all 1 < p < co. Regarding LP type spaces we also
note the work of Boccuto, Candeloro and Sambucini in [3]. In Section 3, we generalize Clarkson’s inequality
to LP(T),1 <p<2.

A filtration on a Dedekind complete Riesz space F with weak order unit is a family of conditional ex-
pectation operators (T;);en defined on E having T;T; = T,;T; = T; for all ¢ < j. We say that a sequence of
elements (f;);en in a Riesz space is adapted to a filtration (T;);en if f; € R(T;) for all i € N. A sequence
(fi)ien is said to be predictable if f; € R(T;—1) for each i € N. A Riesz space (sub, super) martingale is
a double sequence (f;,T;);en with (f;)ien adapted to the filtration (73);en and T; f;(>, <) = f; for i < j.
The fundamentals of such processes can be found in [12-14] as well as their continuous time versions in
[8,9]. In Section 4, we give the Hajek-Rényi-Chow maximal inequality for Riesz space submartingales, see
[4, Theorem 1] and [6, Proposition (6.1.4)] for measure theoretic versions. The Héjek-Rényi-Chow maximal
inequality for submartingales has as a special case Doob’s maximal inequality. We note that maximal in-
equalities have been obtained for Riesz space positive supermartingales in [11, Lemma 3.1] and for Riesz
space quasi-martingales in [22, Theorem 6.2.10]. The H4jek-Rényi-Chow maximal inequality for submartin-
gales is applied, in Theorem 5.1, to non-negative submartingales to obtain weighted convergence, via a proof
which does not use of upcrossing. We note that this theorem can be deduced directly from [14, Theorem
3.5], which is, however, based on the Riesz space upcrossing theorem. For E a Dedekind complete Riesz
space with weak order unit, e, and (B,) an increasing sequence of bands in F, with associated band pro-
jections (P,), it was proved in [21] that =z, /b, — 0, in order, as n — oo if z,, € B,, with P,z, 11 = x,, and

1/2
1 n
|Zni1 — Zn| < cpe, for all n € N. Here ¢, > 0 and 0 < b, 1 oo, for all n € N, with ™ (Z«:ﬁ) — 0 as
" \i=1
n — oo. In Section 5, we conclude by giving Chow’s strong law of large numbers in LP(T'),1 < p < oo, see
[4,5] and [6, Theorems 6.1.8 and 6.1.9] for measure versions.
We note that, for Riesz space processes, a strong law of large numbers for ergodic processes was given in
[15], a weak law of large number for mixingales in [16] and Bernoulli’s law of large numbers in [17].

2. Weighted Cesaro means

In this section we give a version of Kronecker’s Lemma for weighted Cesaro means in an Archimedean
Riesz space.

Lemma 2.1. Let E be an Archimedean Riesz space and (s,) be a sequence in E, order convergent to 0. If
b, is a mon-decreasing sequence of non-negative real numbers divergent to +oo, then bL Z?;ll(bi_lrl —b;)s;
converges to zero in order as n — Q.

Proof. By the order convergence of (s,) to 0, there is sequence (v,,) in E such that s, <wv, | 0, for n € N.
As
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n—l
z:l

n

it suffices to show that z, — 0 in order. For n € N, let N,, := max{j € N|j?b; < b,}, then (N,) is a
non-decreasing sequence in N with N,, — oo as n — oo and N,, < n for n > 2. Now, for n > 2,

N, n—1
1 n
=5 (bnvnl —bivr + Y bi(vicr — i)+ Y bi(vieg — Ui))
n
1

=2 i=Np+

<vn 1+_<ZbN'U1+ Z bn 1Uz 1_'01))

i=Np+1

N, bn. by 1
<Upo1 + bN"v1+ 2 lvzvnévanrN vi+on, L 0. O

In [7, lemma 3.14], this result was proved for the case of b, = n,n € N.

Lemma 2.2 (Kronecker’s Lemma). Let (x,) be a summable sequence of elements in an Archimedean Riesz
space E. Let (bp)nen be a non-decreasing sequence of non-negative real numbers divergent to +o0o. Then
1 n

b bez—>0m0rderasn—>oo

i=1

oo
Proof. Let s, := Z z;,m=0,1,2,..., then s,, — 0 in order and
1=n+1

n—1 n—1

b 1
bnsn — biso — Y _ (b1 — bi)si| < |sn| + b—1|80| to > (bigr = bi)lsi
i=1 " " i=1

1 n

1
bn
which converges to zero in order by Lemma 2.1. O
3. Inequalities

The inequalities presented in this section form the foundation on which much of the rest of this paper is
based.

Taking the product Riesz space K = [L'(T)]" with componentwise ordering and defining F(x;)? ; =
(% 2?21 x;)7_, we have that [ is a conditional expectation operator on /C. Hence from [10, Corollary 6.4]
or [2, Theorem 3.7] we have the following theorem.

Theorem 3.1 (Hélder’s inequality for sums). Let T be a conditional expectation with natural domain L*(T)

and 1 < p,q < oo with%—I—% =landp=1 forq=o00. Let n € N. If x; € LP(T) and y; € LY(T) for all
i €{1,2,...,n}, then x;y; € L*(T) for each i, and

1 1
> ris < (371 (37100
i=1 i=1 i=1

From [2, page 809] we have that

2+ yl” + [z —yP < 2°(l2]” + |y[?)
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for 1 < p < oo with z,y € E*. This inequality, however, is inadequate for our purposes and we require
a refined version, i.e. the Clarkson’s inequalities for 1 < p < 2. To this end we follow the approach of
Ramaswamy [20].

Theorem 3.2 (Clarkson’s inequality). Let E be a Dedekind complete Riesz space with weak order unit, say e
which we take as the multiplicative unit in the f-algebra E*. For xz,y € E* and 1 < p < 2 we have

[z +y” + |z —yl” < 2(]z)” + [yl"). (3.1)
Proof. For p = 1 the result follows from the triangle inequality while for p = 2 the result follows from
|f|> = f2, so we now consider only 1 < p < 2. Taking g(X) = X*? and F(X,Y) = (3(X +Y), 3(X +Y))
in Jensen’s inequality of [10] on the Riesz space F := E* x E* with componentwise ordering, we have that
F(g(lal?, [bIP)) > g(F (|al?, [b[?)) s0 [a]*+[b]* > 2~2/P(|alP+[b]P)*/? and 2C)/2(|af?+[b]*)?/? > [al? +[b[P.
Setting a = z + y and b = x — y we have

@+ ylP + |z — yl? <2072 (@ +y)? + (@ —y)P)P? = 2(2® + 7P (3-2)

We now apply the oo case of Holder’s inequality of [10] on the space F' with conditional expectation F as
above to get

F((|l=[7, ") (*77, [y 77) < F (2l [yP) (a2 v [y 77 v [y 7). (3-3)

Here |z]277 V |y|>7P = (|z|P V |[y|P)Z=P)/P < (Jz|P + |y|P)?~P)/P by the commutation of multiplication and
band projections in the f-algebra E". Hence from (3.3) we get

_ 1
(= + 1) (2l? + [y?) =277 = S (P + ),

DN | =

1
@ +y?) <
2

which when combined with (3.2) gives (3.1). O

The strong law of large numbers for p > 2 will make use of Riesz space versions of Burkholder’s inequality,
[1, Theorem 16], which we give here for completeness.

Theorem 3.3 (Burkholder’s inequality). For 1 < p < oo, there are constants c,, Cp, > 0 such that

CTIX, P < TISEP < ¢TI X, P,

for each (X, Tn)nen @ martingale in LP(T) compatible with T, i.e. TT, =T = T,T, for all € N. Here
n
Sn = Z(X’L - Xi71)2 and XO = 0.

i=1

4. Hajek-Rényi-Chow maximal inequality

We now recall some well known results regarding band projections on a Dedekind complete Riesz space,
E, with a weak order unit, say e. If g € E; we denote the band projection onto the band generated by g by
P,. In this setting every band is a principal band and if B is a band in £ with band projection @ onto E
then a generator of the band is Qe. Moreover for f € E, we have P,f = sup(f A (ng)), see [24, Theorem

neN

11.5]. Further if (f,,) is a sequence in F, then
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\ Pr.=Py= 4. (4.1)

n=1
since
P\/Zozlfne: \/ (e/\m<\/fn>>: \/ e/\mfn \/an e.
m=1 n=1 m,n=1
We note however that for the case of infima only the following inequality can be assured
o0
/\ an Z PAle fn' (4.2)
n=1

For reference we note that if (g,,) is a sequence in E then 0 < P/\noo:1 9z gh < Pg;ngjn = 0 giving

+ _ + B N
(I - P/\zozl g;) \/ Im = \/ (I o P/\O<J 1 gn Im = \/ 9m-
m=1 m=1 me1
Hence
P\/" 1 g” < I P/\OC 19n " (43)

Using telescoping series we generalize [6, Lemma (6.1.1)] to vector lattices.

Lemma 4.1. Let E be a Dedekind complete Riesz space weak order unit e. Let (X;) C E be a sequence in E
and g € E. Let P; := Py_x,y+,1 € N, be the band projection onto the band generated by (g — X;)*, then

n—1
(1= Qn)g < X1+ ) [Qil(Xis1 — Xi)] — QnXon, (4.4)
i=1

where Qp = H P; = P(97V;:1 Xj)+,n e N.

Proof. Let Qo := I. From the definition of P; we have P;j(g— X;) = (¢ — X;)" and thus (I — P;)(g — )
—(9—X;)” <0. However Q;_1—Q; = Q;—1(I—P;), so applying ;1 to both sides of (I —P;)(g9—X; ) <
gives (Q;—1—Q;)(9—X;) < 0. Hence (Qj—1—Q;)g < (Q;j—1—Q;)X;, which when summed over j =1, ..
gives (4.4). O

:OII

If (fi,T;) is a submartingale in the Riesz space E then so is (f;",T;). To see this we observe that as
T; a positive operator and f;‘ > fj so Tlf;' > T;f; > fi and as f;r > 0 so Tlf]+ > 0, for ¢ < j. Hence
Tifi >0V fi=fi fori<j.

Theorem 4.2 (Hdjek-Rényi-Chow mazimal inequality). Let (Y;, T;)ien be a submartingale in L*(T). For
(a;)ien a non-decreasing sequence of positive real numbers and g € R(Ty)t we have

Y+ n—1
Ty(I — U)g<a—1+ZT

i=1

+ +
Vi~ Y

4.5
— (4.5)

where U, =[], P(g_ﬁy = P( +.

aj

g\/,1a)
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Proof. Let Q = P, be the band projection onto the band generated by g. Now as g € R(T1)™ it follows that
Q and T; commute, see [13, Theorem 3.2]. As (Y;",T}) is a submartingale, for i < 7, TZ'YJ-Jr >Y,r=TY",

1
hence

Ti(Yji =Y} 20, (4.6)
and thus
+ n-l v+ y+
(IQMUIMQTW%W®QOSU<®C;+ZE ﬁ;j ) (4.7)
i=1 v

Letting X; = Y;+/ai,i € N, in Lemma 4.1 we have, for n € N,

bR (v vt S T s :
UQm<—+Z@<“#>c%;gj+Z@ LATh (4.8)
' " i=1

Ai+1 Ai+1

where Ql-:P<97 )+.HereOﬁQiSIandT(Kil—Y+)>OsoQT( Vi, =Y ) <Ti(vih, Y7 ).

j=1 X

Hence, as Ty = T1T;, from (4.6) and (4.8),

az+1

Y+ n—1 Y+ Y+
Ti(I - Qn)g < a—ll +y°m (”1—1 : (4.9)

Since g > 0, we have

(I ) P )

+
giving gA (g L) = (g — ij) thus QU,, = QQ,,. Now, applying @ to (4.9) and noting that T1Q = QT
we have

QTI(I-Uy)g < Q (Y—+ + HZT (M» . (4.10)

P Qi+1
Combining (4.7) and (4.10) gives (4.5). O
5. Submartingale convergence

As an application of the Hajek-Rényi-Chow Maximal Inequality we give a weighted convergence theorem
for submartingales, with a proof that is independent of upcrossing.

Theorem 5.1 (Submartingale convergence). Let p > 1 and (X;,T;)ien be a non-negative submartingale in
LP(T). Let (a;);en be a positive, non-decreasing, sequence of real numbers diverging to co. If

ZTl ( mXP) (5.1)

converges in order, then =n tends to zero in order as n tends to oco.
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Proof. By [10, Corollary 4.5], (X, T),) is a non-negative submartingale so Z; := (X! ; — X?)/a? | has
T1Z; > 0 and by assumption Y .- T} Z; is order convergent, so by Lemma 2.2

Ty XP 1 XP 1
= +1_ — (Xuz P > =t Za+1le —0 (5.2)
m+1 m+1 m+1 m+1 i=1

in order as m — oo.
By (4.3) and Theorem 4.2 applied to (X7

Z)’L =m?

with g = te, t € R where ¢t > 0, for n > m, we have

TlP(V’.‘: (X—g—te>+>te <Tiy|I- P/\" (ﬁ te>_ te < f—]il + nz: T Z;. (5.3)

Applying 71 to (5.3) and taking the order limit as n — oo, by (4.1) we have

0 <1ty <§7 P(i}{l

_t6> ) e<T) {—} Z T\ Z; (5.4)

Taking the order limit as m — oo of (5.4), by (5.2), we have

Xr
< i < li — = .
O—tTl,,}:I%o<\/P( _te)>e—n%5%oTl[ap]+n%£f;oZle 0 :5)

i=m

Hence Ty A\,,en Viem Prxr y+€ = 0 and by the strict positivity of T1, A,eny Viem Prxr \+e = 0.
a%’ t ( 7te>

Now, by (4.1) and (4.2),

0<P <Xp )+e§ NP (L, )+e— A \/P<X§ ) re=0
me a¥ b

lim sup, i —te ol
Pimoo af Vizm meN i=m

P P
and so 0 < lim inf ’ < lim sup

i—00 a i—00 ai

p —>01norderabz—>oo O

Remark. Since (X2, T,,) is a non-negative submartingale, by [10, Corollary 4.5], taking Y; 1, = ZZ 1 Zi in
the above theorem, we have that (Y}, T}) is a Ti-bounded submartingale and Theorem 5.1 follows directly
from [14, Theorem 3.5].

6. Chow’s strong laws of large numbers
We recall that (Y;,T;) is a martingale difference sequence if (T3) is a filtration, (Y;) is adapted to (T;)
and T;_1Y; = 0 for ¢ > 2. In Theorem 6.1, for 1 < p < 2, and Corollary 6.2 and Theorem 6.3, for p > 2,

Chow’s strong law of large numbers is extended to martingale difference sequences in Riesz spaces.

Theorem 6.1. Let 1 <p <2, and (Y, Tn)nen be a martingale difference sequence in LP(T'). Let (a;);en be

a positive, non-decreasing sequence of real numbers divergent to infinity with

2 (%) o
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n

1
order convergent, then — ZYZ — 0, in order, as n tends to infinity.

oi=1

n
Proof. Let X,, = Z Y; then X; +Y;41 = X;41 and X; —Y; 11 = 2X; — X;41 so Theorem 3.2 can be applied
i=1
to give

[ Xiv1l? + 12X — Xig1 [P < 2(] X7 + [Yiga [P). (6.2)

Now as (X,,,T,) is a martingale, so T;(2X; — X;41) = X; and by functional calculus, see [10], | X;|? € R(T;)
giving T;| X;|P = | X;|P, hence

Tl Xo|P = |Ti(2X; — Xiv1)|P < Tif2X5 — X P (6.3)

where the final inequality follows from Jensen’s inequality, [10, Theorem 4.4]. Combining (6.2) and (6.3) we
have

Ti| Xipa [P — Ti| XalP < 2T5[Yiqa|P. (6.4)

By [10, Corollary 4.5], (|X;|,T3) and (| X;|?,T;) are submartingales so

0<

X, P — T X |P Y. 4 |P
T2|X2+1| T1|X2| §2TZ|}1/;1+1|

(6.5)
azi)—i-l (AR

T\ Xl — T3\ X,
which, with (6.1), yields that Z [ X1 X"

i=1 i+1

is order convergent. The theorem now follows from

Theorem 5.1. O
We can now bootstrap on Theorem 6.1 to obtain a strong law for p > 2.

Corollary 6.2. Let p > 2 and (Y, Ty)nen be a martingale difference sequence in LP(T1). Let (a;)ien be a

L . Lo~ L , o (1Yl
positive, non-decreasing sequence of real numbers with g — convergent in R, and E T order
a; a

o
i=1 i=1 g

convergent, where p > v + (§ — 1)k, then — ZY — 0, in order, as n tends to infinity.
=1

Proof. From Hélder’s inequality, Theorem 3.1, for n > m we have
1—2
IYI IYI ~e)
> Z T >

where § = 5= > k ensuring that Z 5 converges. Hence from Theorem 6.1 with p = 2, — Z Y, — 0, in

i=1 nzl

L[]

)

order, as n tends to infinity. O

From Corollary 6.2, if p > 2 and (Y, Tn)nen is a martingale difference sequence in LP(Ty) with

Y; 1<
E T ( 1| +p‘ 6) order convergent for some § > 0 then — E Y; — 0, in order, as n tends to infinity.
n
i=1

For this special case, of a; = 4, a more precise result can be given, as per [5,4].
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Theorem 6.3. Let p > 2 be a fized number and let (Y, Tn)neN be a martingale difference sequence in LP(Ty).

o (1
DRACE
i=1

, 1 ¢ ,
) converges in order then — E Y; — 0 in order as n — co.
n
i=1

n
Proof. Let X,, =: Z Y; for n € N, then, from Theorem 5.1, it suffices to prove the convergence as n — oo
i=1

XilP — [ Xia P =1 1 o TXaP) T(X PP
nZT(M)Z(Tpm>TN|X1|)+ (‘np|)7 (‘2p|).

=2

of

Since each term in the above summations is non-negative we need only show the boundedness of Z,,,n € N.
From Burkholder inequality, Theorem 3.3, there is C}, > 0 so that

n p/2
C,Ti| X, P < T} (Z |Yi|2> , (6.6)

i=1

for all n € N. Applying Jensen’s inequality of [10] we have

n p/2 n p/2
T <Zm|2> < <ZT1W> : (6.7)
i=1 i=1

Now Holder inequality, Theorem 3.1, gives

n p/2
(z mﬁ) =S ©8)
=1

Combining (6.6), (6.7) and (6.8) gives

T | X, P 1 ~
< E |P. .
nP T Cyn3t! P il (69)

1 n
From Kronecker’s Lemma, Theorem 2.2, we have that Y Z T1|Y;|P — 0 in order as n — co. Thus the

=1
left hand side of (6.9) is order bounded by say h € L*(T}) and

o) 1
E — T1(|X;P) < E ——=h,
( ’L+1) > 1(‘ ‘ )—pi:1 ip/Q
giving

LX)

Zn <pZ—h+h— o

Here we have used that n™” — (n+1)"? <pn P! neN. O
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