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In this paper we generalize the Hájek-Rényi-Chow maximal inequality for submartin-
gales to Lp type Riesz spaces with conditional expectation operators. As applications 
we obtain a submartingale convergence theorem and a strong law of large numbers 
in Riesz spaces. Along the way we develop a Riesz space variant of the Clarkson’s 
inequality for 1 ≤ p ≤ 2.
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1. Introduction

In a Dedekind complete Riesz space E with weak order unit, say e, we say that T is a conditional 
expectation on E if T is a positive order continuous linear projection on E which maps weak order units to 
weak order units and has range, R(T ), a Dedekind complete Riesz subspace of E, see [13] for more details. It 
should be noted that the only conditional expectation operator which is also a band projection is the identity 
map. A conditional expectation operator T is said to be strictly positive if T |f | = 0 implies that f = 0. Every 
Archimedean Riesz space E can be extended uniquely (up to Riesz isomorphism) to a universally complete 
space Eu, see [23]. It was shown in [13] that the domain of a strictly positive conditional expectation 
operator T can be extended to its natural domain L1(T ) in Eu. In particular L1(T ) = dom(T ) − dom(T )
where f ∈ dom(T ) if f ∈ Eu

+, the positive cone of Eu, and there is an upwards directed net fα in E+ with 
the net Tfα order bounded in Eu and in this case the value assigned to Tf is the order limit in Eu of the 
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net Tfα. Given that the above extensions can be made we will assume throughout that T is a conditional 
expectation operator acting on L1(T ). The space Eu is an f -algebra with multiplication defined so that the 
chosen weak order unit, e, is the algebraic unit. Further, it was shown in [18] that R(T ) = {Tf |f ∈ L1(T )}
is an f -algebra and L1(T ) is an R(T )-module with R(T )-valued norm ‖f‖1,T := T |f |. The space L2(T )
was introduced in [19] and generalized to Lp(T ) = {x ∈ L1(T ) : |x|p ∈ L1(T )}, 1 < p < ∞, in [2] where 
functional calculus was used to define f(x) = xp for x ∈ Eu

+. Much of the mathematical machinery needed 
to work in Lp(T ), 1 < p < ∞, was developed in [10] even though such spaces were not considered there. 
Again these spaces are R(T )-modules with associated R(T )-valued norms ‖f‖p,T := (T |f |p)1/p. We note 
that in [18] the R(T )-module L∞(T ) = {x ∈ L1(T ) : |x| ≤ y for some y ∈ R(T )} was considered, with 
R(T )-valued norm ‖f‖∞,T := inf{y ∈ R(T )+ : |f | ≤ y}. Here we have that L∞(T ) is an f -algebra order 
dense in L1(T ) and having L∞(T ) ⊂ Lp(T ) ⊂ L1(T ) for all 1 < p < ∞. Regarding Lp type spaces we also 
note the work of Boccuto, Candeloro and Sambucini in [3]. In Section 3, we generalize Clarkson’s inequality 
to Lp(T ), 1 ≤ p ≤ 2.

A filtration on a Dedekind complete Riesz space E with weak order unit is a family of conditional ex-
pectation operators (Ti)i∈N defined on E having TiTj = TjTi = Ti for all i < j. We say that a sequence of 
elements (fi)i∈N in a Riesz space is adapted to a filtration (Ti)i∈N if fi ∈ R(Ti) for all i ∈ N. A sequence 
(fi)i∈N is said to be predictable if fi ∈ R(Ti−1) for each i ∈ N. A Riesz space (sub, super) martingale is 
a double sequence (fi, Ti)i∈N with (fi)i∈N adapted to the filtration (Ti)i∈N and Tifj(≥, ≤) = fi for i < j. 
The fundamentals of such processes can be found in [12–14] as well as their continuous time versions in 
[8,9]. In Section 4, we give the Hájek-Rényi-Chow maximal inequality for Riesz space submartingales, see 
[4, Theorem 1] and [6, Proposition (6.1.4)] for measure theoretic versions. The Hájek-Rényi-Chow maximal 
inequality for submartingales has as a special case Doob’s maximal inequality. We note that maximal in-
equalities have been obtained for Riesz space positive supermartingales in [11, Lemma 3.1] and for Riesz 
space quasi-martingales in [22, Theorem 6.2.10]. The Hájek-Rényi-Chow maximal inequality for submartin-
gales is applied, in Theorem 5.1, to non-negative submartingales to obtain weighted convergence, via a proof 
which does not use of upcrossing. We note that this theorem can be deduced directly from [14, Theorem 
3.5], which is, however, based on the Riesz space upcrossing theorem. For E a Dedekind complete Riesz 
space with weak order unit, e, and (Bn) an increasing sequence of bands in E, with associated band pro-
jections (Pn), it was proved in [21] that xn/bn → 0, in order, as n → ∞ if xn ∈ Bn with Pnxn+1 = xn and 

|xn+1 − xn| ≤ cne, for all n ∈ N. Here cn > 0 and 0 < bn ↑ ∞, for all n ∈ N, with 
1
bn

(
n∑

i=1
c2i

)1/2

→ 0 as 

n → ∞. In Section 5, we conclude by giving Chow’s strong law of large numbers in Lp(T ), 1 < p < ∞, see 
[4,5] and [6, Theorems 6.1.8 and 6.1.9] for measure versions.

We note that, for Riesz space processes, a strong law of large numbers for ergodic processes was given in 
[15], a weak law of large number for mixingales in [16] and Bernoulli’s law of large numbers in [17].

2. Weighted Cesàro means

In this section we give a version of Kronecker’s Lemma for weighted Cesàro means in an Archimedean 
Riesz space.

Lemma 2.1. Let E be an Archimedean Riesz space and (sn) be a sequence in E+ order convergent to 0. If 
bn is a non-decreasing sequence of non-negative real numbers divergent to +∞, then 1

bn

∑n−1
i=1 (bi+1 − bi)si

converges to zero in order as n → ∞.

Proof. By the order convergence of (sn) to 0, there is sequence (vn) in E such that sn ≤ vn ↓ 0, for n ∈ N. 
As
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0 ≤ 1
bn

n−1∑
i=1

(bi+1 − bi)si ≤
1
bn

n−1∑
i=1

(bi+1 − bi)vi =: zn,

it suffices to show that zn → 0 in order. For n ∈ N, let Nn := max{j ∈ N | j2bj ≤ bn}, then (Nn) is a 
non-decreasing sequence in N with Nn → ∞ as n → ∞ and Nn < n for n ≥ 2. Now, for n ≥ 2,

zn = 1
bn

(
bnvn−1 − b1v1 +

Nn∑
i=2

bi(vi−1 − vi) +
n−1∑

i=Nn+1
bi(vi−1 − vi)

)

≤ vn−1 + 1
bn

(
Nn∑
i=2

bNn
v1 +

n−1∑
i=Nn+1

bn−1(vi−1 − vi)
)

≤ vn−1 + NnbNn

bn
v1 + bn−1

bn
vNn

≤ vn−1 + 1
Nn

v1 + vNn
↓ 0. �

In [7, lemma 3.14], this result was proved for the case of bn = n, n ∈ N.

Lemma 2.2 (Kronecker’s Lemma). Let (xn) be a summable sequence of elements in an Archimedean Riesz 
space E. Let (bn)n∈N be a non-decreasing sequence of non-negative real numbers divergent to +∞. Then 
1
bn

n∑
i=1

bixi → 0 in order as n → ∞.

Proof. Let sn :=
∞∑

i=n+1
xi, n = 0, 1, 2, . . ., then sn → 0 in order and

∣∣∣∣∣ 1
bn

n∑
i=1

bixi

∣∣∣∣∣ = 1
bn

∣∣∣∣∣bnsn − b1s0 −
n−1∑
i=1

(bi+1 − bi)si

∣∣∣∣∣ ≤ |sn| +
b1
bn

|s0| +
1
bn

n−1∑
i=1

(bi+1 − bi)|si|

which converges to zero in order by Lemma 2.1. �
3. Inequalities

The inequalities presented in this section form the foundation on which much of the rest of this paper is 
based.

Taking the product Riesz space K = [L1(T )]n with componentwise ordering and defining F(xi)ni=1 =
( 1
n

∑n
j=1 xj)ni=1 we have that F is a conditional expectation operator on K. Hence from [10, Corollary 6.4]

or [2, Theorem 3.7] we have the following theorem.

Theorem 3.1 (Hölder’s inequality for sums). Let T be a conditional expectation with natural domain L1(T )
and 1 ≤ p, q ≤ ∞ with 1

p + 1
q = 1 and p = 1 for q = ∞. Let n ∈ N. If xi ∈ Lp(T ) and yi ∈ Lq(T ) for all 

i ∈ {1, 2, ..., n}, then xiyi ∈ L1(T ) for each i, and

n∑
i=1

T |xiyi| ≤
(

n∑
i=1

T |xi|p
) 1

p
(

n∑
i=1

T |yi|q
) 1

q

.

From [2, page 809] we have that

|x + y|p + |x− y|p ≤ 2p(|x|p + |y|p)
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for 1 < p < ∞ with x, y ∈ Eu. This inequality, however, is inadequate for our purposes and we require 
a refined version, i.e. the Clarkson’s inequalities for 1 < p < 2. To this end we follow the approach of 
Ramaswamy [20].

Theorem 3.2 (Clarkson’s inequality). Let E be a Dedekind complete Riesz space with weak order unit, say e
which we take as the multiplicative unit in the f -algebra Eu. For x, y ∈ Eu and 1 ≤ p ≤ 2 we have

|x + y|p + |x− y|p ≤ 2(|x|p + |y|p). (3.1)

Proof. For p = 1 the result follows from the triangle inequality while for p = 2 the result follows from 
|f |2 = f2, so we now consider only 1 < p < 2. Taking g(X) = X2/p and F(X, Y ) = (1

2 (X + Y ), 12 (X + Y ))
in Jensen’s inequality of [10] on the Riesz space F := Eu ×Eu with componentwise ordering, we have that 
F(g(|a|p, |b|p)) ≥ g(F(|a|p, |b|p)) so |a|2+|b|2 ≥ 2(p−2)/p(|a|p+|b|p)2/p and 2(2−p)/2(|a|2+|b|2)p/2 ≥ |a|p+|b|p. 
Setting a = x + y and b = x − y we have

|x + y|p + |x− y|p ≤ 2(2−p)/2((x + y)2 + (x− y)2)p/2 = 2(x2 + y2)p/2. (3.2)

We now apply the ∞ case of Hölder’s inequality of [10] on the space F with conditional expectation F as 
above to get

F((|x|p, |y|p)(|x|2−p, |y|2−p)) ≤ F((|x|p, |y|p))(|x|2−p ∨ |y|2−p, |x|2−p ∨ |y|2−p). (3.3)

Here |x|2−p ∨ |y|2−p = (|x|p ∨ |y|p)(2−p)/p ≤ (|x|p + |y|p)(2−p)/p by the commutation of multiplication and 
band projections in the f -algebra Eu. Hence from (3.3) we get

1
2(x2 + y2) ≤ 1

2(|x|p + |y|p)(|x|p + |y|p)(2−p)/p = 1
2(|x|p + |y|p)2/p,

which when combined with (3.2) gives (3.1). �
The strong law of large numbers for p > 2 will make use of Riesz space versions of Burkholder’s inequality, 

[1, Theorem 16], which we give here for completeness.

Theorem 3.3 (Burkholder’s inequality). For 1 < p < ∞, there are constants cp, Cp > 0 such that

CpT |Xn|p ≤ T |S
1
2
n |p ≤ cpT |Xn|p,

for each (Xn, Tn)n∈N a martingale in Lp(T ) compatible with T , i.e. TTn = T = TnT , for all ∈ N. Here 

Sn :=
n∑

i=1
(Xi −Xi−1)2 and X0 := 0.

4. Hájek-Rényi-Chow maximal inequality

We now recall some well known results regarding band projections on a Dedekind complete Riesz space, 
E, with a weak order unit, say e. If g ∈ E+ we denote the band projection onto the band generated by g by 
Pg. In this setting every band is a principal band and if B is a band in E with band projection Q onto E
then a generator of the band is Qe. Moreover for f ∈ E+ we have Pgf = sup

n∈N
(f ∧ (ng)), see [24, Theorem 

11.5]. Further if (fn) is a sequence in E+ then



W.-C. Kuo et al. / J. Math. Anal. Appl. 481 (2020) 123462 5
∞∨
n=1

Pfn = P∨∞
n=1 fn (4.1)

since

P∨∞
n=1 fne =

∞∨
m=1

(
e ∧m

( ∞∨
n=1

fn

))
=

∞∨
m,n=1

(e ∧mfn) =
∞∨

n=1
Pfne.

We note however that for the case of infima only the following inequality can be assured

∞∧
n=1

Pfn ≥ P∧∞
n=1 fn . (4.2)

For reference we note that if (gn) is a sequence in E then 0 ≤ P∧∞
n=1 g−

n
g+
m ≤ Pg−

m
g+
m = 0 giving

(I − P∧∞
n=1 g−

n
)

∞∨
m=1

g+
m =

∞∨
m=1

(I − P∧∞
n=1 g−

n
)g+

m =
∞∨

m=1
g+
m.

Hence

P∨∞
n=1 g+

n
≤ I − P∧∞

n=1 g−
n
. (4.3)

Using telescoping series we generalize [6, Lemma (6.1.1)] to vector lattices.

Lemma 4.1. Let E be a Dedekind complete Riesz space weak order unit e. Let (Xi) ⊂ E be a sequence in E
and g ∈ E. Let Pi := P(g−Xi)+ , i ∈ N, be the band projection onto the band generated by (g −Xi)+, then

(I −Qn)g ≤ X1 +
n−1∑
i=1

[Qi(Xi+1 −Xi)] −QnXn, (4.4)

where Qn :=
n∏

j=1
Pj = P(

g−
∨n

j=1 Xj

)+ , n ∈ N.

Proof. Let Q0 := I. From the definition of Pi we have Pj(g−Xj) = (g−Xj)+ and thus (I−Pj)(g−Xj) =
−(g−Xj)− ≤ 0. However Qj−1−Qj = Qj−1(I−Pj), so applying Qj−1 to both sides of (I−Pj)(g−Xj) ≤ 0, 
gives (Qj−1−Qj)(g−Xj) ≤ 0. Hence (Qj−1−Qj)g ≤ (Qj−1−Qj)Xj , which when summed over j = 1, . . . , n
gives (4.4). �

If (fi, Ti) is a submartingale in the Riesz space E then so is (f+
i , Ti). To see this we observe that as 

Tj a positive operator and f+
j ≥ fj so Tif

+
j ≥ Tifj ≥ fi and as f+

j ≥ 0 so Tif
+
j ≥ 0, for i ≤ j. Hence 

Tif
+
j ≥ 0 ∨ fi = f+

i for i ≤ j.

Theorem 4.2 (Hájek-Rényi-Chow maximal inequality). Let (Yi, Ti)i∈N be a submartingale in L1(T ). For 
(ai)i∈N a non-decreasing sequence of positive real numbers and g ∈ R(T1)+ we have

T1(I − Un)g ≤ Y +
1
a1

+
n−1∑
i=1

T1

[
Y +
i+1 − Y +

i

ai+1

]
(4.5)

where Un :=
∏n

i=1 P
(
g−Yi

)+ = P(
g−

∨n Yi
)+ .
ai i=1 ai
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Proof. Let Q = Pg be the band projection onto the band generated by g. Now as g ∈ R(T1)+ it follows that 
Q and T1 commute, see [13, Theorem 3.2]. As (Y +

i , Ti) is a submartingale, for i ≤ j, TiY
+
j ≥ Y +

i = TiY
+
i , 

hence

Ti(Y +
j+1 − Y +

j ) ≥ 0, (4.6)

and thus

(I −Q)T1(I − Un)g = T1(I − Un)(I −Q)g = 0 ≤ (I −Q)
(
Y +

1
a1

+
n−1∑
i=1

T1

[
Y +
i+1 − Y +

i

ai+1

])
. (4.7)

Letting Xi = Y +
i /ai, i ∈ N, in Lemma 4.1 we have, for n ∈ N,

(I −Qn)g ≤ Y +
1
a1

+
n−1∑
i=1

Qi

(
Y +
i+1

ai+1
− Y +

i

ai

)
−Qn

Y +
n

an
≤ Y +

1
a1

+
n−1∑
i=1

Qi

(
Y +
i+1 − Y +

i

ai+1

)
(4.8)

where Qi = P(
g−

∨i
j=1 Xj

)+ . Here 0 ≤ Qi ≤ I and Ti(Y +
i+1 − Y +

i ) ≥ 0 so QiTi(Y +
i+1 − Y +

i ) ≤ Ti(Y +
i+1 − Y +

i ). 

Hence, as T1 = T1Ti, from (4.6) and (4.8),

T1(I −Qn)g ≤ Y +
1
a1

+
n−1∑
i=1

T1

(
Y +
i+1 − Y +

i

ai+1

)
. (4.9)

Since g ≥ 0, we have

g ∧
((

g − Yi

ai

)
∨ 0

)
=

(
g ∧

(
g − Yi

ai

))
∨ (g ∧ 0) =

(
g −

(
0 ∨ Yi

ai

))
∨ 0,

giving g∧
(
g − Yi

ai

)+
=

(
g − Y +

i

ai

)+
, thus QUn = QQn. Now, applying Q to (4.9) and noting that T1Q = QT1

we have

QT1(I − Un)g ≤ Q

(
Y +

1
a1

+
n−1∑
i=1

T1

(
Y +
i+1 − Y +

i

ai+1

))
. (4.10)

Combining (4.7) and (4.10) gives (4.5). �
5. Submartingale convergence

As an application of the Hájek-Rényi-Chow Maximal Inequality we give a weighted convergence theorem 
for submartingales, with a proof that is independent of upcrossing.

Theorem 5.1 (Submartingale convergence). Let p ≥ 1 and (Xi, Ti)i∈N be a non-negative submartingale in 
Lp(T ). Let (ai)i∈N be a positive, non-decreasing, sequence of real numbers diverging to ∞. If

∞∑
i=1

T1

(
Xp

i+1 −Xp
i

api+1

)
(5.1)

converges in order, then Xn

an
tends to zero in order as n tends to ∞.
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Proof. By [10, Corollary 4.5], (Xp
n, Tn) is a non-negative submartingale so Zi := (Xp

i+1 − Xp
i )/api+1 has 

T1Zi ≥ 0 and by assumption 
∑∞

i=1 T1Zi is order convergent, so by Lemma 2.2

T1X
p
m+1

apm+1
= 1

apm+1
T1

(
Xp

1 +
m∑
i=1

(Xp
i+1 −Xp

i )
)

= Xp
1

apm+1
+ 1

apm+1

m∑
i=1

api+1T1Zi → 0 (5.2)

in order as m → ∞.
By (4.3) and Theorem 4.2 applied to (Xp

i )ni=m, with g = te, t ∈ R where t > 0, for n > m, we have

T1P(∨n
i=m

(
X

p
i

a
p
i
−te

)+)te ≤ T1

⎛
⎝I − P∧n

i=m

(
X

p
i

a
p
i
−te

)−

⎞
⎠ te ≤ Xp

m

apm
+

n−1∑
i=m

T1Zi. (5.3)

Applying T1 to (5.3) and taking the order limit as n → ∞, by (4.1) we have

0 ≤ tT1

( ∞∨
i=m

P(
X

p
i

a
p
i
−te

)+

)
e ≤ T1

[
Xp

m

apm

]
+

∞∑
i=m

T1Zi. (5.4)

Taking the order limit as m → ∞ of (5.4), by (5.2), we have

0 ≤ tT1 lim
m→∞

( ∞∨
i=m

P(
X

p
i

a
p
i
−te

)+

)
e ≤ lim

m→∞
T1

[
Xp

m

apm

]
+ lim

m→∞

∞∑
i=m

T1Zi = 0. (5.5)

Hence T1
∧

m∈N
∨∞

i=m P(
X

p
i

a
p
i
−te

)+e = 0 and by the strict positivity of T1, 
∧

m∈N
∨∞

i=m P(
X

p
i

a
p
i
−te

)+e = 0. 

Now, by (4.1) and (4.2),

0 ≤ P
lim supi→∞

(
X

p
i

a
p
i
−te

)+e ≤
∧

m∈N
P∨∞

i=m

(
X

p
i

a
p
i
−te

)+e =
∧

m∈N

∞∨
i=m

P(
X

p
i

a
p
i
−te

)+e = 0

and so 0 ≤ lim inf
i→∞

Xp
i

api
≤ lim sup

i→∞

Xp
i

api
≤ te for all t > 0. Thus X

p
i

ap
i
→ 0 in order as i → ∞. �

Remark. Since (Xp
n, Tn) is a non-negative submartingale, by [10, Corollary 4.5], taking Yj+1 =

∑j
i=1 Zi in 

the above theorem, we have that (Yj, Tj) is a T1-bounded submartingale and Theorem 5.1 follows directly 
from [14, Theorem 3.5].

6. Chow’s strong laws of large numbers

We recall that (Yi, Ti) is a martingale difference sequence if (Ti) is a filtration, (Yi) is adapted to (Ti)
and Ti−1Yi = 0 for i ≥ 2. In Theorem 6.1, for 1 ≤ p ≤ 2, and Corollary 6.2 and Theorem 6.3, for p > 2, 
Chow’s strong law of large numbers is extended to martingale difference sequences in Riesz spaces.

Theorem 6.1. Let 1 ≤ p ≤ 2, and (Yn, Tn)n∈N be a martingale difference sequence in Lp(T ). Let (ai)i∈N be 
a positive, non-decreasing sequence of real numbers divergent to infinity with

∞∑
T1

(
|Yi|p
ap

)
(6.1)
i=1 i
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order convergent, then 
1
an

n∑
i=1

Yi → 0, in order, as n tends to infinity.

Proof. Let Xn =
n∑

i=1
Yi then Xi +Yi+1 = Xi+1 and Xi−Yi+1 = 2Xi−Xi+1 so Theorem 3.2 can be applied 

to give

|Xi+1|p + |2Xi −Xi+1|p ≤ 2(|Xi|p + |Yi+1|p). (6.2)

Now as (Xn, Tn) is a martingale, so Ti(2Xi−Xi+1) = Xi and by functional calculus, see [10], |Xi|p ∈ R(Ti)
giving Ti|Xi|p = |Xi|p, hence

Ti|Xi|p = |Ti(2Xi −Xi+1)|p ≤ Ti|2Xi −Xi+1|p (6.3)

where the final inequality follows from Jensen’s inequality, [10, Theorem 4.4]. Combining (6.2) and (6.3) we 
have

Ti|Xi+1|p − Ti|Xi|p ≤ 2Ti|Yi+1|p. (6.4)

By [10, Corollary 4.5], (|Xi|, Ti) and (|Xi|p, Ti) are submartingales so

0 ≤ Ti|Xi+1|p − Ti|Xi|p
api+1

≤ 2Ti|Yi+1|p
api+1

(6.5)

which, with (6.1), yields that 
∞∑
i=1

Ti|Xi+1|p − Ti|Xi|p
api+1

is order convergent. The theorem now follows from 

Theorem 5.1. �
We can now bootstrap on Theorem 6.1 to obtain a strong law for p > 2.

Corollary 6.2. Let p > 2 and (Yn, Tn)n∈N be a martingale difference sequence in Lp(T1). Let (ai)i∈N be a 

positive, non-decreasing sequence of real numbers with 
∞∑
i=1

1
aki

convergent in R, and 
∞∑
i=1

T1

(
|Yi|p
aγi

)
order 

convergent, where p ≥ γ + (p2 − 1)k, then 
1
an

n∑
i=1

Yi → 0, in order, as n tends to infinity.

Proof. From Hölder’s inequality, Theorem 3.1, for n > m we have

n∑
i=m

T1
|Yi|2
a2
i

≤
(

n∑
i=m

T1
|Yi|p
aγi

) 2
p
(

n∑
i=m

e

aδi

)1− 2
p

where δ = p−γ
p
2−1 ≥ k ensuring that 

∞∑
i=1

1
aδi

converges. Hence from Theorem 6.1 with p = 2, 1
an

n∑
i=1

Yi → 0, in 

order, as n tends to infinity. �
From Corollary 6.2, if p > 2 and (Yn, Tn)n∈N is a martingale difference sequence in Lp(T1) with 

∞∑
i=1

T1

(
|Yi|p

i1+
p
2−δ

)
order convergent for some δ > 0 then 

1
n

n∑
i=1

Yi → 0, in order, as n tends to infinity. 

For this special case, of ai = i, a more precise result can be given, as per [5,4].
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Theorem 6.3. Let p > 2 be a fixed number and let (Yn, Tn)n∈N be a martingale difference sequence in Lp(T1). 

If 
∞∑
i=1

T1

(
|Yi|p
i1+

p
2

)
converges in order then 

1
n

n∑
i=1

Yi → 0 in order as n → ∞.

Proof. Let Xn =:
n∑

i=1
Yi for n ∈ N, then, from Theorem 5.1, it suffices to prove the convergence as n → ∞

of

Zn =
n∑

i=2
T1

(
|Xi|p − |Xi−1|p

ip

)
=

n−1∑
i=2

(
1
ip

− 1
(i + 1)p

)
T1(|Xi|p) + T1(|Xn|p)

np
− T1(|X1|p)

2p .

Since each term in the above summations is non-negative we need only show the boundedness of Zn, n ∈ N. 
From Burkholder inequality, Theorem 3.3, there is Cp > 0 so that

CpT1|Xn|p ≤ T1

(
n∑

i=1
|Yi|2

)p/2

, (6.6)

for all n ∈ N. Applying Jensen’s inequality of [10] we have

T1

(
n∑

i=1
|Yi|2

)p/2

≤
(

n∑
i=1

T1|Yi|2
)p/2

. (6.7)

Now Hölder inequality, Theorem 3.1, gives

(
n∑

i=1
T1|Yi|2

)p/2

≤ n
p
2−1

n∑
i=1

T1|Yi|p. (6.8)

Combining (6.6), (6.7) and (6.8) gives

T1|Xn|p
np

≤ 1
Cpn

p
2 +1

n∑
i=1

T1|Yi|p. (6.9)

From Kronecker’s Lemma, Theorem 2.2, we have that 1
n

p
2 +1

n∑
i=1

T1|Yi|p → 0 in order as n → ∞. Thus the 

left hand side of (6.9) is order bounded by say h ∈ L1(T1) and

n−1∑
i=2

(
1
ip

− 1
(i + 1)p

)
T1(|Xi|p) ≤ p

∞∑
i=1

1
ip/2

h,

giving

Zn ≤ p

∞∑
i=1

1
ip/2

h + h− T1(|X1|p)
2p .

Here we have used that n−p − (n + 1)−p ≤ pn−p−1, n ∈ N. �
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