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We classify several notions of norm attaining Lipschitz maps which were introduced 
previously, and present the relations among them in order to verify proper inclusions. 
We also analyze some results for the sets of Lipschitz maps satisfying each of these 
properties to be dense or not in Lip0(X, Y ). For instance, we characterize a Banach 
space Y with the Radon-Nikodým property in terms of the denseness of norm 
attaining Lipschitz maps with values in Y . Further, we introduce a property called 
the local directional Bishop-Phelps-Bollobás property for Lipschitz compact maps, 
which extends the one studied previously for scalar-valued functions, and provide 
some new positive results.
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1. Introduction & preliminaries

It has been studied for a long time the question of whether the set NA(X, Y ) of norm attaining bounded 
linear operators between two Banach spaces X and Y is dense or not in the space L(X, Y ) of all bounded 
linear operators from X into Y . As further studies were proceeded, some mathematicians got interested in 
asking this kind of question for the case of Lipschitz maps as well. To discuss the possibilities of norm attain-
ing Lipschitz maps to be dense in the space of Lipschitz maps, we shall give some preliminary background 
information about them.

Assume that X and Y are real Banach spaces and write X̃ = {(x, y) ∈ X2 : x �= y}. We denote by 
Lip0(X, Y ) the Banach space of all Lipschitz maps f : X −→ Y with f(0) = 0, endowed with the norm

✩ The research of G. Choi was supported by NRF-2015R1D1A1A09059788 and by a travel grant of the Institute of Mathematics 
(IEMath-GRr) of the University of Granada, Spain. The research of Y.S. Choi was supported by Basic Science Research Program 
through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A09059788 
and NRF-2019R1A2C1003857). The research of M. Martín was supported by projects MTM2015-65020-P (MINECO/FEDER, UE), 
PGC2018-093794-B-I00 (MCIU/AEI/FEDER, UE), and FQM-185 (Junta de Andalucía/FEDER, UE).
* Corresponding author.

E-mail addresses: chlrmstn90@postech.ac.kr (G. Choi), mathchoi@postech.ac.kr (Y.S. Choi), mmartins@ugr.es (M. Martín).
https://doi.org/10.1016/j.jmaa.2019.123600
0022-247X/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmaa.2019.123600
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:chlrmstn90@postech.ac.kr
mailto:mathchoi@postech.ac.kr
mailto:mmartins@ugr.es
https://doi.org/10.1016/j.jmaa.2019.123600
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2019.123600&domain=pdf


2 G. Choi et al. / J. Math. Anal. Appl. 483 (2020) 123600
‖f‖ = sup
{
‖f(x) − f(y)‖

‖x− y‖ : (x, y) ∈ X̃

}
.

Looking at this norm of Lip0(X, Y ), the most natural way for a Lipschitz map to attain its norm would 
be the following one [13,14,16].

Definition 1.1. We say that f ∈ Lip0(X, Y ) strongly attains its norm at (x, y) ∈ X̃ if

‖f(x) − f(y)‖
‖x− y‖ = ‖f‖.

We denote by SNA(X, Y ) the set of all f ∈ Lip0(X, Y ) strongly attaining its norm.

However, concerning the problem of the denseness of norm attaining Lipschitz maps, it is impossible to 
proceed further with this definition. In fact, SNA(X, R) fails to be dense in Lip0(X, R) for every Banach 
space X (see [16, Theorem 2.3]) and, therefore, SNA(X, Y ) cannot be dense in Lip0(X, Y ) for any Banach 
space Y by [7, Proposition 4.2]. We refer the interested reader to the recent papers [6,7] for the study of 
the denseness of strongly norm attaining Lipschitz maps defined in general metric spaces.

Recently, a few papers dealing with alternative types of norm attainment for Lipschitz maps defined on 
Banach spaces have appeared. Kadets, Martín and Soloviova [16, Definition 4.2] introduced another possible 
definition called (locally) directionally norm attaining Lipschitz function. On the other hand, Godefroy [14]
defined other two ways in which a Lipschitz map can attain its norm. We also refer to section 8.8 of the 
very recent book [8] for an exposition of the results of the two aforementioned papers [14,16]. Our first aim 
in this paper is to introduce some variations of these definitions of norm attainment and study the possible 
denseness of the set of Lipschitz maps attaining each of such norms. We first provide with the definitions 
used throughout the paper. Definitions 1.2 and 1.3 were first introduced in [14], and Definitions 1.4 and 
1.5 were first considered in [16] only for Lipschitz (real-valued) functions, which are easily extensible to the 
general (vector-valued) Lipschitz maps. We will use the usual notation of BX , SX , X∗ for the closed unit 
ball, unit sphere, and topological dual, respectively, of a Banach space X.

Definition 1.2 ([14]). We say that f ∈ Lip0(X, Y ) attains its norm at x ∈ X through a derivative in the 
direction e ∈ SX if

f ′(x, e) = lim
t→0

f(x + te) − f(x)
t

∈ Y exists and satisfies that ‖f ′(x, e)‖ = ‖f‖.

We denote by Der(X, Y ) the set of every f ∈ Lip0(X, Y ) which attains its norm at x through a derivative 
in the direction e for some point x ∈ X and e ∈ SX .

Let us comment that the argument of maximal norm for a directional derivative is used in the fundamental 
article of Preiss [19] to get the existence of Fréchet-smooth points for a Lipschitz function defined on a space 
with separable dual. More concretely, Preiss provides stronger versions of the result in [12] which showed 
that a Lipschitz function f defined on a Banach space X is Fréchet differentiable at the point x ∈ X, if 
there is e ∈ SX such that |f ′(x, e)| = ‖f‖ (actually much less) and if the norm of X is Fréchet differentiable 
at e.

Definition 1.3 ([14]). We say that f ∈ Lip0(X, Y ) attains its norm toward z ∈ Y if there exists 
{(xn, yn)}∞n=1 ⊆ X̃ such that

f(xn) − f(yn) −→ z with ‖z‖ = ‖f‖.
‖xn − yn‖
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We denote by A(X, Y ) the set of every f ∈ Lip0(X, Y ) which attains its norm toward z for some z ∈ Y .

We will see in Proposition 2.1 that this is the weakest condition among all those that we are defining 
here. Note also that it is proved in [14] (but not explicitly stated, see Example 3.6) that there are pairs of 
Banach spaces (X, Y ) such that A(X, Y ) is not dense in Lip0(X, Y ). For some related results with coarse 
Lipschitz maps, we refer to [9].

The next definitions, which extends those given in [16] for Lipschitz functions, lay in between the previ-
ously introduced notions of norm attainment.

Definition 1.4 ([16]). We say that f ∈ Lip0(X, Y ) attains its norm directionally in the direction u ∈ SX

toward z ∈ Y if there exists {(xn, yn)}∞n=1 ⊆ X̃ such that

f(xn) − f(yn)
‖xn − yn‖

−→ z with ‖z‖ = ‖f‖, xn − yn
‖xn − yn‖

−→ u.

We denote by DirA(X, Y ) the set of every f ∈ Lip0(X, Y ) which attains its norm directionally in the 
direction u toward z for some u ∈ SX and z ∈ Y .

Definition 1.5 ([16]). We say that f ∈ Lip0(X, Y ) attains its norm locally directionally at the point x̄ ∈ X

in the direction u ∈ SX toward z ∈ Y if there exists {(xn, yn)}∞n=1 ⊆ X̃ such that

f(xn) − f(yn)
‖xn − yn‖

−→ z with ‖z‖ = ‖f‖, xn − yn
‖xn − yn‖

−→ u and xn, yn −→ x̄.

We denote by LDirA(X, Y ) the set of every f ∈ Lip0(X, Y ) which attains its norm locally directionally at 
the point x̄ in the direction u toward z for some x̄ ∈ X, u ∈ SX , and z ∈ Y .

As a consequence of [16, Theorem 5.3], one obtains that LDirA(X, R) is dense in Lip0(X, R) whenever X
is a uniformly convex Banach space. Recall that a Banach space X is said to be uniformly convex if for every 
ε > 0, there is δ > 0 such that for any x, y ∈ BX the condition ‖x − y‖ � ε implies that 

∥∥x+y
2

∥∥ � 1 − δ. The 
best possible value of δ is denoted by δX(ε) and called the modulus of convexity of X. As far as we know, 
the cited consequence of [16, Theorem 5.3] is the only known positive result on the denseness of different 
kind of norm attainment for Lipschitz maps defined on a Banach space.

To get shaper results, we also deal in this paper with Lipschitz compact maps. We say f ∈ Lip0(X, Y ) is 
a Lipschitz compact map if the set

Slope(f) :=
{
f(x) − f(y)
‖x− y‖ : (x, y) ∈ X̃

}
⊆ Y

(which is called the set of slopes or the Lipschitz image of f) is relatively compact in Y , and denote by 
Lip0K(X, Y ) the space of all Lipschitz compact maps from X into Y . Observe that if Y is finite-dimensional 
then every Lipschitz map is indeed a Lipschitz compact map, whereas we cannot say that when X is 
finite-dimensional. We refer to [8, §8.6] and [15] for background. Now we apply the five definitions of norm 
attainment to the set of Lipschitz compact maps to get the corresponding norm attaining sets: given Banach 
spaces X, Y , we write

SNAK(X,Y ) := SNA(X,Y ) ∩ Lip0K(X,Y ), DerK(X,Y ) := Der(X,Y ) ∩ Lip0K(X,Y ),

LDirAK(X,Y ) := LDirA(X,Y ) ∩ Lip0K(X,Y ), DirAK(X,Y ) := DirA(X,Y ) ∩ Lip0K(X,Y ),

AK(X,Y ) := A(X,Y ) ∩ Lip0K(X,Y ).
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Let us comment now what happens with all the introduced definitions when the Lipschitz map is actually 
a linear operator. Given Banach spaces X and Y , we denote by L(X, Y ) the space of all bounded linear 
operator from X into Y , endowed with the operator norm. It is clear that L(X, Y ) ⊆ Lip0(X, Y ) with 
equality of the norms. Recall that T ∈ L(X, Y ) attain its norm (as a linear operator) at x0 ∈ SX if

‖T‖ = sup
x∈BX

‖Tx‖ = ‖Tx0‖,

and NA(X, Y ) denotes the set of all T ∈ L(X, Y ) which attains its norm. We summarize in the next result 
the relations between the different notions of norm attainment that we have introduced when they are 
applied to bounded linear operators. We denote by K(X, Y ) the space of all compact linear operators from 
X into Y .

Remark 1.6. Let X, Y be Banach spaces.

(a) SNA(X, Y ) ∩ L(X, Y ) = Der(X, Y ) ∩ L(X, Y ) = LDirA(X, Y ) ∩ L(X, Y ) = DirA(X, Y ) ∩ L(X, Y ) and 
these sets coincide with NA(X, Y ).

(b) K(X, Y ) ⊆ A(X, Y ).

In fact, (a) follows immediately from the definitions, continuity and linearity of the elements of L(X, Y ). 
To get (b), fix T ∈ K(X, Y ) and take z ∈ T (SX) with ‖z‖ = ‖T‖, which is possible due to the compactness 
of T . Now, we may consider a sequence {xn} in SX such that T (xn) −→ z and then the linearity of T gives 
that T ∈ A(X, Y ).

So far we have introduced five definitions of norm attainment for Lipschitz maps. Our aim in Section 2
is to show the inclusion relations between the sets of norm attainment. We first show that for arbitrary 
Banach spaces X and Y , they partially form a chain of subsets:

Der(X,Y ) ⊆ LDirA(X,Y ) ⊆ DirA(X,Y ) ⊆ A(X,Y ) ⊆ Lip0(X,Y )

and that

SNA(X,Y ) ⊆ DirA(X,Y ).

When Y has the Radon-Nikodým property, we show that

SNA(X,Y ) ⊆ Der(X,Y )

and that this inclusion is not true in general. We show examples that all inclusions can be proper, and 
characterize when the equalities hold, getting some characterizations of finite dimensionality. For Lipschitz 
compact maps, the situation is easier, as we will see that

SNAK(X,Y ) ⊆ DerK(X,Y ) ⊆ LDirAK(X,Y ) ⊆ DirAK(X,Y ) ⊆ AK(X,Y ) = Lip0K(X,Y ),

and also that each inclusion can be proper. We analyze the cases where the equalities occur, getting some 
more characterizations of finite dimensionality.

In Section 3, we deal with the problem of determining when the different sets of norm attaining Lipschitz 
maps are dense. We show that Der(R, Y ) is dense in Lip0(R, Y ) if and only if Y has the Radon-Nikodým 
property. Moreover, if Der(X, Y ) is dense in Lip0(X, Y ) for some X, then Y must have the Radon-Nikodým 
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property. On the other hand, it is also shown that DerK(R, Y ) is dense in Lip0K(R, Y ) for all Banach spaces 
Y . Besides, we provide some sufficient conditions to get that A(X, Y ) is dense in Lip0(X, Y ).

In order to discuss the content of Section 4, we need some notions given in [1]. Acosta, Aron, García and 
Maestre introduced the Bishop-Phelps-Bollobás property (BPBp for short) for (linear) operators, a name 
given to those pairs of Banach spaces (X, Y ) satisfying the following: for every ε > 0, there exists η > 0
such that whenever T ∈ SL(X,Y ) and x ∈ SX satisfy ‖Tx‖ > 1 − η, there exist S ∈ SL(X,Y ) and y ∈ SX

such that ‖Sy‖ = 1, ‖S − T‖ < ε and ‖y − x‖ < ε. If T and S above are compact, we get the analogous 
definition of BPBp for compact operators.

Banach spaces with some geometrical properties play an important role as a range space in the viewpoint 
of BPBp for operators. A Banach space X is said to have property β, which was first introduced by Lin-
denstrauss in [17], if there exist a collection {(zi, z∗i )}i∈I ⊆ SX × SX∗ and a constant 0 � λ < 1 satisfying 
(1) |z∗i (zi)| = 1 for all i ∈ I, (2) |z∗i (zj)| � λ < 1 if i �= j, and (3) ‖z‖ = supi∈I |z∗i (z)| for any z ∈ X. 
For instance, finite-dimensional spaces with polyhedral unit balls, c0 and �∞ have property β. When Y has 
property β, (X, Y ) has the BPBp for operators and the BPBp for compact operators for arbitrary domain 
space X (see [1, Theorem 2.2] and [10, Example 1.5]).

Our aim in Section 4 is to extend results in [16] about some version of the Bishop-Phelps-Bollobás 
property for scalar-valued Lipschitz functions to vector-valued cases. Let us present the main definition 
which extends [16, Definition 4.3] to vector-valued maps. Note that [x, y] denotes the segment joining x
and y.

Definition 1.7. A pair of Banach spaces (X, Y ) is said to have the local directional Bishop-Phelps-Bollobás 
property (in short, LDirA-BPBp) for Lipschitz maps if for every ε > 0, there exists η > 0 such that whenever 
f ∈ SLip0(X,Y ) and (x, y) ∈ X̃ satisfy

‖f(x) − f(y)‖
‖x− y‖ > 1 − η,

there exist g ∈ SLip0(X,Y ), z ∈ SY , u ∈ SX and x̄ ∈ X such that g attains its norm locally directionally at 
the point x̄ in the direction u toward z, ‖g − f‖ < ε, 

∥∥u − x−y
‖x−y‖

∥∥ < ε and dist(x̄, [x, y]) < ε.
If f and g above are Lipschitz compact, we get the analogous definition of the LDirA-BPBp for Lipschitz 

compact maps.

Observe that if a pair of Banach spaces (X, Y ) has the LDirA-BPBp for Lipschitz maps, then LDirA(X, Y )
is dense in Lip0(X, Y ). Analogously, if (X, Y ) has the LDirA-BPBp for Lipschitz compact maps, then 
LDirAK(X, Y ) is dense in Lip0K(X, Y ).

If X is a uniformly convex Banach space, it is shown in [16, Theorem 5.3] that the pair (X, R) has the 
LDirA-BPBp for Lipschitz maps. We will show in Section 4 that if X is a uniformly convex Banach space, 
Y is a Banach space, and the pair (F(X), Y ) has the BPBp for compact operators, then the pair (X, Y ) has 
the LDirA-BPBp for Lipschitz compact maps. In particular, this applies for all uniformly convex spaces X, 
if Y has property β, or if Y ∗ is isometrically isomorphic to some L1(μ)-space like Y = C0(L), where L is a 
locally compact Hausdorff space. In the case where X is a Hilbert space H, we also get a slightly different 
property for the pair (H, Y ) under the same assumptions on the space Y .

The techniques which will be used to get results for the LDirA-BPBp for Lipschitz compact maps require 
the notion of the so-called Lipschitz-free spaces. The rest of this introduction is devoted to present the 
necessary background. For a Banach space X, we can associate to each x ∈ X an element δx ∈ Lip0(X, R)∗, 
which is just the evaluation map δx(f) = f(x) for every f ∈ Lip0(X, R). The Lipschitz-free space over X is 
defined as

F(X) := span‖·‖{δx : x ∈ X} ⊆ Lip0(X,R)∗.
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Note that the map x �−→ δx establishes an isometric (non-linear) embedding X ↪→ F(X), because ‖δx−δy‖ =
‖x −y‖ for all x, y ∈ X. We refer the reader to the paper [13] and the books [8] and [20] for more information 
and background. The main features of the Lipschitz-free space that we are going to use here are contained 
in the following result, which is nowadays considered folklore.

Lemma 1.8. Let X, Y be Banach spaces.

(a) For every f ∈ Lip0(X, Y ) there exists a unique linear operator Tf ∈ L(F(X), Y ) such that Tf ◦ δ = f

with ‖Tf‖ = ‖f‖. Moreover, this correspondence defines an isometric isomorphism between the space 
Lip0(X, Y ) and L(F(X), Y ). In particular, F(X)∗ = Lip0(X, R).

(b) f ∈ Lip0K(X, Y ) if and only if Tf ∈ K(F(X), Y ).
(c) The set

Mol(X) :=
{
δx − δy
‖x− y‖ : (x, y) ∈ X̃

}
⊆ F(X)

is rounded and norming for F(X)∗, i.e. BF(X) = co(Mol(X)), where co(Mol(X)) denotes the closed 
convex hull of Mol(X).

(d) F(R) is isometrically isomorphic to L1(R) through the map δt �−→ χ[0,t] or, equivalently, Lip0(R, R) =
L∞(R) through the differentiation map.

2. Relations among the different notions of norm attainment

We begin this section with presenting the inclusion relations among the different kinds of sets of norm 
attaining Lipschitz maps which we have presented in the introduction.

Proposition 2.1. Let X and Y be Banach spaces.

(a) Der(X, Y ) ⊆ LDirA(X, Y ) ⊆ DirA(X, Y ) ⊆ A(X, Y ) ⊆ Lip0(X, Y ).
(b) SNA(X, Y ) ⊆ DirA(X, Y ).
(c) If dim(X) < ∞, then DirA(X, Y ) = A(X, Y ).
(d) If dim(Y ) < ∞, then A(X, Y ) = Lip0(X, Y ).
(e) If Y has the Radon-Nikodým property, then SNA(X, Y ) ⊆ Der(X, Y ).

We need the following easy consequence of [16, Lemma 2.2].

Lemma 2.2. Let X, Y be Banach spaces. If f ∈ Lip0(X, Y ) strongly attains its norm at (x, y) ∈ X̃, then 

‖f(v) − f(w)‖ = ‖f‖ ‖v − w‖ for every (v, w) ∈ [̃x, y].

Proof. Take y∗ ∈ SY ∗ such that

y∗
(
f(x) − f(y)

x− y

)
=

∥∥∥∥f(x) − f(y)
x− y

∥∥∥∥ = ‖f‖.

This shows that the Lipschitz function ψ = y∗ ◦ f ∈ Lip0(X, R) strongly attains its norm at the pair (x, y), 
so by [16, Lemma 2.2], we have that

|ψ(v) − ψ(w)| = ‖ψ‖ = ‖f‖
‖v − w‖
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for every (v, w) ∈ [̃x, y]. This gives the result immediately. �
We also need the following well-known result for which we will include some comments on how it can be 

proved. It will be also useful later on.

Lemma 2.3. Let Y be a Banach space.

(a) If g ∈ Lip0(R, Y ) and either Y has the Radon-Nikodým property or g is Lipschitz compact, then there 
is ϕ ∈ L∞(R, Y ) such that

g(t) =
t∫

0

ϕ(s) ds for t ∈ R.

Note that, in this case, g is differentiable almost everywhere and ϕ coincides almost everywhere with g′. 
Moreover, ‖g‖ = ‖ϕ‖∞.

(b) Conversely, if ψ ∈ L∞(R, Y ) and we define h : R −→ Y by

h(t) =
t∫

0

ψ(s) ds for t ∈ R,

then h ∈ Lip0(R, Y ), h is differentiable a.e., h′ = ψ a.e., and ‖h‖ = ‖ψ‖∞. Moreover, ψ(R) ⊆ K a.e. 
for some compact subset K of Y if and only if h ∈ Lip0K(R, Y ).

If Y has the Radon-Nikodým property, then the first assertion in (a) follows easily from the proof of [5, 
Theorem 5.21], where it is stated for Lipschitz maps defined on bounded intervals, but the result can be 
extended to those defined in the whole R. For a Lipschitz compact map, we note that the ideas in the proof 
of [5, Theorem 5.21] are valid for a set with the Radon-Nikodým property, and the rest of the proof is the 
same. For the sake of completeness, we would like to provide a direct proof using Lipschitz-free spaces.

Proof. (a) Suppose Y has the Radon-Nikodým property. Then, Tg ∈ L(L1(R), Y ) defined as in 
Lemma 1.8.(a) is representable [11, Theorem III.1.5]. That is, there exists ϕ ∈ L∞(R, Y ) such that

Tg(f) =
∫

fϕ(s) ds for every f ∈ L1(R).

Hence, if we put f = χ[0,t], we get

g(t) = Tg(χ[0,t]) =
t∫

0

ϕ(s) ds for t ∈ R

by the isometric correspondence given in Lemma 1.8.
If we assume rather that g ∈ Lip0K(R, Y ), then we can also deduce that Tg ∈ K(L1(R), Y ) is representable 

due to Lemma 1.8.(b) and [11, Theorem III.2.2]. The rest of the proof is identical to the previous case.
(b) Only the ‘moreover’ part requires a comment: if ψ(R) ⊆ K a.e. for some compact subset K of Y , then 

Slope(h) ⊆ co(K) (see [8, Proposition 1.6.9.iv], for instance), so h ∈ Lip0K(R, Y ) as desired. Conversely, if 
h ∈ Lip0K(R, Y ), then the conclusion easily follows from that ψ(t) ∈ Slope(h) a.e. for t ∈ R. �

We now provide the pending proof of Proposition 2.1.
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Proof of Proposition 2.1. (a) To prove that Der(X, Y ) ⊆ LDirA(X, Y ), let f ∈ Der(X, Y ). Then, there exist 
x ∈ X and e ∈ SX such that f ′(x, e) exists and ‖f ′(x, e)‖ = ‖f‖. Put (xn, yn) = (x + e

n , x) for each n ∈ N. 
As n tends to ∞, we have that

f(xn) − f(yn)
‖xn − yn‖

−→ f ′(x, e), xn − yn
‖xn − yn‖

−→ e and xn, yn −→ x.

The rest of the inclusions are obvious from their definitions.
(b) If f ∈ Lip0(X, Y ) strongly attains its norm at (x, y) ∈ X̃, it is immediate that f attains its norm 

directionally in the direction u = x−y
‖x−y‖ using the constant sequence.

Assertion (c) is immediate from the compactness of SX and the same happens for (d) from the compact-
ness of all closed bounded subsets of Y .

(e) Suppose that f ∈ Lip0(X, Y ) strongly attains its norm at (x, y), write u = x−y
‖x−y‖ ∈ SX and consider 

g : R −→ Y defined by g(t) = f(y+ tu) − f(y) for t ∈ R. It is clear that g ∈ SNA(R, Y ) with ‖g‖ = ‖f‖. As 
Y has the Radon-Nikodým property, Lemma 2.3.(a) gives that g is differentiable almost everywhere and, 
moreover,

g(t) =
t∫

0

g′(s) ds for t ∈ R.

Since g strongly attains its norm at (0, ‖x − y‖), Lemma 2.2 shows that

‖g(t) − g(s)‖ = ‖g‖ |t− s| for 0 � t, s � ‖x− y‖,

which implies that

‖g‖ = 1
|t|

∥∥g(t) − g(0)
∥∥ � 1

|t|

t∫
0

‖g′(s)‖ ds � ‖g‖ for 0 < t � ‖x− y‖.

Thus, ‖g′(s)‖ = ‖g‖ almost everywhere 0 < s � ‖x − y‖. It is enough to consider any 0 < s0 � ‖x − y‖ for 
which ‖g′(s0)‖ = ‖g‖ = ‖f‖, write x0 = y + s0u ∈ X, and observe that f ′(x0, u) = g′(s0) to conclude that 
f ∈ Der(X, Y ). �

The next result shows that the equality in Proposition 2.1.(c) only holds when the domain space is 
finite-dimensional.

Proposition 2.4. Let X be an infinite-dimensional Banach space. Then, DirA(X, Y ) � A(X, Y ) for every 
nontrivial Banach space Y .

Proof. If X is infinite dimensional, it is shown in [18, Lemma 2.2] that there exists T ∈ L(X, c0) which does 
not attain its norm as a linear operator. If we fix any y0 ∈ SY and define f : X −→ Y by f(x) = ‖T (x)‖y0, 
then it is evident that f ∈ A(X, Y ) with ‖f‖ = ‖T‖. On the other hand, f /∈ DirA(X, Y ) by the almost 
same argument as in [16, Lemma 3.2]. Indeed, assume that f ∈ DirA(X, Y ). It follows that there exist 
{(xn, yn)}∞n=1 ⊆ X̃ and u ∈ SX such that

‖f(xn) − f(yn)‖
‖xn − yn‖

−→ ‖f‖ and xn − yn
‖xn − yn‖

−→ u.

But this is impossible, because
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‖f(xn) − f(yn)‖
‖xn − yn‖

=
∥∥‖T (xn)‖y0 − ‖T (yn)‖y0

∥∥
‖xn − yn‖

� ‖T (xn) − T (yn)‖
‖xn − yn‖

−→ ‖T (u)‖

and T does not attain its norm at u ∈ SX as a linear operator. �
The next example shows that the inclusion given in Proposition 2.1.(e) can be false for a range space Y

without the Radon-Nikodým property.

Example 2.5. Consider a Lipschitz map f : R −→ L1(R) given by

f(t) =
{

0 if t � 0,
χ[0,t] if t > 0.

Then, f ∈ SNA(R, L1(R)) but f /∈ LDirA(R, L1(R)).
Indeed, for all 0 < s < t we have that ∥∥∥∥f(t) − f(s)

t− s

∥∥∥∥ = 1,

so f ∈ SNA(R, L1(R)). On the other hand, suppose that f attains its norm locally directionally at the point 
t̄ ∈ R for some sequence {(tn, sn)}∞n=1 ⊆ R̃. Since |tn − sn| −→ 0, it is immediate that the sequence{

f(tn) − f(sn)
tn − sn

}∞

n=1
⊆ L1(R)

either converges to 0 or does not converge in L1(R). It follows that f /∈ LDirA(R, L1(R)).

Example 2.6 and Proposition 2.7 below, together with Proposition 2.4 show that all the inclusions given 
in assertions (a), (b), and (e) of Proposition 2.1 can be proper.

Example 2.6. We have that

SNA(R,R) � Der(R,R) � LDirA(R,R) � DirA(R,R).

Proof. Note that SNA(R, R) is the set of all functions f ∈ Lip0(R, R) which contain a line segment with 
slope either ‖f‖ or −‖f‖ in its graph. To see that SNA(R, R) � Der(R, R), consider f(t) = sin t, whose 
graph contains no line segment but f ′(0) = ‖f‖ = 1.

To see that Der(R, R) � LDirA(R, R), define g(t) =
t∫

0

ϕ(s) ds, where ϕ ∈ L∞(R) is given by

ϕ(t) =
{

1 − 2−n if 2−2n

< t < 2−2n + 2−2n+1 for each n ∈ N,

0 otherwise.

Clearly, g ∈ Lip0(R, R) and ‖g‖ = 1. If we put (tn, sn) = (2−2n

, 2−2n + 2−2n+1) for each n ∈ N, then we 
can easily see that g ∈ LDirA(R, R) from

g(tn) − g(sn)
tn − sn

−→ 1 and tn, sn −→ 0.

On the other hand, we have
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lim
t→t0

∣∣∣∣g(t) − g(t0)
t− t0

∣∣∣∣ < 1 if t0 �= 0 and lim
t→0

∣∣∣∣g(t) − g(0)
t− 0

∣∣∣∣ = 0.

Indeed, given ε > 0 choose n ∈ N so that 21−2n

< ε. Fix any point 0 < t < 2−2n−1 . We can find n0 � n

such that 2−2n0 � t < 2−2n0−1 . Then,

g(t)
t

= 1
t

t∫
0

g′(s) ds � 1
t

∞∑
k=n0

2−2k+1 �
∞∑

k=n0

2−2k+1 · 22n0 � 21−2n0
< ε,

which shows that limt→0+
g(t)
t = 0. The rest is clear.

Finally, to see that the inclusion LDirA(R, R) ⊆ DirA(R, R) is proper, consider the function h(t) =√
1 + t2 − 1. A simple calculation shows that limt→∞ h′(t) = ‖h‖ = 1 while h′ is continuous and |h′(t)| < 1

for any t ∈ R, so h /∈ LDirA(R, R), as desired. �
The next proposition characterizes the finite dimensionality of a Banach space Y in term of the set 

A(X, Y ), and shows that the inclusion A(X, Y ) ⊆ Lip0(X, Y ) is proper in many cases.

Proposition 2.7. Let Y be an infinite dimensional Banach space. Then A(X, Y ) � Lip0(X, Y ) for every 
nontrivial Banach space X.

Proof. Choose a basic sequence of distinct vectors {vj : j ∈ N} ⊆ SY and consider f : X −→ Y defined by

f(x) =
∞∑
j=1

j

j + 1sj(‖x‖)vj ,

where each sj : R −→ R is given as

sj(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t < 2j − 2,

t− 2j + 2 if 2j − 2 � t < 2j − 1,
−t + 2j if 2j − 1 � t < 2j,

0 if 2j � t.

To see that ‖f‖ � 1, we claim that

‖f(x) − f(y)‖ �
∣∣‖x‖ − ‖y‖

∣∣,
for any x, y ∈ X, and then the conclusion follows from the fact that 

∣∣‖x‖ − ‖y‖
∣∣ � ‖x − y‖. Indeed, given 

any x ∈ X, we denote by jx the unique corresponding j ∈ N of x such that 2j − 2 � ‖x‖ < 2j. Then, from 
the construction it is obvious that sj(x) = 0 if j �= jx. Let x, y ∈ X be given. First, suppose that jx = jy. 
Then, we have

‖f(x) − f(y)‖ �
∣∣sjx(‖x‖) − sjx(‖x‖)

∣∣ �
∣∣‖x‖ − ‖y‖

∣∣,
because ‖sjx‖ � 1. So it remains to show when ‖x‖ < 2jx � ‖y‖. But note that

‖f(x) − f(y)‖ � sjx(‖x‖) + sjy (‖y‖) =
[
sjx(‖x‖) − sjx(2jx)

]
+

[
sjy (‖y‖) − sjy (2jx)

]
�

(
2jx − ‖x‖

)
+
(
‖y‖ − 2jx

)
=

∣∣‖x‖ − ‖y‖
∣∣,

which proves the claim.
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Now, fix x0 ∈ SX and write (xn, yn) = (2nx0, (2n + 1)x0) ∈ X̃ for each n ∈ N. Then,

‖f‖ � sup
n

‖f(xn) − f(yn)‖
‖xn − yn‖

= 1,

hence ‖f‖ = 1. But f cannot attain its norm toward any z ∈ SY . Indeed, suppose that f attains its 
norm toward z ∈ SY for some sequence {(xn, yn)}∞n=1 ⊆ X̃. Up to a subsequence, we may suppose that 
‖xn‖ < ‖yn‖ for every n ∈ N. Observe that z ∈ span‖·‖{vj : j ∈ N} and thus, being a basic sequence, we 
get that z =

∑∞
n=1 anvn for suitable sequence {an} of scalars. Without loss of generality, let a1 �= 0. Then 

‖xn‖ < 2 for sufficiently large n ∈ N. Otherwise, f(xn) − f(yn) would have zero coefficient on v1. Finally, 
we claim that

‖f(xn) − f(yn)‖
‖xn − yn‖

� 2
3 if ‖xn‖ < 2,

which will end up with a contradiction. If ‖yn‖ � 2, then it is clear that

‖f(xn) − f(yn)‖ � 1
2
∣∣‖xn‖ − ‖yn‖

∣∣.
So we may assume that ‖yn‖ > 2. Fix any x0 ∈ SX and, by a simple calculation, we can see that

‖f(xn) − f(yn)‖
‖xn − yn‖

� max
{
‖f(xn) − f(2x0)‖∣∣‖xn‖ − 2

∣∣ ,
‖f(2x0) − f(yn)‖∣∣2 − ‖yn‖

∣∣
}

� max
{

1
2 ,

‖f(yn)‖∣∣2 − ‖yn‖
∣∣
}
.

Hence, it suffices to check that ‖f(yn)‖
|2−‖yn‖| � 2/3. If ‖yn‖ < 4, then j2x0 = jyn

which ensures that ‖f(yn)‖
|2−‖yn‖| �

2/3. If ‖yn‖ � 4, then we have 
∣∣2 − ‖yn‖

∣∣ � 2, so that ‖f(yn)‖
|2−‖yn‖| � 1/2. �

As an immediate consequence of Propositions 2.4 and 2.7, we get the following characterization of the 
finite dimensionality of both X and Y , simultaneously.

Corollary 2.8. Let X, Y be nontrivial Banach spaces. Then, DirA(X, Y ) = Lip0(X, Y ) if and only if both 
X and Y are finite-dimensional.

Let us now discuss the inclusion relations for Lipschitz compact maps.

Proposition 2.9. Let X and Y be Banach spaces. Then

(a) SNAK(X, Y ) ⊆ DerK(X, Y ) ⊆ LDirAK(X, Y ) ⊆ DirAK(X, Y ) ⊆ AK(X, Y ).
(b) AK(X, Y ) = Lip0K(X, Y ).

Note that all the inclusions in Proposition 2.9.(a) can be proper as shown in Proposition 2.4 and Exam-
ple 2.6.

Proof. (a) Since all the inclusions but the first one are direct consequences of Proposition 2.1.(a), it remains 
to show that SNAK(X, Y ) ⊆ DerK(X, Y ). Indeed, we just follow the proof of Proposition 2.1.(e), taking 
into account that g is Lipschitz compact, and we can also apply Lemma 2.3.(a).
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(b) Let f ∈ Lip0K(X, Y ) be given. Choose a sequence {(xn, yn)}∞n=1 ⊆ X̃ such that

‖f(xn) − f(yn)‖
‖xn − yn‖

−→ ‖f‖.

Note that 
{

f(xn)−f(yn)
‖xn−yn‖ : n ∈ N

}
⊆ Slope(f) is relatively compact in Y . So, passing to a subsequence, we 

can find z ∈ Y such that

f(xn) − f(yn)
‖xn − yn‖

−→ z

and, of course, ‖z‖ = ‖f‖ by our selection of the sequence {(xn, yn)}∞n=1 ⊆ X̃. �
In particular, we get another characterization of the finite dimensionality of X.

Corollary 2.10. Let X be a Banach space. Then, the following are equivalent:

(i) X is finite-dimensional.
(ii) DirAK(X, Y ) = Lip0K(X, Y ) for every Banach space Y .
(iii) There is a nontrivial Banach space Y such that DirAK(X, Y ) = Lip0K(X, Y ).

Proof. (i)⇒(ii) is given by Propositions 2.1.(c) and 2.9.(b). (ii)⇒(iii) is immediate. Finally, (iii)⇒(i) follows 
from the proof of Proposition 2.4, because the map f defined there is clearly compact. �
3. Some results on denseness of norm attaining Lipschitz maps

Our main results in this section deal with the denseness of Lipschitz maps defined on R attaining their 
norm through a derivative. We recall that SNA(X, Y ) is never dense in Lip0(X, Y ).

Theorem 3.1. Let Y be a Banach space. Then the following are equivalent:

(i) Y has the Radon-Nikodým property.
(ii) Der(R, Y ) is dense in Lip0(R, Y ).
(iii) The set of all Lipschitz maps f ∈ Lip0(R, Y ) such that

f ′(t) = lim
h→0

f(t + h) − f(t)
h

exists for some t ∈ R is dense in Lip0(R, Y ).

To prove Theorem 3.1, we need a preliminary lemma to proceed.

Definition 3.2. [5, Definition 5.19] Let Y be a Banach space, let I ⊆ R be an interval, and let ε > 0 be given. 
A function f : I −→ Y is said to be ε-differentiable at t0 ∈ I if there are δ > 0 and y ∈ Y such that

‖f(t0 + h) − f(t0) − hy‖ � ε|h|

for every h ∈ R with |h| < δ.

Lemma 3.3. [5, Theorem 5.21] Let Y be a Banach space. Then the following are equivalent:
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(i) Y has the Radon-Nikodým property.
(ii) Every Lipschitz map ψ : [0, 1] −→ Y has a point of ε-differentiability for every ε > 0.

Proof of Theorem 3.1. (i)⇒(ii). Let ε > 0 be given and fix f ∈ Lip0(R, Y ) with ‖f‖ = 1. By Lemma 2.3.(a), 
there is ϕ ∈ L∞(R, Y ) with ‖ϕ‖∞ = 1 such that

f(t) =
t∫

0

ϕ(s) ds for t ∈ R. (1)

Consider the set

Aε := {t ∈ R : ‖ϕ(t)‖ > 1 − ε} (2)

and observe that Aε has positive measure. Now, define ψ ∈ L∞(R, Y ) by

ψ(t) =
{

ϕ(t)
‖ϕ(t)‖ if t ∈ Aε,

ϕ(t) otherwise.
(3)

It is immediate that ‖ϕ −ψ‖∞ � ε. Therefore, defining g : R −→ Y by g(t) =
∫ t

0 ψ(s) ds for every t ∈ R, we 
obtain that ‖g‖ = 1, ‖g − f‖ < ε, and that g′ = ψ a.e. by Lemma 2.3.(b). Since Aε has positive measure, 
there is t0 ∈ Aε such that g is differentiable at t0 and g′(t0) = ψ(t0). Further, ‖g′(t0)‖ = ‖ψ(t0)‖ = 1 = ‖g‖, 
which shows that g ∈ Der(R, Y ).

(ii)⇒(iii) is clear, because we can consider t0 ∈ R at which f ∈ Der(R, Y ) attains its norm through a 
derivative.

(iii)⇒(i). Suppose that Y fails the Radon-Nikodým property. Then, by Lemma 3.3, there exist ε > 0 and 
a Lipschitz map ψ : [0, 1] −→ Y such that ψ has no point of ε-differentiability on [0, 1]. Let f ∈ Lip0(R, Y )
be defined on [0, 2] by

f(t) =
{

ψ(t) − ψ(0) if 0 � t � 1,
ψ(2 − t) − ψ(0) if 1 < t � 2

and extended 2-periodic on R. Then, it is easy to see from the definition that f has no point of 
ε-differentiability on R. That is, for any given t ∈ R, δ > 0 and y ∈ Y , there always exists h ∈ R

with |h| < δ such that

‖f(t + h) − f(t) − hy‖ > ε|h|. (4)

Let g ∈ Lip0(R, Y ) be such that ‖g − f‖ < ε/2 and

g′(t0) = lim
h→0

g(t0 + h) − g(t0)
h

exists for some t0 ∈ R. Choose δ > 0 so that∥∥∥∥g(t0 + h) − g(t0)
h

− g′(t0)
∥∥∥∥ <

ε

2

whenever |h| < δ. By (4), there exists h ∈ R with |h| < δ such that
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‖f(t0 + h) − f(t0) − hg′(t0)‖ > ε|h|.

Hence we have that

‖(g − f)(t0 + h) − (g − f)(t0)‖
|h| �

∥∥∥∥f(t0 + h) − f(t0)
h

− g′(t0)
∥∥∥∥−

∥∥∥∥g(t0 + h) − g(t0)
h

− g′(t0)
∥∥∥∥

> ε− ε

2 = ε

2 ,

which contradicts the fact that ‖g − f‖ < ε/2. �
We may also prove the necessity of the Radon-Nikodým property of the Banach space Y for the denseness 

of Der(X, Y ) for a nontrivial Banach space X. However, we don’t know if it can be a sufficient condition 
and even for Y = R. Actually, we don’t know any Banach space X with dim(X) � 2 such that Der(X, R)
is dense in Lip0(X, R).

Corollary 3.4. Let Y be a Banach space. If Der(X, Y ) is dense in Lip0(X, Y ) for a nontrivial Banach space 
X, then Y has the Radon-Nikodým property.

Proof. Suppose that Y fails the Radon-Nikodým property. Define a Lipschitz map f0 ∈ Lip0(R, Y ) with 
‖f0‖ = 1 as it is done in the proof of (iii)⇒(i), Theorem 3.1. That is, there exists 0 < ε < 1 such that for 
any given t ∈ R, δ > 0 and y ∈ Y , there exists h ∈ R with |h| < δ such that

‖f0(t + h) − f0(t) − hy‖ > ε|h|. (5)

Pick x∗ ∈ NA(X, R) with ‖x∗‖ = 1. Define f : X −→ Y by

f(x) = f0(x∗(x)) for x ∈ X.

It is routine to show that f ∈ Lip0(X, Y ) and that ‖f‖ = ‖f0‖ = 1. Suppose now that we can find 
g ∈ Der(X, Y ) with ‖g‖ = 1 and ‖f − g‖ < ε/2. By definition of Der(X, Y ), there are x0 ∈ X and u ∈ SX

such that g′(x0, u) exists and belongs to SY . Therefore, there exists δ > 0 such that

‖g(x0 + tu) − g(x0) − tg′(x0, u)‖ <
ε|t|
2 , whenever |t| < δ. (6)

We now define f1, g1 : R −→ Y by

f1(t) = f(x0 + tu) = f0(x∗(x0) + tx∗(u)), g1(t) = g(x0 + tu) for t ∈ R,

and observe that

‖f1 − g1‖ � ‖f − g‖ <
ε

2 . (7)

We now have two possibilities:
(a) If x∗(u) = 0, then f1 is constant on R, so f ′

1 ≡ 0. This contradicts the facts that g′1(0) = g′(x0, u) ∈ SY

and that ‖f1 − g1‖ < ε/2 < 1.
(b) If x∗(u) �= 0, then it follows from (6) and (7) that∥∥∥∥f0

(
x∗(x0) + tx∗(u)

)
− f0

(
x∗(x0)

)
− tx∗(u)g

′(x0, u)
x∗(u)

∥∥∥∥ < ε|t| for |t| < δ.

But this enters into a contradiction with (5). �
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If one deals with Lipschitz compact maps, then the proof of (i)⇒(ii) of Theorem 3.1 can be repeated 
without any assumption on Y , getting the second main result of this section.

Theorem 3.5. Let Y be a Banach space. Then DerK(R, Y ) is dense in Lip0K(R, Y ).

Proof. We just repeat the proof of (i)⇒(ii) in Theorem 3.1, taking into account that if f ∈ Lip0K(R, Y ), 
then it is representable by an integral as in (1) by Lemma 2.3.(a). Finally, the Lipschitz map g obtained in 
the proof is Lipschitz compact by Lemma 2.3.(b), because ψ defined in (3) has a relatively compact range 
a.e. from f ∈ Lip0K(R.Y ). �

As we already commented, it is not true that A(X, Y ) is always dense in Lip0(X, Y ) [14] (see [13, p. 109]). 
For the sake of completeness, we include here a short justification of this example.

Example 3.6 ([14]). Let X = c0 and let Y be an equivalent renorming of c0 with the Kadec-Klee property 
(which it is well-known that exists). Then, A(X, Y ) is not dense in Lip0(X, Y ).

In fact, it is shown in [14, Corollary 3.5] that no Lipschitz isomorphism from X onto Y belongs to A(X, Y )
(as c0 is asymptotically uniformly flat, see [14, Definition 2.1]). As the identity map belongs to the set of 
Lipschitz isomorphism from X onto Y , it is enough to prove that this set is open. This is surely well-known 
to experts, but we would like to include an easy argument which has been given to us by G. Lancien. Assume 
that f is a Lipschitz isomorphism from X onto Y . Consider g ∈ Lip0(X, Y ). If ‖g‖ is small enough, then 
f − g is trivially bi-Lipschitz from X onto its image. Thus, the only thing we have to show is that f − g is 
surjective by solving the equation y = f(x) − g(x) for any y ∈ Y . This is possible again, provided that ‖g‖
is small enough, applying the Banach fixed point theorem on the contraction map f−1(y+ g(·)

)
: X −→ X.

In the last part of this section, we show some other results on the denseness of norm attaining Lipschitz 
maps.

Proposition 3.7. Let X be any Banach space and let Y be a uniformly convex Banach space. If Tf ∈
NA(F(X), Y ), then f ∈ A(X, Y ).

It is easy to see that the reversed result to the above one does not hold: just consider Y = R and 
an arbitrary Banach space X. Then A(X, R) = Lip0(X, R) by Proposition 2.1.(d), but NA(F(X), R) �=
L(F(X), R), because F(X) is not reflexive as it contains �1. To prove Proposition 3.7, we need the following 
result from [2]. Recall that if X is a Banach space, for given x∗ ∈ SX∗ and δ > 0, the corresponding slice of 
BX is defined as

S(BX , x∗, δ) := {x ∈ BX : x∗(x) > 1 − δ}.

Lemma 3.8. [2, Lemma 2.1] Let Y be a uniformly convex Banach space. Then, for every ε > 0 and y∗ ∈ SY ∗ , 
we have

diam
(
S(BY , y

∗, δY (ε))
)

� ε.

Proof of Proposition 3.7. Let ‖Tf (w)‖ = ‖Tf‖ for w ∈ SF(X). Since BF(X) = co(Mol(X)) by Lemma 1.8.(c), 
there exists a sequence {wn}∞n=1 ⊆ co(Mol(X)) converging to w. By the uniform convexity of Y , we can 
find a sequence {un}∞n=1 ⊆ Mol(X) such that

‖Tf (un) − Tf (w)‖ � 1 for each n ∈ N.

n
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Indeed, assume ‖Tf (w)‖ = 1 and let y∗ ∈ SY ∗ be such that y∗(Tf (w)) = 1. Suppose that ‖Tf (wn) −Tf (w)‖ <
δY (n−1), where δY is the modulus of convexity of Y and wn =

∑k(n)
j=1 αjvn,j is a convex combination of 

vn,j ∈ Mol(X) for 1 � j � k(n). Then, there exists some j such that Tf (vn,j) ∈ S(BY , y∗, δY (n−1)), because 
y∗(Tf (wn)) > 1 − δY (n−1). By Lemma 3.8, we have

diam
(
S(BY , y

∗, δY (n−1))
)

� 1
n
,

which implies that

‖Tf (un) − Tf (w)‖ � 1
n

if we let un = vn,j . Note that each un is of the form δ(xn)−δ(yn)
‖xn−yn‖ ∈ M , thus we can deduce that

f(xn) − f(yn)
‖xn − yn‖

−→ Tf (w) with ‖Tf (w)‖ = ‖Tf‖ = ‖f‖. �
The following results are straightforward consequences of Proposition 3.7.

Corollary 3.9. Let X and Y be Banach spaces such that Y is uniformly convex and NA(F(X), Y ) is dense 
in L(F(X), Y ). Then, A(X, Y ) is dense in Lip0(X, Y ).

Corollary 3.10. Let X be a finite-dimensional Banach space and let Y be an uniformly convex Banach space. 
Suppose that NA(F(X), Y ) is dense in L(F(X), Y ). Then, DirA(X, Y ) is dense in Lip0(X, Y ).

4. Local directional Bishop-Phelps-Bollobás property for Lipschitz maps

We would like to deal now with the LDirA-BPBp, trying to extend some results of [16] from the scalar-
valued case to the vector-valued case. Our main result in this section is the following.

Theorem 4.1. Let X and Y be Banach spaces such that X is uniformly convex and (F(X), Y ) has the BPBp
for compact operators. Then, the pair (X, Y ) has the LDirA-BPBp for Lipschitz compact maps.

In fact, we have something more: for every ε > 0, there exists η > 0 such that for any positive function 
ρ : X̃ −→ R and whenever f ∈ SLip0K(X,Y ) and (x, y) ∈ X̃ satisfy

‖f(x) − f(y)‖
‖x− y‖ > 1 − η,

there exist g ∈ SLip0K(X,Y ), z ∈ SY , u ∈ SX and x̄ ∈ X such that g attains its norm locally directionally at 
the point x̄ in the direction u toward z, ‖g − f‖ < ε, 

∥∥u − x−y
‖x−y‖

∥∥ < ε and dist(x̄, [x, y]) < ερ(x, y).

To give a proof of Theorem 4.1, we need the following lemmas which generalize some of the results of 
[16]. We state the proofs, because there are some significant differences with the original ones.

Lemma 4.2. Let X and Y be Banach spaces such that (F(X), Y ) has the BPBp for compact operators 
witnessed by the function ε �→ η(ε). Suppose 0 < ε < 1, f ∈ SLip0K(X,Y ) and (x, y) ∈ X̃ satisfy

‖f(x) − f(y)‖
‖x− y‖ > 1 − η(ε).

Then, for every h ∈ SLip (X,Y ) satisfying

0
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‖h(x) − h(y)‖
‖x− y‖ = 1,

there exist g ∈ SLip0K(X,Y ), z ∈ SY and {(vn, wn)}∞n=1 ⊆ X̃ such that

‖g − f‖ < ε,
‖h(vn) − h(wn)‖

‖vn − wn‖
> 1 − ε for every n ∈ N and g(vn) − g(wn)

‖vn − wn‖
−→ z.

Proof. Consider Tf ∈ SK(F(X),Y ) and let m = δ(x)−δ(y)
‖x−y‖ ∈ SF(X). Since ‖Tf (m)‖ > 1 − η(ε) and (F(X), Y )

has the BPBp for compact operators witnessed by the function ε �→ η(ε), we can find Tg ∈ SK(F(X),Y ) and 
w ∈ SF(X) such that

‖Tg(w)‖ = 1, ‖Tg − Tf‖ < ε and ‖w −m‖ < ε.

Since BF(X) = co(Mol(X)) by Lemma 1.8.(c), we can find 0 < ν < ε and a sequence {wn}∞n=1 ⊆ co(Mol(X))
such that

‖wn −m‖ < ν and ‖Tg(wn)‖ > 1 − 1
n2 .

Now, for Th ∈ SL(F(X),Y ) we have

‖Th(wn)‖ � ‖Th(m)‖ − ‖m− wn‖ > 1 − ν.

Thus

1
n
‖Th(wn)‖ +

(
1 − 1

n

)
‖Tg(wn)‖ >

1
n

(1 − ν) +
(

1 − 1
n

)(
1 − 1

n2

)
.

Therefore, for every n ∈ N we can find un ∈ Mol(X) so that

1
n
‖Th(un)‖ +

(
1 − 1

n

)
‖Tg(un)‖ >

1
n

(1 − ν) +
(

1 − 1
n

)(
1 − 1

n2

)
.

Hence, from the facts that ‖Th(un)‖ � 1 and ‖Tg(un)‖ � 1, we get routinely that

‖Th(un)‖ > 1 − ν − 1
n

(
1 − 1

n

)
and ‖Tg(un)‖ > 1 − 1

n2 − ν

n− 1 .

So we may assume that

‖Th(un)‖ > 1 − ε and ‖Tg(un)‖ −→ 1

passing to a subsequence, if necessary. Note that each un is of the form δ(vn)−δ(wn)
‖vn−wn‖ for suitable (vn, wn) ∈ X̃. 

By compactness of Tg, there exists z ∈ SY such that

Tg(un) = g(vn) − g(wn)
‖vn − wn‖

−→ z

passing to a subsequence, if necessary. Finally, g ∈ Lip0K(X, Y ) by Lemma 1.8.(b), so we have obtained the 
desired result. �
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Lemma 4.3. Let X and Y be Banach spaces such that X is uniformly convex and (F(X), Y ) has the BPBp for 
compact operators. Then, for every ε > 0 there exists η > 0 such that for any positive function ρ : X̃ −→ R

and whenever f ∈ SLip0K(X,Y ) and (x, y) ∈ X̃ satisfy

‖f(x) − f(y)‖
‖x− y‖ > 1 − η,

there exist g ∈ SLip0K(X,Y ), z ∈ SY and {(vn, wn)}∞n=1 ⊆ X̃ such that

g(vn) − g(wn)
‖vn − wn‖

−→ z, ‖g − f‖ < ε,

∥∥∥∥ x− y

‖x− y‖ − vn − wn

‖vn − wn‖

∥∥∥∥ < ε,

and ‖vn − wn‖ < ερ(x, y), dist(vn, [x, y]) < ερ(x, y).

Proof. Assume that (F(X), Y ) has the BPBp for compact operators witnessed by the function ε �→ η0(ε)
with η0(ε) < ε. Let 0 < ε < 1/4 and put η := η0

(
min

{
ε, δX(ε)/2

})
> 0, where δX is the modulus of 

convexity of X. Suppose that a positive function ρ : X̃ −→ R is given and f ∈ SLip0K(X,Y ) and (x, y) ∈ X̃

satisfy

‖f(x) − f(y)‖
‖x− y‖ > 1 − η.

Choose x̃, ỹ ∈ [̃x, y] such that

‖f(x̃) − f(ỹ)‖
‖x̃− ỹ‖ > 1 − η,

x̃− ỹ

‖x̃− ỹ‖ = x− y

‖x− y‖ and ‖x̃− ỹ‖ <
1
4 min

{
ερ(x, y), ‖x̃‖, ‖ỹ‖

}
.

Fix any y0 ∈ SY and define F ∈ Lip0(X, Y ) by F (w) := max{‖x̃− ỹ‖ − ‖x̃−w‖, 0} y0. Then, ‖F‖ = 1 and

‖F (x̃) − F (ỹ)‖
‖x̃− ỹ‖ = 1.

Let x∗ ∈ SX∗ be such that

x∗
(

x̃− ỹ

‖x̃− ỹ‖

)
= 1.

If we define h := 1
2 (F + y0x

∗), then h ∈ SLip0(X,Y ) and

‖h(x̃) − h(ỹ)‖
‖x̃− ỹ‖ = 1.

Applying Lemma 4.2, we can find g ∈ SLip0K(X,Y ), z ∈ SY and {(vn, wn)}∞n=1 ⊆ X̃ such that

‖f − g‖ < ε,
‖h(vn) − h(wn)‖

‖vn − wn‖
> 1 − min

{
ε,

δX(ε)
2

}
and g(vn) − g(wn)

‖vn − wn‖
−→ z.

From the second inequality, we get

‖F (vn) − F (wn)‖
> 1 − 2ε and |x∗(vn) − x∗(wn)|

> 1 − δX(ε). (8)
‖vn − wn‖ ‖vn − wn‖
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Here, we may assume x∗(vn) − x∗(wn) > 0 replacing z by −z if necessary. Since

x∗
(

x− y

‖x− y‖

)
= x∗

(
x̃− ỹ

‖x̃− ỹ‖

)
= 1 > 1 − δX(ε),

we obtain by the uniform convexity of X that∥∥∥∥ x− y

‖x− y‖ − vn − wn

‖vn − wn‖

∥∥∥∥ < ε.

Now,

‖vn − wn‖ <
‖F (vn) − F (wn)‖

1 − 2ε � ερ(x, y)
4(1 − 2ε) <

1
2ερ(x, y).

Suppose that vn ∈ suppF . Then, combined with the fact that ‖x̃− ỹ‖ � 1
4ερ(x, y), we can deduce that

dist(vn, [x, y]) <
1
4ερ(x, y) < ερ(x, y).

If vn /∈ suppF , then we must have that wn ∈ suppF by (8). Hence, we have

dist(vn, [x, y]) � ‖vn − wn‖ + dist(wn, [x, y]) < ρ(x, y),

which completes the proof. �
We are now ready to present the pending proof.

Proof of Theorem 4.1. Let ε > 0 be given. Set εn := ε
2n+1 for each n ∈ N and η := η1(ε1) where η1 is 

from Lemma 4.3. Suppose that a positive function ρ : X̃ −→ R is given and f ∈ SLip0K(X,Y ) and (x, y) ∈ X̃

satisfy

‖f(x) − f(y)‖
‖x− y‖ > 1 − η.

Consider τ := min{1, ρ}. We use Lemma 4.3 to get f2 ∈ SLip0K(X,Y ), z2 ∈ SY and {(vn, wn)}∞n=1 ⊆ X̃

satisfying the conditions given there with ε1 and τ . Choose n1 ∈ N such that∥∥∥∥f2(vn1) − f2(wn1)
‖vn1 − wn1‖

− z2

∥∥∥∥ < η1
(
ε2τ(x, y)

)
.

Set x2 := vn1 , y2 := wn1 , f1 := f , x1 := x and y1 := y. So far we have

(a)
∥∥∥∥f2(x2) − f2(y2)

‖x2 − y2‖
− z2

∥∥∥∥ < η1
(
ε2τ(x1, y1)

)
,

(b) ‖f1 − f2‖ < ε1,

(c)
∥∥∥∥ x1 − y1

‖x1 − y1‖
− x2 − y2

‖x2 − y2‖

∥∥∥∥ < ε1,

(d) ‖x2 − y2‖ < ε1τ(x1, y1),

(e) dist(x2, [x1, y1]) < ε1τ(x1, y1).
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Now, by an inductive procedure, we get {fn}∞n=1 ⊆ SLip0K(X,Y ), {zn}∞n=1 ⊆ SY and {(xn, yn)}∞n=1 ⊆ X̃

satisfying for every n ∈ N:

(a′)
∥∥∥∥fn+1(xn+1) − fn+1(yn+1)

‖xn+1 − yn+1‖
− zn+1

∥∥∥∥ < η1
(
εn+1τ(x1, y1)

)
,

(b′) ‖fn − fn+1‖ < εnτ(x1, y1) � εn,

(c′)
∥∥∥∥ xn − yn
‖xn − yn‖

− xn+1 − yn+1

‖xn+1 − yn+1‖

∥∥∥∥ < εnτ(x1, y1) � εn,

(d′) ‖xn+1 − yn+1‖ < εnτ(x1, y1) · τ(xn, yn) � εnτ(x1, y1),

(e′) dist(xn+1, [xn, yn]) < εnτ(x1, y1) · τ(xn, yn) � εnτ(x1, y1).

From (d′) and (e′), we have that

‖xn+1 − xn+2‖ < εnτ(x1, y1) + εn+1τ(x1, y1) � εn + εn+1 −→ 0

as n tends to ∞, so that there exists x̄ ∈ X such that both xn, yn converge to x̄ with the aid of (d′). Note 
that

dist(x̄, [x, y]) � dist(x2, [x1, y1]) + ‖x2 − x̄‖

� dist(x2, [x1, y1]) +
∞∑

n=1
‖xn+1 − xn+2‖

< 2
∞∑

n=1
εnτ(x1, y1) � ερ(x, y).

From (b′) and (c′), there exist g ∈ SLip0K(X,Y ) and u ∈ SX such that

fn −→ g and xn − yn
‖xn − yn‖

−→ u.

Then,

‖f − g‖ �
∞∑

n=1
εn < ε and

∥∥∥∥ x− y

‖x− y‖ − u

∥∥∥∥ �
∞∑

n=1
εn < ε.

From (a′), we obtain that

‖g(xn) − g(yn)‖
‖xn − yn‖

� ‖fn(xn) − fn(yn)‖
‖xn − yn‖

− ‖(g − fn)(xn) − (g − fn)(yn)‖
‖xn − yn‖

> 1 − η1
(
εnτ(x1, y1)

)
− ‖(g − fn)(xn) − (g − fn)(yn)‖

‖xn − yn‖
−→ 1

as n tends to ∞. Thus by compactness, we may conclude that g(xn)−g(yn)
‖xn−yn‖ −→ z for some z ∈ SY passing 

to a subsequence if necessary. �
As a direct consequence of Theorem 4.1 and [10, Example 1.5], we get the following certain result.

Corollary 4.4. Let X be a uniformly convex Banach space and let Y be a Banach space satisfying one of the 
following properties:
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(a) Y has property β,
(b) Y ∗ is isometrically isomorphic to some L1(μ)-space.

Then, the pair (X, Y ) has the LDirA-BPBp for Lipschitz compact maps. In particular, LDirAK(X, Y ) is 
dense in Lip0K(X, Y ).

The next result is a slightly different version of Theorem 4.1 when the domain space is specified to a 
Hilbert space.

Theorem 4.5. Let H be a Hilbert space and let Y be a Banach space. Suppose that (F(H), Y ) has the BPBp
for compact operators. Then, for every ε > 0, there exists η > 0 such that whenever f ∈ SLip0K(X,Y ) and 
(x, y) ∈ X̃ satisfy

‖f(x) − f(y)‖
‖x− y‖ > 1 − η,

there exist g ∈ SLip0K(X,Y ), z ∈ SY and x̄ ∈ X such that g attains its norm locally directionally at the point 
x̄ in the direction x−y

‖x−y‖ toward z, ‖g − f‖ < ε and dist(x̄, [x, y]) < ε max{‖x‖, ‖y‖}.

Proof. Let 0 < ε < 1 be given. Choose η > 0 as in Theorem 4.1 applied with ε3 and ρ(x, y) = max{‖x‖, ‖y‖}. 
Suppose f ∈ SLip0K(H,Y ) and (x, y) ∈ H̃ satisfy

‖f(x) − f(y)‖
‖x− y‖ > 1 − η.

Then, we can find g̃ ∈ SLip0K(H,Y ), z ∈ SY , u ∈ SH , x̃ ∈ H and {(x̃n, ỹn)}∞n=1 ⊆ H̃ such that

x̃n, ỹn −→ x̃,
x̃n − ỹn
‖x̃n − ỹn‖

−→ u,
g̃(x̃n) − g̃(ỹn)
‖x̃n − ỹn‖

−→ z,

and

‖g̃ − f‖ <
ε

3 ,
∥∥∥∥ x− y

‖x− y‖ − u

∥∥∥∥ <
ε

3 , dist(x̃, [x, y]) < ε

3ρ(x, y).

Since H is a Hilbert space, there exists a linear isometry R : H −→ H such that

R(u) = x− y

‖x− y‖ and ‖R− IdH ‖ <
ε

3

(see [4, Lemma 2.2] for instance). Now, consider g := g̃ ◦ R−1 ∈ SLip0K(H,Y ), {(xn, yn)}∞n=1 ⊆ H̃ with 
(xn, yn) =

(
R(x̃n), R(ỹn)

)
for each n ∈ N, and put x̄ := R(x̃). Then,

(a) xn, yn −→ R(x̃) = x̄,

(b) xn − yn
‖xn − yn‖

= R

(
x̃n − ỹn
‖x̃n − ỹn‖

)
−→ R(u) = x− y

‖x− y‖ ,

(c) g(xn) − g(yn)
‖xn − yn‖

= g̃(x̃n) − g̃(ỹn)
‖x̃n − ỹn‖

−→ z,

(d) ‖g − f‖ � ‖g − g̃‖ + ‖g̃ − f‖ � ‖g̃ ◦R−1‖‖R− IdH ‖ + ‖g̃ − f‖ <
ε + ε

< ε,
3 3
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(e) dist(x̄, [x, y]) � ‖R(x̃) − x̃‖ + dist(x̃, [x, y])
� ‖R− IdH ‖‖x̃‖ + dist(x̃, [x, y])

<
ε

3
(
max{‖x‖, ‖y‖} + ε

3ρ(x, y)
)

+ ε

3ρ(x, y) < ερ(x, y). �
Again from [10, Example 1.5], we can derive the same type of results as those given in Corollary 4.4.

Corollary 4.6. Let H be a Hilbert space and let Y be a Banach space satisfying one of the following properties:

(a) Y has property β,
(b) Y ∗ is isometrically isomorphic to some L1(μ)-space.

Then, for every ε > 0, there exists η > 0 such that whenever f ∈ SLip0K(X,Y ) and (x, y) ∈ X̃ satisfy

‖f(x) − f(y)‖
‖x− y‖ > 1 − η,

there exist g ∈ SLip0K(X,Y ), z ∈ SY and x̄ ∈ X such that g attains its norm locally directionally at the point 
x̄ in the direction x−y

‖x−y‖ toward z, ‖g − f‖ < ε and dist(x̄, [x, y]) < ε max{‖x‖, ‖y‖}.

As a special case of Theorems 4.1 and 4.5, we may obtain a strengthened result when X = R. In this 
case, F(R) = L1(R) by Lemma 1.8.(d) and then, the pair (F(R), Y ) has the BPBp for compact operators 
if and only if Y has a property called AHSP introduced in [1, Definition 3.1] (see [3, Remark 2.5] for the 
result). In fact, we may squeeze the ideas developed in Theorems 3.1 and 3.5 to get much better results.

Proposition 4.7. Let Y be a Banach space with the Radon-Nikodým property. Then, for every ε > 0, if 
f ∈ SLip0(R,Y ) and (t1, t2) ∈ R̃, t1 < t2 satisfy that

‖f(t1) − f(t2)‖
|t1 − t2|

> 1 − ε,

then there exists g ∈ SLip0(R,Y ) and t0 ∈ [t1, t2] such that g is differentiable at t0 with ‖g′(t0)‖ = 1 and 
‖f − g‖ < ε.

Proof. By Lemma 2.3.(a), f is differentiable a.e. and we may write

f(t) =
t∫

0

f ′(s) ds for t ∈ R.

By hypothesis,

1 − ε <
‖f(t1) − f(t2)‖

|t1 − t2|
= 1

t2 − t1

∥∥∥∥∥∥
t2∫

t1

f ′(s) ds

∥∥∥∥∥∥ � 1
t2 − t1

t2∫
t1

‖f ′(s)‖ ds,

so we get that the set

Ãε := {t ∈ [t1, t2] : f ′(t) exists and ‖f ′(t)‖ > 1 − ε}
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has positive measure. Now, we may follow the proof of (i)⇒(ii) of Theorem 3.1, applying the set Ãε instead 
of the set Aε defined in (2), to obtain g ∈ Lip0(R, Y ) and t0 ∈ Ãε ⊆ [t1, t2] such that ‖f − g‖ < ε, g is 
differentiable at t0 and ‖g‖ = ‖g′(t0)‖ = 1. �

For a Lipschitz compact map, we have a more general result. The proof is an obvious adaptation of the 
previous one using the ideas of the proof of Theorem 3.5.

Proposition 4.8. Let Y be a Banach space. Then, for every ε > 0, if f ∈ SLip0K(R,Y ) and (t1, t2) ∈ R̃, t1 < t2
satisfy that

‖f(t1) − f(t2)‖
|t1 − t2|

> 1 − ε,

then there exist g ∈ SLip0K(R,Y ) and t0 ∈ [t1, t2] such that g is differentiable at t0 with ‖g′(t0)‖ = 1 and 
‖f − g‖ < ε.

Note that Proposition 4.8 shows that it is possible that the pair (X, Y ) has the LDirA-BPBp for Lipschitz 
compact maps without the condition that the pair (F(X), Y ) has the BPBp for compact operators. Thus 
the condition in Theorem 4.1 is sufficient but not necessary. Indeed, it follows from Proposition 4.8 that 
(R, Y ) has the LDirA-BPBp for Lipschitz compact maps for all range spaces Y , while there are Banach 
spaces Y for which the pair (F(R), Y ) fails the BPBp for compact operators (see [3, Remark 2.5]).

On the other hand, we can easily provide with versions of the above two results in terms of the derivative 
of f . We just observe that if f ∈ Lip0(R, Y ) is differentiable at t0 ∈ R, then given a sufficiently small δ > 0, 
the slope 1

δ

[
f(t0 + δ) − f(t0)

]
is close to the value of f ′(t0).

Corollary 4.9. Let Y be a Banach space with the Radon-Nikodým property. Then, for every ε > 0, if f ∈
SLip0(R,Y ) and t ∈ R satisfy that ‖f ′(t)‖ > 1 − ε, then for every δ > 0 there exist g ∈ SLip0(R,Y ) and s ∈ R

such that g is differentiable at s ∈ R with ‖g′(s)‖ = 1, ‖f − g‖ < ε and ‖t − s‖ < ε.

Corollary 4.10. Let Y be a Banach space. Then, for every ε > 0, if f ∈ SLip0K(R,Y ) and t ∈ R satisfy that 
‖f ′(t)‖ > 1 − ε, then for every δ > 0 there exist g ∈ SLip0K(R,Y ) and s ∈ R such that g is differentiable at 
s ∈ R with ‖g′(s)‖ = 1, ‖f − g‖ < ε and ‖t − s‖ < ε.

Finally, to finish the section we present the following corollaries which are straightforward consequences 
of Theorems 4.1 and 4.5 for the case of general Lipschitz maps, when the range space is finite dimensional. 
We just recall that any finite-dimensional polyhedral Banach space Y has property β, so (F(X), Y ) has the 
BPBp for compact operators for every Banach space X.

Corollary 4.11. Let X be a uniformly convex Banach space and let Y be a finite-dimensional polyhedral 
Banach space. Then, (X, Y ) has the LDirA-BPBp for Lipschitz maps.

Corollary 4.12. Let H be a Hilbert space and let Y be a finite-dimensional polyhedral Banach space. Then, 
for every ε > 0, there exists η > 0 such that whenever f ∈ SLip0(X,Y ) and (x, y) ∈ X̃ satisfy

‖f(x) − f(y)‖
‖x− y‖ > 1 − η,

there exist g ∈ SLip0(X,Y ), z ∈ SY and v ∈ X such that g attains its norm locally directionally at the point 
x̄ in the direction x−y

‖x−y‖ toward z, ‖g − f‖ < ε and dist(x̄, [x, y]) < ε max{‖x‖, ‖y‖}.
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