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We consider Hamburger, Stieltjes and Hausdorff moment problems, that are 
problems of the determination of a Borel measure supported on the real axis, on the 
semi-axis or on the interval (0, 1), from a prescribed set of moments. We propose a 
unified approach to these three problems based on the use of the auxiliary dynamical 
system with the discrete time associated with a semi-infinite Jacobi matrix. It is 
shown that the set of moments determines the inverse dynamic data for such a 
system. Using the ideas of the Boundary Control method, for every N ∈ N we can 
recover the spectral measure of N × N block of Jacobi matrix, which is a solution 
to a truncated moment problem. This problem is reduced to the finite-dimensional 
generalized spectral problem, whose matrices are constructed from moments and 
are connected with the well-known Hankel matrices by simple formulas. Thus the 
results on existence of solutions to Hamburger, Stieltjes and Hausdorff moment 
problems are naturally provided in terms of these matrices. We also obtain results 
on uniqueness of the solution of the moment problems, where as a main tool we use 
Krein-type equations of inverse problem.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The classical moment problem consists in the following: given the (real) numbers s0, s1, s2, . . . which are 
called moments, find a Borel measure dρ such that

sk =
∞∫

−∞

λk dρ(λ), k = 0, 1, 2, . . . . (1.1)
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When supp ρ ⊂ R the problem is called Hamburger moment problem, when suppρ ⊂ [0, +∞) the problem 
is called Stieltjes moment problem, and when supp ρ ⊂ [0, 1] the problem is called Hausforff moment 
problem. These problems have received a lot of attention in the last century, to mention [4,22,11,12,23,21]
and references therein.

In the present paper we propose a unified approach to these classical moment problems based on consid-
ering an auxiliary dynamical system with discrete time governed by Jacobi matrix [14,17,19] and ideas of 
the Boundary Control (BC) method [5,7] of solving the inverse dynamic problems for hyperbolic dynamical 
systems. We restrict ourselves to the questions of existence and uniqueness of a solution. We also propose 
a procedure of recovering a measure which is a special solution to a truncated moment problem, i.e. when 
(1.1) holds for k = 0, 1, . . .M for some fixed M ∈ N. In the last case the special solution is given by a 
spectral measure of a finite Jacobi operator with Dirichlet boundary conditions, and thus has a form of 
finite sum of Dirac delta functions with some coefficients.

In the second section we consider initial-boundary value problems for dynamical systems with discrete 
time associated with semi-infinite and finite Jacobi matrices. Following [14,16,17] we derive a dynamic and 
spectral representations of their solutions, introduce the operators of the BC method and show that the 
response operator, i.e. the discrete analog of a dynamic Dirichlet-to-Neumann map for these systems (oper-
ators of this type are used as inverse data in dynamic inverse problems [5,7,15]) has a form of convolution. 
The kernel of the response operator, which is called response vector, admits a spectral representation in 
terms of a spectral measure of corresponding Jacobi matrix. This fact establishes the relationship between 
spectral (measure) and dynamic (response vector) data and gives a possibility to apply some ideas of the 
BC method [6,3] to solving the truncated moment problem.

In the third section we solve the truncated moment problem by extracting spectral data (i.e. the spectral 
measure of N×N block of Jacobi matrix) from the response vector. The main results are given in Theorems 3
and 4, which say that the solution to a truncated moment problem can be constructed by solving a finite 
dimensional generalized spectral problem, in which the matrices are connected with classical Hankel matrices 
(see [1,23]) constructed from moments by simple transformation. Then the results on the existence of solution 
to all three moment problems are given in terms of inequalities for these matrices, see also [13,10].

In the last section we obtain results on uniqueness of the solution to Hamburger, Stieltjes and Hausdorff 
moment problems, classical methods for these problems are described in [1,13,23]. The main tools in our 
considerations are classical Weyl-type results on the deficiency indices of Jacobi matrix [1,23] and Krein 
equations of inverse problem in dynamic form. For continuous systems such equations were derived firstly in 
[9] and in the framework of the BC method in [2,8]; for the discrete systems they were derived in [14,16,17]. 
We also compare the results on existence for Hausdorff moment problem obtained in the paper with classical 
results of Hausdorff [11,12,22].

2. Dynamical systems with discrete time associated with Jacobi matrix. Operators of the BC method

In this section we outline some results obtained in [14,16,17] on forward problems for dynamical systems 
with discrete time associated with finite and semi-infinite Jacobi matrices.

2.1. Finite Jacobi matrices

For a given sequence of positive numbers {a0, a1, . . .} (in what follows we assume a0 = 1) and real 
numbers {b1, b2, . . .}, we denote by A a semi-infinite Jacobi matrix

A =

⎛⎜⎝ b1 a1 0 0 0 . . .
a1 b2 a2 0 0 . . .
0 a2 b3 a3 0 . . .

⎞⎟⎠ . (2.1)

. . . . . . . . . . . . . . . . . .
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For N ∈ N, by AN we denote the N×N Jacobi matrix which is a block of (2.1) consisting of the intersection 
of first N columns with first N rows of A.

Introduce the notation N0 = N ∪ {0}, and consider a dynamical system with discrete time associated 
with a finite Jacobi matrix AN :⎧⎪⎨⎪⎩

vn,t+1 + vn,t−1 − anvn+1,t − an−1vn−1,t − bnvn,t = 0, t ∈ N0, n ∈ 1, . . . , N,

vn,−1 = vn, 0 = 0, n = 1, 2, . . . , N + 1,
v0, t = ft, vN+1, t = 0, t ∈ N0,

(2.2)

by an analogy with continuous problems [5,2,8], we treat the real sequence f = (f0, f1, . . .) as a boundary 
control. Fixing a positive integer T we denote by FT the outer space of the system (2.2): FT := RT , f ∈ FT , 
f = (f0, . . . , fT−1) with the standard inner product (f, g)FT = (f, g)RT . The solution to (2.2) is denoted 
by vf . Note that (2.2) is a discrete analog of an initial boundary value problem for a wave equation with a 
potential on an interval with the Dirichlet control at the left end and the Dirichlet condition at the right 
end. This observation makes it reasonable to refer to the solution vf as to a wave. Since both variables in 
(2.2) are discrete, we have that the wave initiated at t = 0 reaches the point n = N at time t = N , which 
can be interpreted as the finiteness of the speed of a wave propagation. Note that in the similar model but 
with continuous time, so-called Krein-Stieltjes string [18], the speed of wave propagation is infinite.

Introduce the operator AN,h : RN �→ RN , h ∈ R by the rule:

(AN,hψ)n =

⎧⎪⎪⎨⎪⎪⎩
b1ψ1 + a1ψ2, n = 1,
anψn+1 + an−1ψn−1 + bnψn, 2 � n � N − 1,
aN−1ψN−1 + (bN − haN )ψN , n = N.

Note that this operator corresponds to general boundary condition at the right end (see [4, Chapter 4]):

ψN+1 + hψN = 0, h ∈ R, (2.3)

the case h = 0, which we deal with, is called Dirichlet, we set AN = AN,0:

(ANψ)n =

⎧⎪⎪⎨⎪⎪⎩
b1ψ1 + a1ψ2, n = 1,
anψn+1 + an−1ψn−1 + bnψn, 2 � n � N − 1,
aN−1ψN−1 + bNψN , n = N.

Denote by φ = {φn}, n = 0, 1, 2, . . . the solution to the Cauchy problem for the following difference equation{
anφn+1 + an−1φn−1 + bnφn = λφn, n � 1,
φ0 = 0, φ1 = 1,

(2.4)

where λ ∈ C. Thus φn is a polynomial of degree n − 1 in λ. Denote by {λk}Nk=1 the roots of the equation 
φN+1(λ) = 0, it is known [1,23] that they are real and distinct. We introduce the vectors φk ∈ RN by the 
rule

φk :=

⎛⎜⎝ φ1(λk)
φ2(λk)

·
φN (λk)

⎞⎟⎠ , k = 1, . . . , N,

and define the numbers ωk by
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(φk, φl) = δklωk, k, l = 1, . . . , N, (2.5)

where (·, ·) is a scalar product in RN .

Definition 1. The set of pairs

{λk, ωk}Nk=1

is called Dirichlet spectral data of operator AN .

Definition 2. For semi-infinite sequences f = (f0, f1, . . .), g = (g0, g1, . . .) we define the convolution c =
f ∗ g = (c0, c1, . . .) by the formula

ct =
t∑

s=0
fsgt−s, t ∈ N ∪ {0}.

Denote by Tk(2λ) the Chebyshev polynomials of the second kind: they are obtained as a solution to the 
following Cauchy problem: {

Tt+1 + Tt−1 − λTt = 0,
T0 = 0, T1 = 1.

(2.6)

In [14,17] the following formula for the solution vf =
{
vfn,t

}
, n = 0, 1, . . . ; t = −1, 0, 1, . . . was proved:

Proposition 1. The solution to (2.2) admits the representation

vfn,t =
{∑N

k=1 c
k
t φ

k
n, n = 1, . . . , N,

ft, n = 0,
ck = 1

ωk
T (λk) ∗ f. (2.7)

The inner space of dynamical system (2.2) is denoted by HN := RN , h ∈ HN , h = (h1, . . . , hN )τ . By 
(2.7) we have that vf·, T ∈ HN . For the system (2.2) the control operator WT

N : FT �→ HN is defined by the 
rule

WT
Nf := vfn, T , n = 1, . . . , N.

The input �−→ output correspondence in the system (2.2) is realized by a response operator : RT
N : FT �→

RT , defined by the formula (
RT

Nf
)
t
= vf1, t, t = 1, . . . , T. (2.8)

This operator has a form of a convolution:

(
RT

Nf
)
t
=

t∑
s=0

rsft−s−1 or RT
Nf = rN ∗ f·−1,

where the convolution kernel is called a response vector : rN = (rN0 , rN1 , . . . , rNT−1). The response operator 
plays the role of dynamic inverse data [5,7], the corresponding inverse problems were studied in [14,17].

The connecting operator CT
N : FT �→ FT for the system (2.2) is defined via the quadratic form: for 

arbitrary f, g ∈ FT one has that
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(
CT

Nf, g
)
FT =

(
vf·, T , v

g
·, T

)
HN

=
(
WT

Nf,WT
Ng
)
HN , CT

N =
(
WT

N

)∗
WT

N .

The speed of a wave propagation in the system (2.2) is finite, which implies the following dependence of 
inverse data on coefficients {an, bn}: for M ∈ N, M � N , the element vf1,2M−1 depends on {a1, . . . , aM−1}, 
{b1, . . . , bM}, on observing this we can formulate the following

Remark 1. The entries of the response vector (rN0 , rN1 , . . . , rN2N−2) depend on {a0, . . . , aN−1}, {b1, . . . , bN}, 
and does not depend on the boundary condition at n = N + 1. The entries beginning from rN2N−1 do “feel” 
the boundary condition at n = N + 1.

On introducing the special control δ = (1, 0, 0, . . .), one can see that the kernel of the response operator 
(2.8) is given by

rNt−1 =
(
RT

Nδ
)
t
= vδ1, t, t = 1, . . . . (2.9)

The spectral function of operator AN is introduced by the rule

ρN (λ) =
∑

{k |λk<λ}

1
ωk

, (2.10)

then from (2.7), (2.9) we immediately deduce

Proposition 2. The solution to (2.2), the response vector of (2.2) and entries of the matrix of the connecting 
operator CT

N admit the following spectral representations:

vfn,t =
∞∫

−∞

t∑
k=1

Tk(λ)ft−kφn(λ) dρN (λ), n, t ∈ N, (2.11)

rNt−1 =
∞∫

−∞

Tt(λ) dρN (λ), t ∈ N, (2.12)

{CT
N}l+1,m+1 =

∞∫
−∞

TT−l(λ)TT−m(λ) dρN (λ), l,m = 0, . . . , T − 1. (2.13)

Details of the proof the reader can find in [16,17].

2.2. Semi-infinite Jacobi matrix

We consider an initial boundary value problem for a dynamical system with discrete time associated with 
a semi-infinite Jacobi matrix A:⎧⎪⎨⎪⎩

un, t+1 + un, t−1 − anun+1, t − an−1un−1, t − bnun, t = 0, n ∈ N, t ∈ N0,

un,−1 = un, 0 = 0, n ∈ N,

u0, t = ft, t ∈ N0,

(2.14)

which is a discrete analog of an initial boundary value problem for a wave equation with a potential on a 
half-line with the Dirichlet control at n = 0. The solution to (2.14) is denoted by uf

n, t. We fix some positive 
integer T and denote by FT the outer space of the system (2.14), the space of controls (inputs): FT := RT , 
f ∈ FT , f = (f0, . . . , fT−1). In [17] the following statement is proved.
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Lemma 1. A solution to (2.14) admits the representation

uf
n, t =

n−1∏
k=0

akft−n +
t−1∑
s=n

wn, sft−s−1, n, t ∈ N, (2.15)

where wn,s satisfies the Goursat problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
wn, s+1 + wn, s−1 − anwn+1, s − an−1wn−1, s − bnwn, s =
= −δs,n(1 − a2

n)
∏n−1

k=0 ak, n, s ∈ N, s > n,

wn, n − bn
∏n−1

k=0 ak − an−1wn−1, n−1 = 0, n ∈ N,

w0, t = 0, t ∈ N0.

The input �−→ output correspondence in the system (2.14) is realized by a response operator : RT : FT �→
RT defined by the rule

(
RT f

)
t
= uf

1, t, t = 1, . . . , T.

This operator plays the role of inverse data, the corresponding inverse problem was considered in [14,17]. 
Introduce the shift operator in the space of infinite sequences l∞Z , (. . . , a−1, a0, a1, . . .) = a ∈ l∞Z :

Km : l∞Z �→ l∞Z , (Kma)l = al−m. (2.16)

The convolution kernel of RT is called a response vector, in accordance with (2.15) one has that r =
(r0, r1, . . . , rT−1) = (1, w1,1, w1,2, . . . w1,T−1):

(
RT f

)
t
= uf

1, t = ft−1 +
t−1∑
s=1

w1, sft−1−s t = 1, . . . , T. (2.17)

(
RT f

)
= r ∗K1f.

By choosing a special control f = δ = (1, 0, 0, . . .), the kernel of the response operator can be determined as

(
RT δ

)
t
= uδ

1, t = rt−1, t = 1, 2, . . . .

For a fixed T ∈ N we introduce the inner space of the dynamical system (2.14) HT := RT , h ∈ HT , 
h = (h1, . . . , hT ), the space of states. The wave uf

·, T is considered as a state of the system (2.14) at the 

moment t = T . By (2.15) we have that uf
·, T ∈ HT . The input �−→ state correspondence of the system (2.14)

is realized by a control operator WT : FT �→ HT , defined by the rule

(
WT f

)
n

:= uf
n, T , n = 1, . . . , T.

From (2.15) we deduce the representation for WT :

(
WT f

)
n

= uf
n, T =

n−1∏
k=0

akfT−n +
T−1∑
s=n

wn, sfT−s−1, n = 1, . . . , T.

Or in matrix form:
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WT f =

⎛⎜⎜⎜⎜⎝
u1, T
u2, T
·

uk, T

·
uT, T

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
w1,T−1 w1,T−2 w1,T−3 . . . . . . 1
w2,T−1 w2,T−1 . . . . . . a1 0

· · · · · ·
wk,T−1 . . .

∏k−1
j=0 aj 0 . . . 0

· · · · · ·∏T−1
k=0 ak 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

f0
f1
·

fT−k−1
·

fT−1

⎞⎟⎟⎟⎟⎠ . (2.18)

The following statement proved in [17] is interpreted as a boundary controllability of the dynamical 
system (2.14):

Lemma 2. The operator WT is an isomorphism between FT and HT .

We introduce the connecting operator CT : FT �→ FT for the system (2.14), by the quadratic form: for 
arbitrary f, g ∈ FT we define(

CT f, g
)
FT =

(
uf
·, T , u

g
·, T

)
HT

=
(
WT f,WT g

)
HT . (2.19)

That is CT =
(
WT

)∗
WT . The fact that the connecting operator can be represented in terms of inverse 

data is crucial in the BC method, the proof of the following theorem one can find in [14,17].

Theorem 1. The connecting operator CT is an isomorphism in FT , it admits the representation in terms of 
dynamic inverse data:

CT = CT
ij , CT

ij =
T−max i,j∑

k=0

r|i−j|+2k, r0 = a0 = 1, (2.20)

CT =

⎛⎜⎜⎜⎜⎝
r0 + r2 + . . . + r2T−2 r1 + . . . + r2T−3 . . . rT + rT−2 rT−1
r1 + r3 + . . . + r2T−3 r0 + . . . + r2T−4 . . . . . . rT−2

· · · · ·
rT−3 + rT−1 + rT+1 . . . r0 + r2 + r4 r1 + r3 r2

rT + rT−2 . . . r1 + r3 r0 + r2 r1
rT−1 rT−2 . . . r1 r0

⎞⎟⎟⎟⎟⎠ .

One can observe [14] that CT
ij satisfies the difference boundary problem:

Corollary 1. The kernel of CT satisfies{
CT

i,j+1 + CT
i,j−1 − CT

i+1,j − CT
i−1,j = 0,

CT
i,T = rT−i, CT

T,j = rT−j , r0 = 1.

With the matrix A we associate the symmetric operator A in the space l2 (we keep the same notation), 
defined on finite sequences:

D(A) = {κ = (κ0,κ1, . . .) |κn = 0, for n � N0 ∈ N} ,

and given by the rule

(Aθ)n = anθn+1 + an−1θn−1 + bnθn, n � 2,

(Aθ)1 = b1θ1 + a1θ2, n = 1.

By [·, ·] we denote the scalar product in l2. For a given sequence κ = (κ1,κ2, . . .) we define a new sequence
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(Gκ)n =
{
b1θ1 + a1θ2, n = 1,
anθn+1 + an−1θn−1 + bnθn, n � 2.

The adjoint operator A∗
κ = Gκ is defined on the domain

D (A∗) = {κ = (κ0,κ1, . . .) ∈ l2 | (Gκ) ∈ l2} .

In the limit point at infinity case (i.e. A has deficiency indices (0, 0)), then it is essentially self-adjoint. 
In the limit circle case (i.e. when A has deficiency indices (1, 1)) we denote by p(λ) = (p1(λ), p2(λ), . . .), 
q(λ) = (q1(λ), q2(λ), . . .) two solutions of (2.4) satisfying Cauchy data p1(λ) = 1, p2(λ) = λ−b1

a1
, q1(λ) = 0, 

q2(λ) = 1
a1

. Then [21, Lemma 6.22]

D (A∗) = D(A) + Rp(0) + Rq(0).

All self-adjoint extensions of A are parameterized by t ∈ R ∪ {∞}, are denoted by At and defined on the 
domain

D(At) =
{
D(A) + R(q(0) + tp(0)), t ∈ R

D(A) + Rp(0), t = ∞.

All the details the reader can find in [23,21]. We introduce the measure dρt(λ) =
[
dEAt

λ e1, e1

]
, where dEAt

λ

is the projection-valued spectral measure of At such that EAt

λ−0 = EAt

λ . The results of [4] and [23, Section 

5] imply that dρN → dρt∗ ∗-weakly as N → ∞, where t∗ = − limn→∞
qn(0)
pn(0) .

The Remark 1 in particular implies that

R2N−2 = R2N−2
N , (2.21)

uf
n, t = vfn, t, n � t � N, and WN = WN

N . (2.22)

Thus due to (2.21), we have that rt−1 = rNt−1, t = 1, . . . , 2N . On the other hand, taking into account (2.22), 
we can see that CT = CT

N with T � N . Thus, in (2.12), (2.13) tending N → ∞, we obtain

Proposition 3. The entries of the response vector of (2.14) and of the matrix of the connecting operator CT

admit the spectral representation:

rt−1 =
∞∫

−∞

Tt(λ) dρt∗(λ), t ∈ N, (2.23)

{CT }l+1,m+1 =
∞∫

−∞

TT−l(λ)TT−m(λ) dρt∗(λ), l,m = 0, . . . , T − 1. (2.24)

Note that in (2.23) and (2.24) one can change dρt∗ for dρt, t ∈ R ∪ {∞} when A is in the limit circle 
case.

3. Truncated moment problem. Recovering spectral data from dynamic data

We make the following observation: in the classical moment problem [1,22,23] one answers a question of 
existence (and uniqueness) of a measure satisfying (1.1) for a given set of moments. In the dynamic inverse 
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, 
problem [14,17] one answers a question of existence (and possibility of recovering) of a Jacobi matrix for 
a given response vector (2.17). Results from the previous section implies the relationship between data of 
these two problems:

Remark 2. The spectral representation of response vector (2.23) implies that the knowledge of the set of 
moments {s0, s1, . . . , s2N−2} is equivalent to the knowledge of {r0, r1, . . . , r2N−2}, where N ∈ N ∪ {∞}.

Thus, the moment problem and the inverse dynamic problem for the system (2.14) being different, deal 
with essentially the same data.

Definition 3. By a solution of a truncated moment problem of order N we call a Borel measure dρ(λ) on R
such that equalities (1.1) with this measure hold for k = 0, 1, . . . , 2N − 2.

In [17] the authors proved the following

Theorem 2. The vector (r0, r1, r2, . . . , r2N−2) is a response vector for the dynamical system (2.2) if and only 
if the matrix CN defined by (2.24), (2.20) is positive definite.

The necessary part of this statement is a simple consequence of the boundary controllability of system 
(2.14), see Lemma 2, and the definition of CT (2.19). In the subsection 3.3 we outline the scheme of deriving 
of formulas for the entries of Jacobi matrix, which play an important role in the proof of the sufficient 
part of this theorem. All aforesaid, in particular, implies the following procedure of solving the truncated 
moment problem:

Procedure 1.

1) Calculate (r0, r1, r2, . . . , r2N−2) from {s0, s1, . . . , s2N−2} by using (2.23).
2) Recover N ×N Jacobi matrix AN using formulas for ak, bk from [17].
3) Recover spectral measure for finite Jacobi matrix AN with prescribed arbitrary condition (2.3) at n =

N + 1.
3’) Extend Jacobi matrix AN in arbitrary way to finite Jacobi matrix AM , M > N , prescribe arbitrary 

condition (2.3) at n = M + 1 and recover spectral measure of AM .
3”) Extend Jacobi matrix AN in arbitrary way to semi-infinite Jacobi matrix A, and recover spectral 

measure of A.

Every measure obtained in 3), 3′), 3′′) provides a solution to the truncated moment problem.
Below we propose the different approach: using the ideas of the BC method we recover the spectral 

measure corresponding to Jacobi matrix AN directly from moments (from the operator CN ), without 
recovering the Jacobi matrix itself.

Convention 1. We assume that controls f ∈ FN , f = (f0, . . . , fN−1) are extended: f = (f−1, f0, . . . , fN−1, fN )
where f−1 = fN = 0.

We introduce the special space of controls FN
0 =

{
f ∈ FN | f0 = 0

}
and the operators D : FN �→ FN , 

D̂ : HT �→ HT acting by

(Df)t = ft+1 + ft−1, f ∈ FT ,(
D̂h
)

= ht+1 + ht−1, h ∈ HT .

t
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The following statement can be easily proved using arguments from [17] and representations (2.18) and 
(2.15):

Proposition 4.

1) The operator WN maps FN
0 isomorphically onto HN−1.

2) On the set FN
0 the following relation holds:

WNDf = DWNf, f ∈ FN
0 . (3.1)

Taking f, g ∈ FN
0 and evaluating the quadratic form, bearing in mind (3.1) and the equality vfN,N = 0

for f ∈ FN
0 , which follows from (2.15), we obtain:

(
CNDf, f

)
FN =

(
WNDf,WNg

)
HN =

(
DWNf,WNg

)
HN (3.2)

=
(
AN−1v

f , vg
)
HN .

The last equality in (3.2) means that only AN−1 block of the whole matrix AN is in use. Then it is possible 
to perform the spectral analysis of AN−1 using the classical variational approach, the controllability of the 
system (2.2) (see Proposition 4) and the representation (3.2), see also [6]. The spectral data of Jacobi matrix 
AN−1 with the Dirichlet boundary condition at n = N can be recovered by the following

Procedure 2.

1) The first eigenvalue is given by

λN−1
1 = min

f∈FN
0 , (CNf,f)FN =1

(
CNDf, f

)
FN . (3.3)

2) Let f1, be the minimizer of (3.3), then

ω1 =
(
CNf1, f1)

FN .

3) The second eigenvalue is given by

λN−1
2 = min

f∈FN
0 ,(CNf,f)FN =1

(CNf,fl)FN =0

(
CNDf, f

)
FN . (3.4)

4) Let f2, be the minimizer of (3.4), then

ω2 =
(
CNf2, f2)

FN .

Continuing this procedure, one recovers the set {λN−1
k , ωk}N−1

k=1 and constructs the measure dρN−1(λ) by 
(2.10).

Remark 3. The measure, constructed by the above procedure solves the truncated moment problem for the 
set of moments {s0, s1, . . . , s2N−4}.
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3.1. Euler-Lagrange equations

In this section we derive equations which can be thought of as Euler-Lagrange equations for the problem 
of the minimization of a functional 

(
CNDf, f

)
FN in FN

0 with the constrain 
(
CNf, f

)
FN = 1, described in 

the previous section. Similar method of deriving equations which can be used for recovering of spectral data 
was used in [3].

By fk ∈ FN , k = 1, . . . , N we denote the control that drives system (2.2) to prescribed state φk (see 
(2.4)):

WNfk = φk, k = 1, . . . , N.

Due to Proposition 4, such a control exists and is unique for every k. We introduce the shift operator

V N : FN �→ FN ,(
V Ng

)
n

= gn−1, n = 1, . . . , N − 1,
(
V Ng

)
0 = 0,

and denote by E : FN �→ FN+1 the embedding operator:

(Eg)k =
{
gk, k = 0, 1, N − 1,
0 k = N ;

then the adjoint operator E∗ : FN+1 �→ FN is a projection.

Theorem 3. The spectrum of AN and controls fk, k = 1, . . . , N are the spectrum and the eigenvectors of the 
following generalized spectral problem:(

E∗ (V N+1)∗ CN+1E + CNV N
)
fk = λkC

Nfk, k = 1, . . . , N. (3.5)

Proof. For h ∈ FT we always assume that h−1 = hT = 0 (see Agreement 1). For a fixed k = 1, . . . , N we 
take fk ∈ FN such that WNfk = vfk·, N = φk, then for arbitrary g ∈ FN we can evaluate:

(
λkC

Nfk, g
)
FN =

(
λkv

fk
·, N , vg·, N

)
HN

=
(
λkφ

k, vg·, N

)
HN

=
(
ANφk, vg·, N

)
HN

=
((

ANvfk
)
·, N , vg·, N

)
HN

=
((

Dvfk
)
·, N , vg·, N

)
HN

=
(
vfk·, N+1, v

g
·, N )

)
HN

+
(
vfk·, N−1, v

g
·, N

)
HN

. (3.6)

We note that

HN 	 vg·, N =
(
vg1, N , . . . , vgN,N

)
,

HN+1 	 vV
N+1g

·, N+1 =
(
vg1, N , . . . , vgN,N , 0

)
.

That is why we can rewrite the first summand in the right hand side of (3.6) as(
vfk·, N+1, v

g
·,N

)
HN

=
(
vfk·, N+1, v

V N+1g
·, N+1

)
HN+1

=
(
CN+1fk, V

N+1g
)
FN+1 . (3.7)

Analogously:
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HN 	 vfk·, N−1 =
(
vfk1, N−1, . . . , v

fk
N−1,N−1, 0

)
,

HN 	 vV
Nfk

·, N =
(
vfk1, N−1, . . . , v

fk
N−1,N−1, 0

)
.

So we can rewrite the second summand in the right hand side of (3.6) as(
vfk·, N−1, v

g
·, N

)
HN

=
(
vV

Nfk
·, N , vg·, N

)
HN

=
(
CNV Nfk, g

)
FN . (3.8)

Finally from (3.6), (3.7) and (3.8) we deduce that

(
λkC

Nfk, g
)
FN =

(
CN+1fk, V

N+1g
)
FN+1 +

(
CNV Nfk, g

)
FN . (3.9)

Using operators E, E∗ we can rewrite (3.9) in the form(
E∗ (V N+1)∗ CN+1E + CNV N

)
fk = λkC

Nfk.

Thus the pair {fk, λk} provides the solution to (3.5). Now let the pair {f, λ} be the solution to (3.5) with 
f ∈ FN f 
= fk, λ 
= λk for any k = 1 . . . , N . Then WNf = vf·, N =

∑N
k=1 akφ

k for some ak ∈ R. We can 
evaluate for arbitrary g ∈ FN :

0 =
((

E∗ (V N+1)∗ CN+1E + CNV N
)
f − λCNf, g

)
FN

=
(
CN+1Ef, V N+1Eg

)
FN+1 +

(
CNV Nf, g

)
FN − λ

(
vf·, N , vg·, N

)
HN

=
(
vEf
·, N+1, v

V N+1Eg
·, N+1

)
HN+1

+
(
vV

Nf
·, N , vg·, N

)
HN

− λ
(
vf·, N , vg·, N

)
HN

=
(
vEf
·, N+1, v

g
·, N+1

)
HN

+
(
vf·, N−1, v

g
·, N−1

)
HN

− λ
(
vf·, N−1, v

g
·, N−1

)
HN

=
((

ANvf
)
·, N , vg·,N

)
HN

− λ
(
vf·, N , vg·, N

)
HN

=
(
AN

N∑
k=1

akφ
k − λ

N∑
k=1

akφ
k,WNg

)
HN

=
(

N∑
k=1

ak(λk − λ)φk,WNg

)
HN

.

From the above equality and Proposition 4 it follows that all ak except one are equal to zero, and for such 
aj , λ = λj , which completes the proof. �

Since (3.5) is linear, solving this equation one obtains spectrum {λk}Nk=1 and controls 
{
f̃k

}N

k=1
, such 

that WT f̃k = βkφ
k for some βk ∈ R\{0}, k = 1, . . . , N . Then the measure of operator AN with Dirichlet 

boundary condition at n = N + 1 can be recovered by the following

Procedure 3.

1) Normalize controls f̃k by the condition 
(
CN f̃k, f̃k

)
FN

= 1, k = 1, . . . , N .

2) Observe that WN f̃k = αkφ
k for some αk ∈ R\{0}, where the constant is defined by αk = αkφ

k
1 =(

WN f̃k

)
1

=
(
Rf̃k

)
N

, k = 1, . . . , N .
3) Coefficients (2.5) are given by ωk = α2

k, k = 1, . . . , N .
4) Recover the measure by (2.10).
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Now we rewrite the generalized spectral problem (3.5) in more details and transfer the matrices in left 
and right-hand sides to Hankel matrices known from classical literature [1,23]. Note that the matrices in 
(3.5) has the following representations:

E∗ =

⎛⎜⎝1 0 . . . 0
0 1 . . . 0
· · . . . ·
0 . . . 1 0

⎞⎟⎠ , E =

⎛⎜⎜⎜⎝
1 0 . . . 0
0 1 . . . 0
· · . . . ·
0 . . . 0 1
0 . . . 0 0

⎞⎟⎟⎟⎠ ,

V N =

⎛⎜⎝0 0 . . . 0
1 0 . . . 0
· · . . . ·
0 . . . 1 0

⎞⎟⎠ ,
(
V N

)∗ =

⎛⎜⎜⎜⎝
0 1 . . . 0
0 0 . . . 0
· · . . . ·
0 . . . 0 1
0 . . . 0 0

⎞⎟⎟⎟⎠ ,

CN =

⎛⎜⎝ cN,N . . . · cN,1
cN−1,N · cN−1,1

· · · ·
c1,N . . . · c1,1

⎞⎟⎠ , CN+1 =

⎛⎜⎝cN+1,N+1 . . . · cN+1,1
cN,N+1 · cN,1

· · · ·
c1,N+1 . . . · c1,1

⎞⎟⎠ . (3.10)

Here we used the notations for entries of CN different from ones in (2.20) in order to show that CN is a 
lower right block in CN+1. The left hand side of (3.5) we denote by

BN := E∗ (V N+1)∗ CN+1E + CNV N .

Proposition 5. The matrix BN is self-adjoint, it admits the following representation:

BN =

⎛⎜⎝ cN,N+1 + cN,N−1 cN,N + cN,N−2 . . . cN,3 + cN,1 cN,2
cN−1,N+1 + cN−1,N−1 . . . . . . cN−1,3 + cN−1,1 cN−1,2

· · . . . · ·
c1,N+1 + c1,N−1 c1,N + c1,N−2 . . . . . . c1,2

⎞⎟⎠ . (3.11)

Proof. We note that the matrices E, E∗ and V N , 
(
V N

)∗ have one diagonal filled with ones and the other 
elements are zeros. Thus the multiplication by such a matrix leads to deleting a line or column from the 
original matrix (possibly with the addition of a zero line or column). Performing calculations we see that 
the first term in the right hand side of BN is obtained by deleting last column and first row from CN+1 and 
the second term is obtained by deleting the first column and adding zero column to CN . All aforesaid leads 
to the formula (3.11). We note that the representation (3.11) and Corollary 1 shows that BT is self-adjoint 
matrix. �
Remark 4. The spectral problem (3.5) has a form

BNfk = λkC
Nfk, k = 1, . . . , N, where CN > O, BN =

(
BN

)∗
. (3.12)

Chebyshev polynomials of the second kind {T1(λ), T2(λ), . . . Tn(λ)} (see 2.6) are related to {1, λ, λn−1}
by the following relation

⎛⎜⎝T1(λ)
T2(λ)
. . .

⎞⎟⎠ = Λn

⎛⎜⎝ 1
λ
. . .
n−1

⎞⎟⎠ =

⎛⎜⎝ 1 0 . . . 0
a21 1 . . . 0
. . .

⎞⎟⎠
⎛⎜⎝ 1

λ
. . .
n−1

⎞⎟⎠ . (3.13)

Tn(λ) λ an1 an2 . . . 1 λ
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Proposition 6. The entries of the matrix Λn ∈ Mn−1 are given by

Λn = aij =

⎧⎪⎪⎨⎪⎪⎩
0, if i > j,

0, if i + j is odd,
Cj

i+j
2

(−1) i+j
2 +j ,

(3.14)

where Ck
n are binomial coefficients. The entries of the response vector are related to moments by the rule:

⎛⎜⎝ r0
r1
. . .
rn−1

⎞⎟⎠ = Λn

⎛⎜⎝ s0
s1
. . .
sn−1

⎞⎟⎠ . (3.15)

Proof. The formula (3.14) for entries of Λn is proved by direct calculations with the use of properties of 
Chebyshev polynomials. Then making use of (2.23) yields (3.15). �

Introduce the following Hankel matrices

SN
m :=

⎛⎜⎝s2N−2+m s2N−3+m . . . sN−1+m

s2N−3+m . . . . . . . . .
· · . . . s1+m

sN−1+m . . . s1+m sm

⎞⎟⎠ , m = 0, 1, . . . ,

the matrix JN ∈ RN×N :

JN =

⎛⎜⎜⎜⎝
0 . . . 0 1
0 . . . 1 0
· · . . . ·
0 1 . . . 0
1 . . . 0 0

⎞⎟⎟⎟⎠ , JNJN = IN =

⎛⎜⎜⎜⎝
1 0 . . . 0
0 1 . . . 0
· · . . . ·
0 . . . 1 0
0 . . . 0 1

⎞⎟⎟⎟⎠ ,

and define

Λ̃N := JNΛNJN .

The remarkable fact is that the matrices BN , CN can be reduced to Hankel matrices by the same linear 
transformation:

Theorem 4. The following relations hold:

CN = Λ̃NSN
0

(
Λ̃N

)∗
, (3.16)

BN = Λ̃NSN
1

(
Λ̃N

)∗
. (3.17)

Then the generalized spectral problem (3.5) or (3.12) upon introducing the notation gk =
(
Λ̃N

)∗
fk is 

equivalent to the following generalized spectral problem:

SN
1 gk = λkS

N
0 gk. (3.18)
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Proof. Using (3.10) and the representation (2.24), we have that entries of CN have a form:

cij =
∞∫

−∞

TN−i+1(λ)TN−j+1(λ) dρ(λ), i, j = i, . . . , N.

Introducing the operation ⊗ : RN ×RN �→ MN by the following rule: for a, b ∈ RN we set a ⊗ b = c ∈ MN , 
where cij = aibj , we see that in view of (2.24) the operator CN has a form:

CN =
∞∫

−∞

⎛⎜⎝ TN (λ)
TN−1(λ)

·
T1(λ)

⎞⎟⎠⊗

⎛⎜⎝ TN (λ)
TN−1(λ)

·
T1(λ)

⎞⎟⎠ dρ(λ). (3.19)

Using (3.13) we can rewrite (3.19) as

CN =
∞∫

−∞

JNΛNJNJN

⎛⎜⎝ 1
λ
·

λN−1

⎞⎟⎠⊗ JNΛNJNJN

⎛⎜⎝ 1
λ
·

λN−1

⎞⎟⎠ dρ(λ)

=
∞∫

−∞

Λ̃N

⎛⎜⎝λN−1

λN−2

·
1

⎞⎟⎠⊗ Λ̃N

⎛⎜⎝λN−1

λN−2

·
1

⎞⎟⎠ dρ(λ)

= Λ̃N

∞∫
−∞

⎛⎜⎝λN−1

λN−2

·
1

⎞⎟⎠⊗

⎛⎜⎝λN−1

λN−2

·
1

⎞⎟⎠ dρ(λ)
(
Λ̃N

)∗
= Λ̃NSN

0

(
Λ̃N

)∗
,

which proves (3.16).
Using the representation of BN (3.11) and (2.24) yields the following formula for entries bij of BN :

bij =
∞∫

−∞

TN−i+1(λ) (TN−j+2(λ) + TN−j(λ)) dρ(λ), i, j = i, . . . , N,

where we counted that T0(λ) = 0. Making use of (2.6) leads to:

bij =
∞∫

−∞

TN−i+1(λ)λTN−j+1(λ) dρ(λ), i, j = i, . . . , N. (3.20)

Then using (3.13) and (3.20) we obtain:

BN =
∞∫

−∞

JNΛNJNJNλ

⎛⎜⎝ 1
λ
·

λN−1

⎞⎟⎠⊗ JNΛNJNJN

⎛⎜⎝ 1
λ
·

λN−1

⎞⎟⎠ dρ(λ)

=
∞∫

−∞

Λ̃N

⎛⎜⎝λN

λN

·

⎞⎟⎠⊗ Λ̃N

⎛⎜⎝λN−1

λN−2

·

⎞⎟⎠ dρ(λ)

λ 1
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= Λ̃N

∞∫
−∞

⎛⎜⎝ λN

λN−1

·
λ

⎞⎟⎠⊗

⎛⎜⎝λN−1

λN−2

·
1

⎞⎟⎠ dρ(λ)
(
Λ̃N

)∗
= Λ̃NSN

1

(
Λ̃N

)∗
,

which gives (3.17). Then (3.18) is a consequence of (3.16) and (3.17). �
3.2. Special cases: Hamburger, Stieltjes and Hausdorff moment problems

In the previous sections we constructed the special measure corresponding to operator AN with Dirichlet 
boundary condition at n = N + 1 and which gives a solution of a truncated moment problem. Here we 
formulate several consequences of Theorems 3, 4.

Bearing in mind the relationship between elements of response vector and moments (2.23) and the formula 
(3.16), we can reformulate Theorem 2 as

Proposition 7. The numbers (s0, s1, s2, . . . , s2N−2) are the moments of the spectral measure corresponding 
to the Jacobi operator AN with Dirichlet boundary condition at n = N + 1 if and only if

the matrix SN
0 is positive definite. (3.21)

The Stieltjes moment problem is characterized by the positivity of a support of a measure. That means 
the positivity of a spectrum of AN . The latter leads to the following

Proposition 8. The numbers (s0, s1, s2, . . . , s2N−1) are the moments of the spectral measure, supported on 
(0, +∞), corresponding to Jacobi operator AN with Dirichlet boundary condition at n = N + 1 if and only 
if

matrices SN
0 and SN

1 are positive definite. (3.22)

In the Hausdorff moment problem the measure is supported on (0, 1), which leads to the following

Proposition 9. The numbers (s0, s1, s2, . . . , s2N−1) are the moments of the spectral measure, supported on 
(0, 1), corresponding to operator AN with Dirichlet boundary condition at n = N + 1, if and only if the 
condition

SN
0 � SN

1 > O (3.23)

holds.

Proof. From (3.18) it follows that

λk =
(
SN

1 gk, gk
)(

ST
0 gk, gk

) , k = 1, . . . , N.

Then the restriction λk ∈ (0, 1) implies (3.23). �
Remark 5. Given an infinite sequence of moments, one can determine whether or not it is Hamburger or 
Stieltjes or Hausdorff moment sequence by verifying whether the condition (3.21) or (3.22) or (3.23) holds 
for all N ∈ N.
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The necessity of conditions (3.21), (3.22), (3.23) is clear. The condition (3.21) holding for all N > 0
makes it possible to construct semi-infinite Jacobi matrix A. The finite measures constructed on each step 
dρN (λ) has proper supports in Stieltjes and Hausdorff cases, and as it was explained in the end of Section 2
these measures dρN converges ∗-weakly to dρt∗ the spectral measure of some special self-adjoint extension 
of A, which has to have proper support as well.

3.3. Recovering Jacobi matrix, nonuniqueness of the solution of the truncated moment problem

As we mentioned, given a sequence of moments {s0, s1, . . . , s2N−2} or, equivalently, entries of the response 
vector, {r0, r1, . . . , r2N−2}, it is possible to recover the Jacobi matrix AN , see [14,17]. Below we outline the 
proof of this result (it is an important ingredient in the sufficient part of Theorem 2).

We rewrite WN (2.18) as WN = W
N
J , where

WNf =

⎛⎜⎜⎜⎜⎜⎜⎝

1 w1,1 w1,2 . . . w1,N−1
0 a1 w2,2 . . . w2,N−1
· · · · ·
0 . . .

∏k−1
j=1 aj . . . wk,N−1

· · · · ·
0 0 0 . . .

∏N−1
j=1 aj

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
0 0 0 . . . 1
0 0 0 . . . 0
· · · · ·
0 . . . 1 0 0
· · · · ·
1 0 0 0 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

f0
f2
·

fN−k−1
·

fN−1

⎞⎟⎟⎟⎟⎠ .

Using the invertibility of WT (cf. Lemma 2) we rewrite the definition of CN in a form 
(
(WN )−1)∗ ×

CN (WN )−1 = I, which, in turn can be rewritten as

((
W

N
)−1

)∗
C

N
(
W

N
)−1

= I, C
N = JCNJ, (3.24)

where entries cij of the matrix C
N are defined by the rile

cij =
{
CN

}
N+1−j,N+1−i

, (3.25)

and 
(
W

N
)−1

has a form

(
W

N
)−1

=

⎛⎜⎝a1, 1 a1, 2 a1, 3 . . . a1, N
0 a2, 2 a2, 3 . . . ..
· · · aN−1, N−1 aN−1,N
0 . . . . . . 0 aN,N

⎞⎟⎠ . (3.26)

It is easy to see that diagonal elements of (3.26) satisfy the relation:

ak, k =

⎛⎝k−1∏
j=1

aj

⎞⎠−1

. (3.27)

Multiplying the k-th row of WN by k + 1-th column of 
(
W

N
)−1

leads to the relation

ak, k+1a1 . . . ak−1 + ak+1, k+1wk, k = 0,

from where we deduce that
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ak, k+1 = −

⎛⎝ k∏
j=1

aj

⎞⎠−2

akwk, k. (3.28)

Then we can rewrite (3.24) in the equivalent form:⎛⎜⎝ a1, 1 0 . 0
a1, 2 a2, 2 0 .
· · · ·

a1, N . . aN,N

⎞⎟⎠
⎛⎜⎝ c11 .. .. c1N

.. .. .. ..
· · · ·

cN1 .. cNN

⎞⎟⎠
⎛⎜⎝a1,1 a1,2 .. a1,N

0 a2,2 .. a2,N
· · · ·
0 . . . . . . aN,N

⎞⎟⎠ = I (3.29)

A direct consequence of the above equality is an equality for determinants:

det
((

W
N
)−1

)∗
detCN det

(
W

N
)−1

= 1,

which yields

a1, 1 ∗ . . . ∗ aN,N =
(
detCN

)− 1
2
.

From the above formula we derive that

a1, 1 =
(
detC1)− 1

2
, a2, 2 =

(
detC2

detC1

)− 1
2

, ak, k =
(

detCk

detCk−1

)− 1
2

.

Combining latter relations with (3.27), we deduce that

k−1∏
i=1

ai =
(

detCk

detCk−1

) 1
2

.

Then we obtain that

ak =

(
detCk+1) 1

2
(
detCk−1) 1

2

detCk
, k = 1, . . . , N − 1, (3.30)

where we set detC0 = 1, detC−1 = 1.
Now using (3.29) we write down the equation on the last column of 

(
W

N
)−1

:

⎛⎜⎝ a1, 1 0 . 0
a1, 2 a2, 2 0 .
· · · ·

a1, N−1 . . aN−1, N−1

⎞⎟⎠
⎛⎜⎝ c1, 1 .. .. c1, N

.. .. .. ..
· · · ·

cN−1, 1 .. cN−1, N−1

⎞⎟⎠
⎛⎜⎝ a1, N

a2, N
·

aT,N

⎞⎟⎠ =

⎛⎜⎝0
0
·
0

⎞⎟⎠ .

Note that since we know aN,N , we can rewrite the above equality in the form of equation on 
(a1, N , . . . , aN−1, N )∗:⎛⎜⎝ c1, 1 .. .. c1, N

.. .. .. ..
· · · ·

cN−1, 1 .. cN−1, N−1

⎞⎟⎠
⎛⎜⎝ a1, N

a2, N
·

aN−1, N

⎞⎟⎠ = −aN,N

⎛⎜⎝ a1, N
a2, N
·

aN−1, N

⎞⎟⎠ . (3.31)

Introduce the notation:
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C
k−1
k :=

⎛⎜⎝ c1, 1 .. .. c1, k−2 c1, k
.. .. .. ..
· · · ·

ck−1, 1 .. ck−1, k−2 ck−1, k

⎞⎟⎠ ,

that is Ck−1
k is constructed from the matrix C

k−1 by substituting the last column by (c1, k, . . . , ck−1, k). 
Then from (3.31) we deduce that:

aN−1, N = −aN,N
detCN−1

N

detCN−1 , (3.32)

where we assumed that detC−1
0 = 0. On the other hand (3.27), (3.28) yield

aN−1, N =

⎛⎝N−1∏
j=1

aj

⎞⎠−1
N−1∑
k=1

bk. (3.33)

Equating (3.32) and (3.33) gives equalities

N−1∑
k=1

bk = −detCN−1
N

detCT−1 ,
N∑

k=1

bk = −detCN

N+1

detCN
,

from where

bk = −detCk

k+1

detCk
+ detCk−1

k

detCk−1 , k = 1, . . . , N. (3.34)

Thus the matrix AN can be recovered from {r0, r1, . . . , r2N−2} by use of (3.30), (3.34).

Remark 6. In order to apply the results of Theorems 3, 4 to the problem of reconstruction of spectral 
measure of AN , one needs to know one extra moment, specifically s2N−1 (see the definition of SN

1 ), than in 
the method based on direct calculation of AN by formulas (3.30) and (3.34).

Denote by M+(R ∪ {∞}) the set of positive Borel measures on R ∪ {∞} and by MN ⊂ M+(R ∪ {∞})
a subset such that dν(λ) ∈ MN is a solution of the truncated moment problem (1.1) of the order N . We 
used the BC method to construct the special solution of a truncated moment problem: for N ∈ N the set 
of moments {s0, s1, . . . , s2N−1} determines the measure dρN (λ) ∈ MN , where the constructed measure is a 
spectral measure of a finite Jacobi operator AN with the Dirichlet condition at n = N + 1. We point out 
that in our procedure we do not use the Jacobi matrix, but rather special Hankel matrices, constructed 
from moments.

Having constructed the Jacobi matrix AN from the set {s0, s1, . . . , s2N−2} we can consider the operator 
ÃN given by boundary condition (2.3) at n = N + 1, or one can extend the matrix AN in arbitrary way, 
keeping it to be Jacobi and taking a selfadjoint extension as it was described in the end of Section 2. Then 
the spectral measure of any of described operators also gives a solution to the Hamburger moment problem.

Remark 7. The spectral representation of (2.24) implies that MN is a convex set in M+(R ∪{∞}). It is also 
not hard to see that MN is closed in the ∗-weak topology and obviously MN1 ⊆ MN2 when N1 > N2. Taking 
N to infinity we deduce that the set of solutions M∞ of the Hamburger moment problem (1.1) either convex 
and compact in weak topology, or consists of one element. The same arguments and spectral representation 
of BT (3.20) shows that the set of solutions Ms

∞ to Stieltjes moment problem either convex and compact 
in ∗-weak topology or consists of one element. More on this subject one can find in [23, Appendix B].
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4. On the uniqueness of the solution of the Hamburger, Stieltjes and Hausdorff moment problems

We remind the reader that the moment problem is called determinate if it has only one solution, otherwise 
it is called indeterminate.

In this section we use complex-valued outer and inner spaces for the dynamical system (2.14): FT =
HT = CT with the scalar products (f, g)FT =

∑T−1
i=0 figi and (a, b)HT =

∑T
i=1 aibi. Although subsequently 

in applications of Krein equations to moment problems we use R rather than C, the possibility to use 
complex controls could be important, see for example [16].

4.1. Krein equations

Let α, β ∈ R and y(λ) be a solution to a Cauchy problem for the following difference equation (we remind 
the agreement a0 = 1): {

akyk+1 + ak−1yk−1 + bkyk = λyk,

y0 = α, y1 = β.
(4.1)

We set up the special control problem: to find a control fT ∈ FT that drives the system (2.14) to the 

prescribed state yT (λ) :=
(
y1(λ), . . . , yT (λ)

)
∈ HT at t = T :

WT fT = yT (λ),
(
WT fT

)
k

= yk(λ), k = 1, . . . , T. (4.2)

Note that due to Lemma 2, this control problem has a unique solution fT =
(
WT

)−1
yT (λ). Let κT (λ) be 

a solution to {
κ

T
t+1 + κ

T
t−1 = λκt, t = 0, . . . , T,

κ
T
T = 0, κ

T
T−1 = 1.

(4.3)

One can easily see the relation with Chebyshev polynomials (2.6):

κ
T
t (λ) = TT−t(λ), t = 0, 1, . . . , T. (4.4)

It is an important fact that the control fT can be found as a solution to certain equation:

Theorem 5. The control fT =
(
WT

)−1
yT (λ) solving the special control problem (4.2), is a unique solution 

to the following Krein-type equation in FT :

CT fT = βκT (λ) − α
(
RT
)∗

κ
T (λ). (4.5)

Proof. Let fT be a solution to (4.2). We observe that for any fixed g ∈ FT we have that

ug
k, T =

T−1∑
t=0

(
ug
k, t+1 + ug

k, t−1 − λug
k, t

)
κ

T
t . (4.6)

Indeed, changing the order of a summation in the right hand side of (4.6) and counting ug
k,−1 = ug

k, 0 = 0
yields

T−1∑(
ug
k, t+1 + ug

k, t−1 − λug
k, t

)
κ

T
t =

T−1∑(
κ

T
t+1 + κ

T
t−1 − λκt

)
ug
k, t + ug

k, Tκ
T
T−1,
t=0 t=0
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which gives (4.6) due to (4.3). Using this observation, we can evaluate

(
CT fT , g

)
FT =

(
uf (T ), ug(T )

)
FT =

T∑
k=1

uf
k, Tu

g
k T

=
T∑

k=1

yk(λ)ug
k, T =

T∑
k=1

yk(λ)
T−1∑
t=0

(
ug
k, t+1 + ug

k, t−1 − λug
k, t

)
κ

T
t

=
T−1∑
t=0

κ
T
t (λ)

(
T∑

k=1

(
aku

g
k+1, tyk + ak−1u

g
k−1, tyk + bku

g
k, tyk − λug

k, tyk

))

=
T−1∑
t=0

κ
T
t (λ)

(
T∑

k=1

(
ug
k, t(akyk+1 + ak−1yk−1 + bkyk − λyk

)
+ ug

0, ty1

+aTu
g
T+1, tyT − ug

1, ty0 − aTu
g
T, tyT+1

)
=

T−1∑
t=0

κ
T
t (λ)

(
βgt − α(RT g)t

)
=
(
κ

T (λ),
[
βg − α

(
RT g

)])
FT

=
([

βκT (λ) − α
((

RT
)∗

κ
T (λ)

)]
, g
)
FT

.

Which completes the proof due to the arbitrariness of g. �
We consider two special solutions to (4.1): the first one ϕ(λ) corresponds to the choice α = 0, β = 1, the 

second one, ξ(λ), corresponds to Cauchy data α = −1, β = 0.
It is well-known fact [1,23] that the questions on the uniqueness of the solution to a moment problem are 

related to the deficiency indices of the operator A. Here we provide well-known results on discrete version 
of Weyl limit point-circle theory which answers the question on the index of A that will be subsequently 
used:

Proposition 10. The limit circle case does hold (i.e. operator A is of indices (1, 1) if and only if one the 
following occurs:

1) ϕ(λ), ξ(λ) ∈ l2 for some λ ∈ R,
2) ϕ(λ), ϕ′(λ) ∈ l2 for some λ ∈ R,
3) ξ(λ), ξ′(λ) ∈ l2 for some λ ∈ R.

4.2. Hamburger moment problem

Let in (4.1) α = 0, β = 1, then the special control problem has a form:

WT fT
01(λ) = yT (λ) = (ϕ1(λ), . . . , ϕT (λ)). (4.7)

The control fT
01 is a unique solution to (see (4.5) (4.4)) the equation

CT fT
01(λ) =

⎛⎜⎝ TT (λ)
TT−1(λ)

. . .
T1(λ)

⎞⎟⎠. (4.8)

Differentiating (4.7), (4.8) with respect to λ, we see that

WT
(
fT
01(λ)

)′ = (yT )′ (λ) = (ϕ′
1(λ), . . . , ϕ′

T (λ)),
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and the control 
(
fT
01(λ)

)′ is a solution to

CT
(
fT (λ)

)′ =

⎛⎜⎝ T ′
T (λ)

T ′
T−1(λ)
. . .

T ′
1 (λ)

⎞⎟⎠.

Evaluating the quadratic form (2.19) we have that

(
CT fT (λ), fT (λ)

)
FT =

(
(ϕ1(λ), . . . , ϕT (λ)), (ϕ1(λ), . . . , ϕT (λ))

)
HT

=
T∑
1

|ϕk(λ)|2.

And similarly for the derivatives:

(
CT

(
fT (λ)

)′
,
(
fT (λ)

)′)
FT

=
T∑
1

|ϕ′
k(λ)|2.

It is known that

T2n−1(0) = (−1)n−1, T2n(0) = 0, n � 1, (4.9)

T ′
2n−1(0) = 0, T ′

2n(0) = (−1)n−1n, n � 1. (4.10)

We define the vectors

ΓT :=

⎛⎜⎝ TT (0)
TT−1(0)

. . .
T1(0)

⎞⎟⎠ , ΩT =

⎛⎜⎝ T ′
T (0)

T ′
T−1(0)
. . .

T ′
1 (0)

⎞⎟⎠ . (4.11)

Using the above arguments we can state that

T∑
1

|ϕk(0)|2 =
((

CT
)−1 ΓT ,ΓT

)
FT

, (4.12)

T∑
1

|ϕ′
k(0)|2 =

((
CT
)−1 ΔT ,ΔT

)
FT

.

Now we can use 2) from Proposition 10, and formulate the following

Proposition 11. The Hamburger moment problem is indeterminate if and only if

lim
T→∞

((
CT
)−1 ΓT ,ΓT

)
FT

< +∞, lim
T→∞

((
CT
)−1 ΔT ,ΔT

)
FT

< +∞,

where ΓT and ΩT are defined by (4.11), (4.9), (4.10).

4.3. Stieltjes moment problem

It is known [1] that the Jacobi matrix in this case admits the special structure:

bi = 1
mi

(
1

li−1
+ 1

li

)
, i = 2, 3, . . . , b1 = 1

m1l1
, (4.13)

ai = 1
√ , i = 1, 2, . . .
li mimi+1
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where li, mi are positive and are interpreted as lengths of intervals and masses at the points xj. The string is 
defined by the density dM =

∑∞
k=1 mkδ(x −xk), where 0 = x0 < x1 < x2 < . . . < xN−1 < . . ., li = xi−xi−1, 

i = 1, . . .. The inverse dynamic problem for the dynamical system corresponding to a finite Krein-Stieltjes 
string was studied in [18]. It is straightforward to check (see also [1]) that the following relations hold:

ϕn(0) = (−1)n
√
mn, n = 1, 2, . . . , (4.14)

ξn(0) = (−1)n−1

⎛⎝n−1∑
j=1

lj

⎞⎠√
mn n = 1, 2, . . . . (4.15)

We define the mass and length of a segment of a string:

MK =
K∑

k=1

mk; LK =
K∑

k=1

lk,

when K = ∞ above expressions correspond to the mass and the length of the whole string. Then formulas 
(4.14), (4.15) imply that

MK =
K∑

n=1
ϕ2
n(0), LK = − ξK+1(0)

ϕK+1(0) .

In [1,23] the following statement was proved:

Proposition 12. The Stieltjes moment problem is indeterminate if and only if both length and mass of a 
string is finite: M∞, L∞ < +∞.

Note that the necessity of conditions M∞, L∞ < +∞ is just a simple consequence of formulas for MK

and LK .
For the mass of the segment of a string or of the whole string we have an expression (4.12). Now we 

obtain similar formula for the length. Denote by hT ∈ FT the (unique) control which drives the system 
(2.14) to the special state

WThT = (0, . . . , 0, 1) ∈ HT .

For arbitrary q ∈ FT we have (see the representation (2.18)) that

(
CThT , q

)
FT =

(
WThT ,WT q

)
HT =

T−1∏
i=0

aiq0.

The above relation implies that hT can be found as a unique solution to Krein-type equation:

CThT =

⎛⎜⎝
∏T−1

i=0 ai
0
. . .
0

⎞⎟⎠ . (4.16)

Taking a control fT ∈ FT such that WT fT = (ϕ1(0), . . . , ϕT (0)) we have (see Theorem 5 and (4.16)) that
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ϕT (0) =

⎛⎜⎝
⎛⎜⎝0

0
·
1

⎞⎟⎠ ,

⎛⎜⎝ϕ1(0)
ϕ2(0)

·
ϕT (0)

⎞⎟⎠
⎞⎟⎠

HT

=
(
WThT ,WT fT

)
HT

=
(
CThT , fT

)
FT =

⎛⎜⎝
⎛⎜⎝
∏T−1

i=0 ai
0
. . .
0

⎞⎟⎠ ,
(
CT
)−1

⎛⎜⎝ TT (0)
TT−1(0)

. . .
T1(0)

⎞⎟⎠
⎞⎟⎠

FT

.

Similarly, denote by gT the control for which WT gT = (ξ1(0), . . . , ξT (0)). Then, using equations from 
Theorem 5 and (4.16) we have that

ξT (0) =

⎛⎜⎝
⎛⎜⎝0

0
·
1

⎞⎟⎠ ,

⎛⎜⎝ ξ1(0)
ξ2(0)
·

ξT (0)

⎞⎟⎠
⎞⎟⎠

HT

=
(
WThT ,WT gT

)
HT

=
(
CThT , gT

)
FT = −

⎛⎜⎝
⎛⎜⎝
∏T−1

i=0 ai
0
. . .
0

⎞⎟⎠ ,
(
CT
)−1 (

RT
)∗⎛⎜⎝ TT (0)

TT−1(0)
. . .

T1(0)

⎞⎟⎠
⎞⎟⎠

FT

.

The above arguments lead to the following expression for the length of the segment of the string:

LK = − ξK+1(0)
ϕK+1(0) =

((
CK+1)−1 (

RK+1)∗ ΓK+1, e1

)
(
(CK+1)−1 ΓK+1, e1

) ,

where we denoted e1 = (1, 0, . . . , 0) ∈ FT . The above arguments lead to the following statement:

Proposition 13. The Stieltjes moment problem is indeterminate if and only if the following relations hold:

M∞ = lim
T→∞

((
CT
)−1 ΓT ,ΓT

)
FT

< +∞,

L∞ = lim
K→∞

((
CK

)−1 (
RK

)∗ ΓK , e1

)
(
(CK)−1 ΓK , e1

) < +∞.

4.4. Hausdorff moment problem

It is a special case of a Stieltjes moment problem. The necessary and sufficient conditions for a set of 
numbers to be moments of a measure supported on (0, 1) are obtained in [11,12], see also [22]. They are 
equivalent to inequality (3.23) holds for all T ∈ N since we get the limit measure as a limit of measures 
supported on (0, 1).

Proposition 14. If the Halkel matrices ST
0 , ST

1 satisfy (3.23) for all T � 2, then there exists only one measure 
supported on (0, 1) which satisfies (1.1). In other words, the Hausdorff moment problem is determinate.

Proof. Let us assume that the opposite is true and the Hausdorff moment problem is indeterminate, in this 
case by Proposition 13 the length and the mass of string determined by the matrix A constructed from 
moments, should be finite. Then for any fixed T ∈ N we have on the one hand that
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trAT =
T∑

n=1
λT
n . (4.17)

On the other hand (see (4.13)),

trAT = 1
m1l1

+
T∑

n=2

1
mn

(
1

ln−1
+ 1

ln

)
. (4.18)

Since li, mi are positive and by our assumption 
∑∞

i=1 mi < +∞, 
∑∞

i=1 li < +∞, it immediately follows 
from (4.18) that trAT > T 2 for sufficiently large T , and thus from (4.17) we can see that for such T the 
eigenvalues λT

k cannot be bounded by one. Which gives a contradiction. �
This statement (using a different approach) was proved in [13], see also [10].
Let s ∈ RN be a sequence, s = (s0, s1, . . .). One defines the difference operator Δ : RN �→ RN by the rule

(Δs)n = sn+1 − sn, n = 0, 1, . . . . (4.19)

Hausdorff in [11,12] proved the following

Theorem 6. A sequence s = (s0, s1, . . .) ∈ RN is a moment sequence of a measure supported on (0, 1) if and 
only if it is completely monotonic, i.e., its difference sequences satisfy the equalities

(−1)k(Δks)n � 0, for all k, n � 0. (4.20)

We will show that the Hausdorff condition (4.20) is a consequence of condition (3.23) holding far all 
N ∈ N. On the other hand, the property (4.20) for finite k, n does not imply (3.23). The following two 
propositions confirm that.

Proposition 15. The condition (3.23) implies the inequality (4.20) holds for k, n such that k + n � 2N − 1.

Proof. According to definition (4.19)(
Δ2s

)
n

= (Δ (Δs))n = (Δs)n+1 − (Δs)n = sn+2 − 2sn−1 + sn,

continuing calculations yields

(
Δks

)
n

=
k∑

i=0
(−1)iCi

ksn+k−i. (4.21)

For a given sequence g = (g0, g1, . . .) ∈ RN by (gi+j−2)1≤i,j≤n+1 we denote the Hankel matrix, and the 

Hankel transform get map g ∈ RN to the sequence

hn = det(gi+j−2)1≤i,j≤n+1, n = 0, 1, . . .

The binomial transform get map a given sequence g = (g0, g1, . . .) ∈ RN to the sequence

cn =
n∑

k=0

Ck
ngk, n = 0, 1, . . . (4.22)

It is known [20] that the Hankel transform is invariant under the binomial transform, that is:
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hn = det(gi+j−2)1≤i,j≤n+1 = det(ci+j−2)1≤i,j≤n+1. (4.23)

Note that (4.23) remains valid if one replaces binomial transform (4.22) by the signed binomial transform 
introduced by the rule: for g = (g0, g1, . . .) ∈ RN one has

c̃n =
n∑

k=0

(−1)kCk
ngk, n = 0, 1, . . .

This fact and (4.21) imply that for Hankel matrices JNSN
0 JN = (si+j−2)1≤i,j≤N , JNSN

1 JN = (si+j−1)1≤i,j≤N

and their difference the following relations hold:

det(si+j+m−2)1≤i,j≤n+1 = det
((

Δi+j−2s
)
m

)
1≤i,j≤n+1 , m = 0, 1, (4.24)

det(si+j−2 − si+j−1)1≤i,j≤n+1 = det
((

Δi+j−2s
)
0 −

(
Δi+j−2s

)
1

)
1≤i,j≤n+1 ,

where n = 0, 1, . . . , N − 1. Then the Sylvester criterion of positivity of a matrix and the condition (3.23)
imply that ((

Δi+j−2s
)
0

)
1≤i,j≤N

�
((

Δi+j−2s
)
1

)
1≤i,j≤N

> 0.

The above inequalities imply that diagonal elements of matrices satisfy the same inequalities(
Δ2is

)
0 �

(
Δ2is

)
1 > 0, i = 0, 1, . . . , N − 1. (4.25)

Using the definition of Δ (4.19) from (4.25) we derive that(
Δ2i+1s

)
0 � 0, i = 0, 1, . . . , N − 1. (4.26)

Note that inequalities in (4.25), (4.26) are only part of what we need to show in (4.20). To prove the other 
part we note that condition (3.23) implies that

SN−m
2m � SN−m

1+2m > 0, m = 0, 1, . . . , N − 1. (4.27)

Like (4.25) was a consequence of (3.23), the inequality(
Δ2is

)
2m �

(
Δ2is

)
2m+1 > 0, i = 0, 1, . . . , N −m− 1 (4.28)

follows from (4.27). From (4.28) one obtains that(
Δ2i+1s

)
2m � 0, i = 0, 1, . . . , N −m− 1. (4.29)

The inequalities (4.28), (4.29) is exactly what we need to show in (4.20). �
Proposition 16. The inequality (4.20) holding for all k, n : k + n � 2N − 1 does not imply (3.23).

Proof. Consider the point mass measure concentrated at λ = 1/2: i.e. dρ(λ) = δ(λ − 1/2). In this case all 
moments (1.1) are given by sk = (1/2)k. Using (4.19) we see that 

(
Δks

)
n

= (−1)k(1/2)k+n, which agrees 
with (4.20).

Now we construct counterexample which works even for N = 2. To do so we slightly change the moment 
s2: we take s0 = 1, s1 = 1/2, s2 = 1/4 + ε, s3 = 1/8. If ε is small enough then (4.20) remains valid, but 
(3.23) fails: indeed, det(si+j−2)1≤i,j≤2 = ε < 0 if ε < 0. Therefore (3.23) doesn’t follow from (4.20). �
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Note that the above counterexample does not work in the case of infinite matrices: in this case the 
restriction on indices k + n � 2N − 1 disappears and one should consider all k, n. Then according to (4.21)

(
Δks

)
n

=
k∑

i=0
(−1)iCi

ksn+k−i = (−1)k(1/2)k+n + (−1)n+k−2εCk
n+k−2,

and we see that the second term in the right hand side of the above expression dominates if k, n are large 
enough. Therefore for such a moment sequence the condition (4.20) does not hold.
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