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1. Introduction

The spectrum of unbounded linear operators on Hilbert or Banach spaces plays an important role in
different areas, for example in the theory of partial differential equations (consider, e.g., Sturm-Liouville
theory), in the mathematical formulation of quantum mechanics (see, e.g. [7,12]), or in financial mathematics
(analysis of valuation of financial derivatives, see, e.g. [1,4]). Due to its importance in analysis, quite a few
papers were investigating maps (usually linear) which preserve the spectrum. This was done on operator
algebras (see, e.g., [6,9,13]) and on more general Banach algebras (see, e.g., [2]). However, there are not
many results on preservers connected with sets of unbounded operators (for some results see [14,15]). It is
the aim of this paper to extend the study of spectrum preservers to unbounded linear operators.

Let X be a complex Banach space. A (perhaps unbounded) operator 7' on X is a linear map defined on a
subspace Dom(T") C X with the range, Im(T"), contained in X. The set of all such operators will be denoted
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by Unb (X) and, except for 0-dimensional X, properly contains the set B(X) of all bounded (everywhere
defined) operators. Two operators are equal if they have the same domain and agree on all the vectors
from their common domain. Hence the identity on X and its restriction to a proper subspace are not the
same operators. Ordinary algebraic operations with operators are the usual ones with the following domain
considerations:

Dom(T + S) = Dom(T") N Dom(S).
Dom(ST) = {x € Dom(T); Tz € Dom(S)}.

In particular the distributive law A(B + C) = AB + AC may fail in the set Unb (X) because of domain
restrictions. For example, if the range of B is nonzero and Im(B) NDom(A) = {0}, then AB— AB = 0|ker B
(i.e., a zero map on the null space of B) but A(B — B) = 0|pom(B) 7 0|Ker B-

Note that an everywhere defined operator which maps each vector to 0 is an additive identity in the set
Unb (X); we denote it as usual by 0. However, the set Unb (X) is not a vector space. Scalar multiplication
and addition are well-defined and satisfy the usual properties (commutativity, associativity, distributivity)
but additive inverses may not exist: if the domain of A is a proper subspace then no operator T' satisfies
A+T = 0. We do have A + (—A) = O|pom(a) but this is a restriction of 0 operator, hence different from
it. Instead Unb (X) behaves like a stack of vector spaces indexed by the domains of the operators, with
addition providing a way to move ‘down’ the stack. We record the following useful property:

A+ 0]p = Alpom(a)nD-

The resolvent set of T is the set of all A € C such that T'— Al is a bijective map from Dom(7T’) onto
X and whose inverse is bounded (see a book by Rudin [11, 13.26]). More precisely there exists a bounded
linear operator B such that

B(T = M\) =1|pom(ry and (T —AI)B=1.

The complement of the resolvent set is called the spectrum of T' and denoted by Sp (7). Similarly to bounded
operators the spectrum of unbounded operators is always closed, however, unlike with bounded operators,
the spectrum of unbounded operators in infinite-dimensional Hilbert spaces may be any closed subset of C,
including the empty set and C (see [11, Exercises 17-20, p. 365]).

A rank-one operator T' maps its domain into a one-dimensional subspace Cz. Hence, for every u € Dom(T")
we can find a scalar f(u) € C with Tu = f(u)x. The map f is clearly a linear functional defined on Dom(T').
Hence rank-one operators take the form

T=z® f:u— f(u)z.
2. Statement of the main result

Let X and Y be complex Banach spaces. We say that a map ®: Unb (X) — Unb (Y) is additive if C = A+ B
implies ®(C) = ®(A) + ®(B) for A, B,C € Unb (X). Moreover, we say that a map ® preserves spectrum
if Sp (X) = Sp (®(X)) for every X € Unb (X). Before stating our main result, let us give an example of a
spectrum preserving bijective linear map.

Example 1. Counsider a linear bounded bijection A: X — Y. For T' € Unb (X) with Dom(T) = D C X, let
B := AT A~! be an operator in Y with domain Dom(B) := A(D) C Y, which maps y = Az € Dom(B) into
ATA Yy = ATz € Y.
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Clearly, T: D — X is bijective if and only if ATA~!: Dom(B) — Y is. Also, the algebraic inverse, T~ is
bounded if and only if (ATA=1)~! = AT-1A~! is bounded. Moreover, AlxA~! = Iy. Hence, X +—» AXA~!
is a spectrum preserving linear bijection from Unb (X) to Unb (Y).

Our main result states that Example 1 exhibits all additive spectrum preserving bijections.

Main Theorem. Let X,Y be complex Banach spaces with dimX > 2 and let ®: Unb (X) — Unb (Y) be a
spectrum preserving additive bijection. Then there exists a bounded linear bijection Z: X — Y such that

O(X)=2zXZ71.

Let us mention that in the case of bounded operators, additive spectrum preserving bijections can be also
of the form X +— ZX*Z~! where X* is the adjoint operator, see [9]. The lack of this extra map in our main
Theorem shows yet again that the adjoint cannot be (uniquely) defined for every unbounded operator.

From our main Theorem we can immediately conclude the following:

(a) Every spectrum preserving additive bijection on Unb (X) is linear and maps bounded operators onto
bounded operators and unbounded ones onto unbounded ones.

(b) Every spectrum preserving additive bijection on Unb (X) preserves the parts in which the spectrum
of an operator is traditionally decomposed (point, continuous, residual, ...).

We postpone the proof till some auxiliary results are proven. Also, let us mention that the majority of
the arguments, with the exception of the concluding ones, are valid if one assumes surjectivity only. We will
utilize this fact in the concluding section where we list some important examples of Banach spaces (which
include Hilbert spaces) where our theorem holds without imposing injectivity in advance.

3. General properties of additive maps on Unb (X)

Throughout this section, X and Y are Banach spaces and ®: Unb (X) — Unb (Y) is an additive map. To
avoid trivialities we also assume without further notice that dim X > 2. We investigate the properties of
®, some of which are self-evident for additive maps on vector spaces. However, as the set Unb (X) is not a
vector space but rather a disjoint union of vector spaces we need to prove them from scratch.

To each additive ®: Unb (X) — Unb (Y) we associate an operation, denoted by D D which maps
subspaces of X into subspaces of Y by the following rule: Given a subspace D C X let

D := Dom(®(0|p)) C Y.
Lemma 2. The following hold for every additive ®: Unb (X) — Unb (Y).

(0]p) = 0|5 for each subspace D C X.

om(A) = Dom(B) implies Dom(®(A)) = Dom(®(B)) for A, B € Unb (X).

(=4) = -9(4). .
1N Dy =Dy NDy for subspaces D1, Doy C X. In particular, if D1 C Do then also Dy C Ds.

Proof. (i). Apply ® on 0|p = 0|p + 0|p and add —®(0|p) whose domain D coincides with the domain of
o (0]p)-

(ii). Let D be the common domain for A and B. Then ®(A) = ®(A+0|p) = ®(A)+P(0|p) = P(A)+0|5
by (i) above. It follows that Dom(®(A)) C D= Dom(0|3).

Conversely, 0|3 = ®(0|p) = ®(A + (—A4)) = ®(A) + &(—A) implies that the domain of 0|5 equals the
intersection of the domains of ®(A) and ®(—A). Thus, Dom(®(4)) 2 Dom(0|5) = D. Combining with the
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above gives Dom(®(4)) = D. The same derivation is applicable with any B in place of A as long as B and
A have the same domain.

(iii). A and —A share the same domain D, so by (ii) above the same holds for ®(A) and &(—A), and also
for ®(A+ (—A)) = ®(0|p) = 0|5. The rest is trivial.

(iv). Apply additive ® on O|p,np, = 0|p, + 0|p,. O

Lemma 3. Let X be a Banach space and let ®: Unb (X) — Unb (X) be an additive map which fizes all
operators with one-dimensional domain. Then ® is the identity.

Proof. Choose any operator T € Unb (X) and any nonzero vector € Dom(7T") C X; denote by (z) the
one-dimensional space spanned by x. Then, T'| ;) = T + 0|). By the assumptions,

Ty = ©(T](ay) = ®(T +0(2)) = S(T) + ®(0[(sy) = ®(T) + 0|12y = P(T)|Dom(@(T))N(a)-

Clearly then, z € Dom(®(7T)) and Tz = ®(T)z. It follows that domain of ®(T") contains Dom(T") and both
operators T' and ®(T') agree on Dom(T).

If z ¢ Dom(T') then T+ 0[ () = 0o (a zero operator on 0-dim space). Note that 0o = 0[ () + 0[(,y where
x,y are arbitrarily chosen linearly independent vectors, so ®(0]o) = ®(0](z)) + ®(0](yy) = 0[(z) + 0[¢,y = 0o
is also fixed by ®. Hence, we may repeat the above arguments to deduce that z ¢ Dom(®(T")). Therefore,
T =&(T). O

Lemma 4. Let ®: Unb (X) — Unb (X) be an additive map which fizes each everywhere defined bounded
operator. If an operator A € Unb (X) has a closed domain D and admits a bounded extension to X, then
O(A) = A|ps is a restriction to a subdomain D' C D.

Proof. Let D be a closed domain of A € Unb (X). By the Hahn-Banach theorem, D is the intersection of
the kernels of a collection of bounded linear functionals ( fa)a. Note that

D C Ker (z ® f,) is equivalent to 0|p = 0]|p + 2z ® f,. (1)

Applying ® on 0|]p = 0|p + 2z ® f, and taking into account that x ® f,, is a bounded operator on X, so kept
fixed by ®, we obtain 0|p, = 0|p: + ®(z ® fo) = 0|p + 2 ® fo where 0| = ®(0|p). Consequently by (1),

D' C ﬂKer (z® fo) =D. (2)

Since D’ is the domain of ®(0|p), Lemma 2 (ii) implies that D’ is also the domain of ®(A).

Now, let Ag be a bounded, everywhere defined extension of A. Then, applying ® on A = Ay + 0]p and
using the fact that a bounded operator Ay is fixed by @, we get ®(A) = Ay + 0|n: = Ag|p = A|p, where
the last equality is a consequence of (2). O

Unlike the preceding results, we now impose surjectivity or injectivity on ®.

Lemma 5. If ®: Unb (X) — Unb (Y) is an additive surjection, then ®(0) = 0 and ®(0|¢) = 0|o. Hence, if
Dom(A) = X, then also Dom(®(A)) =Y.

Proof. Choose A € Unb (X) such that ®(A) = 0 and apply ® on A+ 0 = A. For the second claim, choose
A with ®(A) = 0| and apply ® on A+ 0|p = 0|p. The last claim follows from Lemma 2 (ii) by the fact that
Dom(0) = X and Dom(®(0)) = Dom(0ly) =Y. O
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We remark that Lemma 4 applies to each bounded operator defined on a closed and complemented
subspace D C X. This fact will be used in the next corollary.

Corollary 6. If an injective additive ®: Unb (X) — Unb (X) fizes each everywhere defined bounded operator,
then ® is the identity.

Proof. Choose any operator A with one-dimensional domain D. By Lemma 4, ®(A) = A|p, for some
subspace D’ C D. The only possibilities are D' = 0 or D’ = D. The former case implies ®(A) = 0|o;
applying ® on A + 0|g = 0|y gives ®(A) = ®(0|¢) = 0|y, contradicting injectivity of .

The result then follows by Lemma 3. O

Recall that the adjoint A* can also be defined for operators A € Unb (X) with dense domain: Dom(A*)
consists of all functionals f € X* such that the functional z — f(Az) is bounded; then it can be uniquely
extended to a bounded functional denoted by (A*f) € X*. Here it is essential that the domain is dense for
otherwise the extension of x — f(Az) is not unique and consequently A*f is not well-defined. The next
lemma builds along these assertions.

Lemma 7. Assume X* is the dual of a Banach space X. If ®: Unb (X) — Unb (X*) is an additive injection,
then ®(T) = T* cannot hold for each bounded everywhere defined operator T on X.

Proof. Suppose otherwise that ®(T") = T* does hold for each everywhere defined bounded operator T' on
X. Choose A € Unb (X) with one-dimensional domain, Dom(A) = (x¢), and let

B = ®(A) € Unb (X*).
In particular, Dom(A) is complemented and in fact there exist at least two closed hyperplanes Wy, Wy with

With respect to these two decompositions consider the two collections of bounded everywhere defined
operators

TV =A@ Mw,; AeC,i=1,2

Observe that A = T;\i) + 0] (.- Applying additive ® gives, with the help of Lemma 2,

B = (T +0|p = (T) | o

A D A D

for some subspace D’ C X*. In particular, if f € Dom(B), and x; € W;, then (Bf): ; — Af(z;), so
and since the parameter A € C is arbitrary we see that f(W;) = 0. Due to X = W; + W5 this implies that
F(X) = f(W; +Ws) = 0 so Dom(B) = 0 is zero-dimensional. Therefore, B = ®(A) = 0|y contradicting
injectivity of ®. O

4. Spectral properties of unbounded operators

Lemma 8. Suppose T is an operator whose domain is a subspace of strictly smaller Hamel dimension than
X. Then Sp (T) = C.
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Proof. If (A\I — T'): Dom(T) — X would be invertible for some A then its inverse B would bijectively map
space X onto the space Dom(T') of strictly smaller dimension, a contradiction. Hence, AXI — T is always
noninvertible. O

The next three results are motivated by Lemma 1, Lemma 4 and Theorem 1 in the paper by Jafarian
and Sourour [6].

Lemma 9. Sp (A+T) C Sp(T) for all T € Unb (X) if and only if A = 0.

Proof. For the nontrivial implication, we can follow the proof of Lemma 1 in [6] to show that the range of
A must be 0, so A = 0|p for some domain D. Suppose D # X. Then A + I = I|p is not surjective, and
hence not invertible. Thus 0 € Sp (A + I), so Sp (A + I) is not a subset of Sp (I), a contradiction. Hence
D=X. O

Lemma 10. Let f: Dom(f) — C be a linear functional and let T be an operator on X with Dom(T) C
Dom(f). If there exists A\g € C\Sp (T) for which fo(AI —T)~! is a bounded functional, then fo(A —T)~!
is a bounded functional for every A € C\ Sp (T).

Proof. By the assumption, there exists a constant x so that

sup = K.
20 ]

Write y = (Aol — T') "'z € Dom(T) C Dom(f) to deduce that

f=  sup £ (v)]
yeDom(T)\{0} (Aol =Tyl

or equivalently,
IF ()] < sllAI =T)yl; v € Dom(T).

Choose now any A € C \ Sp(T). Then, (A — T') is invertible with bounded inverse, hence there exists a
constant y = ||[(AI — T)~!|| such that

[yl < pll(AL =T)yll;  y € Dom(T). (3)
It follows that

Lf ()] < sl[(Aol = Tyl < &lAo = Al - [lyll + &[[(AL =Tyl
< K(pho = Al +1) - [[(AL =Dyl

where at the end we used (3). This shows that f o (A — 7)™ is also bounded. O
Lemma 11. Let T,z ® f € Unb (X) with x # 0.

(i) If Dom(T) is not contained in Dom(f) then

Sp(T+x® f) 2 C\Sp(T).
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(if) If Dom(T) C Dom(f) and there exists Ao € C \ Sp(T') such that the linear functional f o (Al —
T)~1: X — C is unbounded, then again

Sp(T+z® f) DC\Sp((T).

(iii) If Dom(T) C Dom(f) and there exists Ao € C \ Sp(T) such that the linear functional f o (Aol —
T)~1: X — C is bounded, then

Sp(T+z® f)\Sp(T) ={A e C\Sp(T); f(N —T)'a)=1}.

Proof. The lemma is vacuously true if Sp (T") = C, so we suppose Sp (T') # C. Let D = Dom(T") N Dom( f)
and let A € C\ SpT'. Since (A\I —T): Dom(T") — X is bijective with bounded inverse we have

M- (T+arxf)=AN -T)I|p —y® fln); y =\ —T) 'z € Dom(T). (4)

Temporarily assume that the left-hand side of (4) is invertible. Then, by bijectivity of (A\I —=T"): Dom(T) — X
we must have that the second factor on the right-hand side of (4), i.e.,

A=1Ilp —y® flp

maps D bijectively onto Dom(T'). In particular, as y = (Al — T') "'z € Dom(T), there exists nonzero z € D
with

y=Az=z— f(2)y.

It follows that z || y. Then, y € D so D is an invariant subspace for A. However, under assumption (i),
it cannot be mapped by A onto Dom(T) because D is a proper subspace of Dom(T), a contradiction.
Therefore, under assumption (i), AI — (T'+ 2 ® f) is never invertible if A ¢ Sp (7).

Henceforth, we assume Dom(7) € Dom(f) and the left-hand side of (4) may no longer be invertible.
Recall that y € Dom(T") € Dom(f). If 1 — f(y) = 0 then Ay = y— f(y)y = 0, so A is not injective and hence
also N =T —2® f = (M —T)A is not invertible. If 1 — f(y) # 0 define the operator B: Dom(7T') — Dom(T)
by

1
B = Ilpom +—=Y® f om(T)-
IDom(r) + 7775 IDorn(r)
One readily verifies that BAz = z and ABz = z for all z € Dom(T), so
(AMI —=T)A: Dom(T) = X
is a bijective map whose algebraic inverse equals

MM—ﬂqzubjTHjj%ang—ﬂ”)

This algebraic inverse is bounded if and only if gy := (f o (Al — T)_l): X — C is a bounded linear
functional. Now apply Lemma 10. We deduce that either g, is always unbounded for A € C \ Sp (T) in
which case Sp(T'+ = ® f) 2 C\ Sp(T) as claimed in (ii) or else gy is always bounded in which case
Sp(T+2® f)\Sp(T) ={A € C\Sp(T); f((\I —T) 'z) =1} as claimed in (iii). O
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Remark 12. By setting 7' = 0 in Lemma 11 one sees that if A is rank-one operator that is not defined on
all of X then Sp (A) = C. By setting T'= 0 and Ao = 1 in item (ii) of this lemma one also observes that if
A is an everywhere defined unbounded rank-one operator then again Sp (A4) = C.

Lemma 13. Suppose A =z ® f is a rank-one operator. If T is an operator in X and if ¢ € C \ {0,1}, then
one of the following holds:

(i) Sp(T+ A)NSp (T +cA) C Sp(T).
(if) C\Sp(T) CSp(T+ A)NSp (T + cA).

Proof. If Dom(T') is not contained in Dom(f) or if the functional (f o (AI —7)~!) is not bounded for some
A € C\Sp(T), then, by (i)—(ii) of Lemma 11 we get the second option.

However, if Dom(T) € Dom(f) and (fo(AI —7)~!) is bounded for some )\ §é p(T), then (iii) of Lemma 11
holds. Clearly, with A ¢ Sp (T') we cannot have simultaneously f((AI —T)™'z) = f((AXI —=T) *(cz)) = 1.
So, Sp (T'+ A) N Sp (T + cA) does not contain points outside Sp (7). O

The next lemma is a folklore result in the case of bounded everywhere defined operators (see, e.g., [6] for
linear maps ® and Omladi¢ and Semrl [9] for additive ®). We present the proof based on ideas from [6,9].

Lemma 14. The following are equivalent for an operator A in X:

(i) A is a bounded, everywhere defined operator of rank-one or zero.
(ii) Sp(A) # C and for every operator T and every ¢ # 1 we have

Sp(T+ A)NSp (T +cA) C Sp (T).
(iii) Sp(A) # C and for every operator T we have

Sp(T'+A)NSp (T +2A4) C Sp(T).

Proof. (i) = (ii). The case A = 0 is trivial, so we may write A = z ® f for some nonzero vector x and
some nonzero bounded functional f. Clearly, Sp (4) C {0, f(x)} # C. Let T' € Unb (X) and let A ¢ Sp (T).
Since f is bounded, (iii) of Lemma 11 applies, by which A € Sp (T +cA) if and only if ¢f (A —T)"1z) = 1.
Thus A € C \ Sp (T') cannot belong to Sp (T' + cA) for two distinct values of c.

(ii) = (iii). Clear.

(iii) = (i). We prove the contrapositive. If A = 0|p with D # X, then Sp (A) = C, contradicting the
assumptions in (iii). Likewise we get a contradiction if A is a rank-one operator that is either unbounded
or not defined on all of X (see Remark 12). Now suppose rank A > 2. Then there exist linearly independent
x1,x2 € X such that Az; = y; and Axy = ys are linearly independent. Let M = span {1, 2, y1,y2}, and let
M+ C X be a closed complement for M. Define a bounded linear operator T by T'|y. = I|ye, T2y = —y1,
and Txo = —2ys. If dim M = 2 this completely defines T'; otherwise we have the following two cases.

If dim M = 4 define Ty; = =1, Ty2 = 5.

If dim M = 3 we may assume without loss of generality that y; = a1x1 +asxe +bys for some ay,as,b € C;
note that not both aj, as are zero because y,ys are linearly independent. Let i be the index for which |a;]|
is the smallest (or let ¢ = 1 if |a;| = |az]). Define T'ys = x;. Note that the matrix of Ty with respect to

—aq 0 *
—az 0 x|,
-b -2 0

the basis x1, x2, ys is
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where one * is 0 and the other is 1.
Note that in every case T is invertible, so 0 ¢ Sp (T'). However (T + A)(z1) = 0 and (T + 2A4)(x2) = 0,
s00€Sp(T'+ A)NSp (T +2A). Thus Sp(T + A) N Sp (T + 2A4) is not a subset of Sp (7). O

Lemma 15. Let A, B € Unb (X) with Sp (A) = Sp (B) # C. The following are equivalent:

(i) Sp(A+z2® f) =Sp(B+z® f) for every bounded everywhere defined rank-one operator x ® f.
(ii) A= B.

Proof. We only need to prove (i) = (ii). Choose A ¢ Sp (A4) and assume, to reach a contradiction, that
the vectors (Al — A)~'z and (Al — B)~ !z are linearly independent for some vector x. By Hahn-Banach
theorem we can find a bounded functional f with

FIAL —A)~tz) =0 and f(AI = B)™'2) =1.

Since z® f is a bounded rank-one operator item (iii) of Lemma 11 applies by which A ¢ Sp (A4+z® f)\Sp (4)

while A € Sp(B + 2 ® f) \ Sp (B) contradicting item (i) of the present lemma. Hence, (\I — A)~ !z and

(Ml — B) "'z are parallel for every vector z. In fact, they must be equal for otherwise we could find a bounded

linear functional f with f((AI — A)~'z) =1 # f((Al — B)~'x), again violating (i) of the present lemma.
This shows that

M —A)' =0 -B)"L
Taking the inverse we deduce that (\I — A) = (A — B) with Dom(A) = Dom(B), so indeed A = B. O

We are now ready to prove the Main Theorem. We will prove a little more in that we will require
injectivity of ® only at the very end of the proof. In the next section we will review some important spaces
where the injectivity assumption is redundant.

Proof of Main Theorem. Let ®: Unb (X) — Unb (Y) be an additive surjection which preserves the spectrum.
By the equivalence (i) <= (iii) in Lemma 14, ® maps the subset §1(X) of everywhere defined, bounded
operators on X with rank at most one surjectively onto §1(Y). It follows by additivity that ® maps the subset
F(X) of bounded, everywhere defined operators with finite rank surjectively onto §(Y). By [9, Lemma 2.3],
the restriction ¥ = ®|z(x) of ® to F(X) is a linear map. By Lemma 9 (applied on ®), this restriction cannot
annihilate a nonzero operator, so it is injective and hence bijective. Also, it maps rank-one idempotents from
$1(X) onto rank-one idempotents because these are the only operators in §1(X) whose spectrum contains
1. It then follows from [5, Theorem 1.4] (this is formulated for weakly continuous linear maps on B(X) but
the proof is valid also for linear bijections from F(X) to §(Y); see also [8, Main Theorem, p. 250]) that there
either exists a bounded linear bijection Z: X — Y such that

®(X)=2ZXZ"' XeFX) (5)
or else there exists a bounded linear bijection Z: X* — Y (here, X* is a dual space) such that

O(X)=2X*Z71, X € §(X). (6)
Assume firstly case (5). Then, Z71®(-)Z: Unb (X) — Unb (X) fixes each everywhere defined bounded rank-

one operator and, by Example 1, is an additive spectrum preserving surjection from Unb (X) onto Unb (X).
Apply Lemma 15, with B = Z='®(A)Z € Unb (X) to deduce that it fixes each operator A € Unb (X) whose
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spectrum is different from C. Since we assumed @ is also injective, Corollary 6 shows Z'®(X)Z = X for
every X € Unb (X).

Assume lastly case (6). Again, by Example 1, X + Z~1®(X)Z is a spectrum preserving additive sur-
jection from Unb (X) onto Unb (X*), which maps bounded everywhere defined rank-one X = 2 ® f into
X* = f ® kg, where K, := k() and k: X — X** is a natural embedding,.

Take A € Unb (X) and let B = Z"1®(A)Z € Unb (X*). Assume A ¢ Sp (4) = Sp (B). Then, (AI — A)~!
is bounded and everywhere defined. In particular, there exists its adjoint operator ((AI — A)~1)*. Assume
(ML — A)~H*f and (Ml — B)~Lf are linearly independent functionals for some f € X*. Then (see, e.g., a
book by Pedersen [10, 2.4.3]) there exists x € X which lies in the kernel of the first functional but not in the
kernel of the second one. We may assume x is such that x,((Al — B)~'f) = 1. Then, A € Sp(B + f @ k) =
Sp(Z7'®(A+z®f)Z) but f((A—AI)"'z) = ke ((A=AL)71)*f) = 0,50 A ¢ Sp (A+z® f), a contradiction.
As before in the proof of Lemma 15 we deduce that

(AL —B)™! = (AT —A)™ Y%, B=2710(A)Z. (7)

In particular, if A is bounded and everywhere defined, then ((AI — A)7!)* = ((AI — A)*)~! and so, after
taking inverses,

Z71®(A)Z =B = A"

By Lemma 7 this is impossible to hold with injective ®. Case (6) is hence impossible for bijective spectrum
preserving ®. 0O

5. Concluding examples and remarks

Let us conclude by proving that for some important Banach spaces, which include Hilbert spaces, the
injectivity assumption in our main theorem can be removed. To do this let us first define a class of operators
with a special property.

Definition 16. An operator T is called spectrally indecomposable if there does not exist n > 2 and operators
Ty,...,T, withSp (T;) #C,i=1,...,n,such that T =T +--- + T,.
The antonym of spectrally indecomposable is spectrally decomposable.

Remark 17. In the definition, Dom(7;) can be bigger than Dom(T") as long as Dom(7T") = Dom(73)N---N
Dom(T;,) holds. Moreover, we also allow decompositions of the form T'= 0+ T', where 0 is a zero operator
on X. In particular, every spectrally indecomposable operator satisfies Sp (T') = C.

We supply a few examples, and a proposition, that spectrally (in)decomposable operators may be tricky
to describe.

Example 18. The spectrally indecomposable operators on a finite dimensional Banach space X are exactly
the operators whose domain is a proper subspace of X. This follows from the fact that each everywhere
defined operator on X has a bounded spectrum and that the sum of two such operators is again defined
everywhere.

Example 19. An example of a spectrally indecomposable operator on an infinite-dimensional Banach space
X is an operator T = x ® f where x € X\ {0} and where f is an unbounded linear functional defined
everywhere on X (such f always exists: choose a normalized Hamel basis and define f to be unbounded on
it).
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Otherwise, we could decompose T' = Tj + - - - + T),. Since Dom(7;) 2 Dom(7T) = X, and since there exists
i € C with (\;I —T;): Dom(T;) = X — X invertible we see that (A\;I — T;)~! is an everywhere defined,
bounded surjective operator, hence also its inverse is bounded and as such 7; is bounded. Thus, z ® f is a
finite sum of bounded operators, a contradiction because f is not bounded.

Example 20. It was shown recently [3] that there exists an infinite-dimensional Banach space X such that
every bounded injective operator on it is automatically surjective.

It follows that no operator whose domain is a proper subspace can have a bounded inverse and so every
T € Unb (X) with Dom(T') & X is spectrally indecomposable.

We next give a simple but useful sufficient criterion for spectral decomposability.

Proposition 21. Let X be a Banach space. Suppose there exist proper subspaces D1, Do C X with dim Dy N
Dy =1 and bijective operators A;: D; — X (j = 1,2) with bounded inverses. Then every T € Unb (X) with
one-dimensional domain is spectrally decomposable.

Proof. First note that, given any nonzero x,y € X, there exists a bounded invertible operator A € B(X)
satisfying Az = y; we shall make repeated use of this fact.

Let e be a unit vector in D; N Dy. Suppose the domain of T' € Unb (X) is Cz (we may assume z is a
unit vector) and Tz = y. Choose a nonzero vector v € X so that v + y # 0. Choose invertible operators
S, B1, B2 € B(X) such that

Se=x, BiAie=v+y, ByAse= —u. (8)
Then Dom(B; A;S71) = SD; and Dom(ByA3S5~ 1) = SDy, so
Dom(BlAlAS'*l + BQAQSil) =SD;NSDy = S(Dl N Dg) =Cuz.

Moreover, (B1A1S™! + ByAsS ™Yz = y, so T = B1A1S™! + ByA3S™!. Since B;A;871: SD; — X is
bijective with bounded inverse SAj_lBj_1 for 7 = 1,2, it follows that T is spectrally decomposable. O

We apply this proposition to a standard sequence space P to show that the injectivity assumption can
be removed from Main Theorem.

Proposition 22. Let 1 < p < oo. Every operator T € Unb (¢P) with one-dimensional domain is spectrally
decomposable. Consequently, if Y is any Banach space and an additive surjection ®: Unb (¢?) — Unb (Y)
preserves the spectrum, then the conclusion of Main Theorem is valid.

Proof. Let ej,es,... be the standard basis for X = ¢P. Let D; = Span{es;—1; j € N} and Dy =
Span {eq,e2;; j € N}, s0 D1 NDy = Cey is one-dimensional. Define A;: D; — X by

Ay (Z ’Ykezk—1> = Z’Ykek; 9)
=1 =1

define Ay: Dy — X by

Az <’7€1 + Z%Qk) = yer+ Y ki1

k=1 k=1

Then A;, As are surjective isometries, so their inverses are bounded. Now apply Proposition 21.
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To prove the final statement recall that the proof of Main Theorem establishes the following: given a
surjective additive spectrum preserver, either (5) or (7) holds for all X, A € Unb (¢P) with spectrum not
equal to C (injectivity assumption was only used after this point). We now consider the two cases separately.

Case (7) is impossible. Namely, it implies that ((A\I — A)~1)* is injective for every A € Unb (X) with
Sp(A) # C and every A ¢ Sp(A). However, there does exist invertible A = A;, defined by (9), whose
domain is not dense. It follows that there exists a nonzero linear bounded functional f which annihilates
Dom(A;) and consequently, taking A = 0 ¢ Sp (A1), we would have ((AI — A;)~1)*f = 0, a contradiction.

Case (5) implies, by additivity, that Z~'®(-)Z must also fix every spectrally decomposable operator. In
particular, Z~1®(-)Z fixes each operator with one-dimensional domain. The rest follows from Lemma 3. O

We have a similar result for finite-dimensional Banach spaces. However, the proof is different. Note that
in finite-dimensional space X, the set Unb (X) consists of bounded linear operators with restricted domains.

Proposition 23. Let ®: Unb (X) — Unb (Y) be an additive spectrum preserving surjection and assume X is
finite-dimensional. Then the conclusion of Main Theorem is valid.

Proof. As in the proof of Proposition 22, either (5) or (7) holds for all X, A € Unb (X) with spectrum not
equal to C. In particular, Z: X — Y establishes an isomorphism of finite-dimensional Banach spaces.

Case (7) is impossible. Namely it would imply that Z=1®(A)Z = A* for each everywhere defined A €
Unb (X). Consider a proper nontrivial subspace 0 # D’ C X*. By surjectivity, there must exist T' € Unb (X)
with Z~1®(T)Z = 0|p,. By Lemma 2, ®(0|») = 0|1’ where D = Dom(T') # X. Now consider any everywhere
defined A with A|p =0, i.e., with 0|]p + A = 0|p. Applying ® gives O|p + A* = 0]p/ so that f(ImA) =0
for every f € D' C X*. Since the images of everywhere defined operators A with A|p = 0 cover the whole
space X we see that f =0, i.e., D’ is zero-dimensional, a contradiction.

Case (5) implies Z~1®(-)Z fixes operators defined everywhere on X. We claim that Z~1®(-)Z must fix
every operator. To see this, let D C X be a proper subspace of maximal possible dimension such that not
every operator with domain equal D is fixed and let A: D — X be mapped into B = ®(A) # A. We know
from Lemma 4 that B = A|z where D C D is a proper subspace. By surjectivity, there must exist T # A
with ®(T') = A. However, due to the assumptions on D, we have dim Dom(7") < dimD. And since ®(T) is
again a restriction of T to a properly contained subdomain, we see that dim Dom(®(7T")) < dim Dom(T") <
dim D = dim Dom(A), contradicting the fact that ®(7) = A. O

Finally, with the following examples we show that the surjectivity assumption is essential.

Example 24. Let X be finite-dimensional. Then every operator in X whose domain is a proper subspace is
spectrally indecomposable, see Example 18. Hence a map which is identity on operators defined everywhere
on X and maps operators T' with Dom(T") C X into 0|y (the zero operator with domain equal {0}) is a linear
map and preserves the spectrum because Sp (T') = C if and only if Dom(T") is a proper subspace of X.

Example 25. Note that, in general, spectrum preserving maps do not have such a nice classification if we
consider them only on everywhere defined (possibly unbounded) operators.

Namely, V = {A € Unb (X); Dom(A4) = X} does form a legitimate vector space, with additive identity
0x. The subset M C V of spectrally decomposable operators (with domain X) is a subspace. Let N C V
be its complemented subspace (which necessarily consists of spectrally indecomposable operators) so that
MNN=0and M+N=V.

Take an arbitrary linear bijection 1): N — N and define ® on V by ®(A+ B) = A+¢(B) for all A € M,
B € N. Then @ is a bijective linear map which preserves the spectrum on V.
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