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Quasi *-algebras form an essential class of partial *-algebras, which are algebras of 
unbounded operators. In this work, we aim to construct tensor products of normed, 
respectively Banach quasi *-algebras, and study their capacity to preserve some 
important properties of their tensor factors, like for instance, *-semisimplicity and 
full representability.
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1. Introduction

Topological quasi *-algebras appeared in the literature at the beginning of the ’80s, last century. They 
were introduced, in 1981, by G. Lassner [33,34], to encounter solutions of certain problems in quantum 
statistics and quantum dynamics. But only later (see [44, p. 90]), the initial definition was reformulated in 
the right way, having thus included many more interesting examples.

Quasi *-algebras came to light, in 1988; see [47], as well as the literature in [3,9]. Many results have been 
published on this topic, which can be found in the treatise [8], where the reader will also find a corresponding 
rich literature for partial *-algebras, whose a special subclass is given by quasi *-algebras. Note that partial 
*-algebras are algebras of unbounded operators (for an extended exhibition of the latter, see [44]). The 
simplest example of a quasi (resp. partial) *-algebra is the completion of a locally convex *-algebra with 
separately continuous multiplication. It is clear then that in this case, multiplication is not everywhere 
defined. Completions of the previous kind may, for instance, occur in quantum statistics. Applications of 
quasi *-algebras can be found, e.g., in [24,48].
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Partial *-algebras were introduced by J-P. Antoine and W. Karwowski in [6,7] and, as we mentioned 
above, they are algebras of unbounded operators, playing an essential role in quantum field theory (see [8]).

In the present paper, an effort is made to investigate topological tensor products of normed, respectively 
Banach quasi *-algebras. The motivation, apart from the preceding discussion, is assisting from the fact 
that tensor products are used to describe two quantum systems as one joint system (see, for instance, [4]
and [35]), while the physical significance of tensor products always depends on the applications, which may 
involve wave functions, spin states, oscillators and even more; in this aspect, see e.g., [15,26].

In the literature, one can find very few articles dealing with tensor products of unbounded operator 
algebras, the oldest one, to our knowledge, dating from 1997 (see [27]) and dealing with tensor products of 
unbounded operator algebras with Fréchet domains. Another two appeared in 2014 (see [21,22]) and concern 
tensor products of generalized B∗-algebras, respectively tensor products of generalized W ∗-algebras. Both 
kinds of these algebras are unbounded generalizations of standard C∗-, respectively W ∗-algebras, initiated 
by G.R. Allan (1967, [5]) and A. Inoue (1978, [31]), respectively. The latter author used generalized W ∗-
algebras for developing a Tomita Takesaki theory in algebras of unbounded operators (1998). For this theory, 
the reader is referred to [32].

The structure of the present paper is as follows: in Section 2, we exhibit the background material needed 
for our study.

The structure of a (normed, resp. Banach) quasi *-algebra (A, A0) (where A is a vector space and A0 a 
*-algebra and a subspace of A, both of them satisfying specific properties) leads to the examination of the 
best possible (topological) tensor product of two (normed, resp. Banach) quasi *-algebras.

In Section 3, we construct the algebraic tensor product of quasi *-algebras. We were led to our construction 
mainly from the fact that the new object we wanted to have as a quasi *-algebra should be a complex linear 
space containing a *-algebra with certain properties. When we are given two quasi *-algebras (A, A0), 
(B, B0), for obtaining A ⊗B as a quasi *-algebra over A0 ⊗B0, we consider the latter to be the algebraic 
tensor product *-algebra canonically contained in A ⊗B, and then we define the left and right multiplications 
between elements of A0 ⊗B0 and A ⊗B.

Section 4 gives the construction of a tensor product normed, respectively Banach quasi *-algebra, coming 
from two given normed, respectively Banach quasi *-algebras.

In Section 5, examples of tensor product Banach quasi *-algebras are presented.
In the final Section 6, we discuss full representability and existence of *-representations on a tensor prod-

uct normed quasi *-algebra. Since *-semisimplicity is related to both of the preceding concepts, information 
is also given for this notion, in the tensor product environment. More precisely, the mentioned concepts are 
studied in the capacity of passing from the considered tensor product to its factors and vice versa (see, e.g., 
Propositions 6.2, 6.5 and Theorems 6.11, 6.15, 6.20).

2. Notation and background material

All algebras and vector spaces we deal with in this article are over the field C of complexes. Moreover, 
all topological spaces are considered to be Hausdorff. Our basic definitions and notation concerning quasi 
*-algebras are mainly from [8].

In the present section, we exhibit the necessary machinery, terminology and notation we need throughout 
this work.

Part I: quasi *-algebras

Definition 2.1. [8, Definition 2.1.9] A quasi *-algebra (A, A0) is a pair consisting of a vector space A and a 
*-algebra A0 contained in A as a subspace and such that
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(i) the left multiplication ax and the right multiplication xa of an element a ∈ A and x ∈ A0 are always 
defined and bilinear;

(ii) (xa)y = x(ay) and a(xy) = (ax)y, for each x, y ∈ A0 and a ∈ A;
(iii) an involution ∗ is defined in A, which extends the involution of A0 and has the property (ax)∗ = x∗a∗

and (xa)∗ = a∗x∗, for all a ∈ A and x ∈ A0.

For a quasi *-algebra (A, A0), we shall also use the term quasi *-algebra over A0.

� Given a quasi *-algebra (A, A0), the elements of A0 will always be denoted by x, y, . . ., and the elements 
of A by a, b, . . ..

We say that a quasi *-algebra (A, A0) has a unit, if there is a unique element e in A0, such that ae = a = ea, 
for all a ∈ A.

Example 2.2. Let I = [0, 1] be the unit interval and λ the Lebesgue measure on I. Then, for 1 ≤ p < ∞, the 
pair (Lp(I, λ), L∞(I, λ)) is a quasi *-algebra with respect to the usual operations, i.e., the multiplication is 
defined pointwise and the involution is given by the complex conjugate.

� From now on, writing Lp(I), p ≥ 1, we shall always mean that I is endowed with the Lebesgue measure, 
say λ, except if otherwise specified.

Definition 2.3. A quasi *-algebra (A, A0) is called a normed quasi *-algebra if A is a normed space under a 
norm ‖ · ‖ satisfying the following conditions:

(i) ‖a∗‖ = ‖a‖, ∀ a ∈ A;
(ii) A0 is dense in A[‖ · ‖];
(iii) for every x ∈ A0, the map Rx : a ∈ A[‖ · ‖] → ax ∈ A[‖ · ‖] is continuous.

When A[‖ · ‖] is a Banach space, we say that (A[‖ · ‖], A0) is a Banach quasi *-algebra.

The continuity of the involution implies that

(iv) for every x ∈ A0, the map Lx : a ∈ A[‖ · ‖] → xa ∈ A[‖ · ‖] is also continuous.

It is evident from the above that if (A, A0) has an identity element e, then

(a) if ax = 0, respectively xa = 0, for every x ∈ A0, then a = 0;
(b) if ax = 0, respectively xa = 0, for every a ∈ A, then x = 0.

A norm is defined on A0 as follows:

‖x‖0 := max{‖Lx‖, ‖Rx‖}, x ∈ A0,

with ‖Lx‖, ‖Rx‖, the usual operator norms (see [24, beginning of Chapter 3]). Then, A0[‖ · ‖0] is a normed 
*-algebra and

‖ax‖ ≤ ‖x‖0 ‖a‖, ∀ a ∈ A, x ∈ A0. (2.1)

Observe that if (A[‖ · ‖], A0) has an identity e then, without loss of generality, we may suppose that ‖e‖ = 1, 
since taking the equivalent to ‖ · ‖ norm ‖ · ‖′ on A defined by ‖a‖′ := ‖a‖/‖e‖, a ∈ A, we obviously have 
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‖e‖′ = 1. Furthermore, note that the norms ‖ · ‖, ‖ · ‖0 are not comparable on A0, in general. For instance, 
consider the Banach quasi *-algebra without unit (Lp(R), C0

c (R)), where C0
c (R) stands for the *-algebra of 

continuous functions on R with compact support. Then the norms ‖ · ‖p, ‖ · ‖0 = ‖ · ‖∞ clearly are not 
comparable on C0

c (R). But if a normed quasi *-algebra (A[‖ · ‖], A0) has a unit, then (2.1) implies that 
‖x‖ ≤ ‖x‖0, for every x ∈ A0.

Other examples of Banach quasi *-algebras can be found, for instance, in [10,12,24]. In particular, we 
have

Example 2.4. Consider the unit interval I = [0, 1], the Lp-space Lp(I) with 1 ≤ p < ∞ and the C*-algebra 
C(I) of all continuous functions on I. Then the pair (Lp(I), C(I)) is a Banach quasi *-algebra.

Example 2.5. The pair (Lp(I), L∞(I)) considered in Example 2.2 is another example of Banach quasi *-
algebra.

On the other hand, among Banach quasi *-algebras, an essential role is played by the completion of a 
Hilbert algebra with respect to the norm induced by the given inner product. In what follows we first define 
a Hilbert algebra and then a Hilbert quasi *-algebra.

Definition 2.6. A Hilbert algebra (see [39, Section 11.7]) is a *-algebra A0, which is also a pre-Hilbert space 
with inner product 〈·|·〉, such that

(i) for every x ∈ A0, the map y 
→ xy is continuous, with respect to the norm defined by the inner product;
(ii) 〈xy|z〉 = 〈y|x∗z〉, for all x, y, z ∈ A0;
(iii) 〈x|y〉 = 〈y∗|x∗〉, for all x, y ∈ A0;
(iv) A2

0 is total in A0.

From (ii) and (iii) it follows that

〈xy|z〉 = 〈x|zy∗〉, ∀ x, y, z ∈ A0.

Definition 2.7. Let A0 be as in Definition 2.6 and let H denote the Hilbert space completion of A0, with 
respect to the norm ‖ · ‖ given by the inner product. The involution of A0 extends to the whole of H, since 
by (iii) it is isometric. The multiplication ξx (or xξ) of an element ξ in H with an element x in A0 is defined 
by the usual limit procedure. To avoid trivial instances, we assume that

ξ ∈ H, such that ξx = 0, ∀ x ∈ A0, implies ξ = 0.

Under the preceding operations, the pair (H[‖ ·‖], A0) is now a Banach quasi *-algebra, that we call a Hilbert 
quasi *-algebra.

Let H be a Hilbert space with inner product 〈·|·〉 and let D be a dense linear subspace of H. We denote 
by L†(D, H) the set of all closable operators T in H, such that the domain of T is D and the domain of its 
adjoint T ∗, denoted by D(T ∗), contains D, i.e.,

L†(D,H) = {T : D → H : D(T ∗) ⊇ D} .

The set L†(D, H) is a C−vector space with the usual sum T + S and scalar multiplication λT , for all 
T, S ∈ L†(D, H) and λ ∈ C. Define the following involution † and partial multiplication � by

T 
→ T † ≡ T ∗�D and T�S = (T †)∗S.
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It is clear that the partial multiplication � is defined whenever

SD ⊆ D((T †)∗) and T †D ⊆ D(S∗). (2.2)

Then L†(D, H) becomes a partial *-algebra, in the sense of [8, Definition 2.1.1]. In L†(D, H) several topologies 
can be introduced (see, [8]). Here, we will use the weak and strong* topology denoted by τw, τs∗ respectively, 
which are defined by the families of seminorms

pξ,η(T ) := |〈Tξ|η〉|, ξ, η ∈ D, T ∈ L†(D,H),

p∗ξ(T ) := max{‖Tξ‖, ‖T †ξ‖}, ξ ∈ D, T ∈ L†(D,H).

We denote by L†(D) the subset of the elements T in L†(D, H), such that TD ⊆ D and T †D ⊆ D. Then, 
L†(D) is a *-algebra with respect to the involution † and the weak multiplication � defined above. It is clear 
that the inclusions in (2.2) are always valid in L†(D).

Definition 2.8. A *-representation π, of a quasi *-algebra (A, A0) in a Hilbert space Hπ, is a linear map π
from A in L†(Dπ, Hπ), where Dπ is a dense subspace of Hπ and, at the same time, the following conditions 
hold:

(i) π(a∗) = π(a)†, for all a ∈ A;
(ii) if a ∈ A and x ∈ A0, then π(a) is a left multiplier of π(x) and π(a)�π(x) = π(ax).

Concerning (ii), note that for a ∈ A and x ∈ A0, one also has that π(a) is a right multiplier of π(x) and 
π(x)�π(a) = π(xa).

A *-representation π, as before, is faithful if a �= 0 implies π(a) �= 0 and it is cyclic if π(A0)ξ is dense in 
Hπ, for some ξ ∈ Dπ. If (A, A0) has an identity element e, we suppose that π(e) = IDπ

, the latter denoting 
the identity operator from Hπ on Hπ, restricted on Dπ.

The closure π̃ of a *-representation π of a quasi *-algebra (A, A0) in L†(Dπ, Hπ) is defined as follows

π̃ : A → L†(D̃π,Hπ) : a 
→ π(a)�D̃π
,

where D̃π is the completion of Dπ, with respect to the graph topology, defined by the seminorms

η ∈ Dπ 
→ ‖π(a)η‖ , ∀ a ∈ A.

A *-representation π is said to be closed if π = π̃.

Definition 2.9. Let (A, A0) be a quasi *-algebra. A linear functional ω on A is said to be representable if it 
satisfies the following conditions:

(L.1) ω(x∗x) ≥ 0, ∀ x ∈ A0;
(L.2) ω(y∗a∗x) = ω(x∗ay), ∀ x, y ∈ A0, a ∈ A;
(L.3) for all a ∈ A, there exists γa > 0, such that

|ω(a∗x)| ≤ γaω(x∗x)1/2, ∀ x ∈ A0.

The set of all representable linear functionals is denoted by R(A, A0).
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Given a quasi *-algebra (A, A0), we denote by QA0(A) the set of all sesquilinear forms on A × A, such 
that (see [49, Definition 2.1])

(i) ϕ(a, a) ≥ 0, for every a ∈ A.
(ii) ϕ(ax, y) = ϕ(x, a∗y), for every a ∈ A and x, y ∈ A0.

If (A[‖ · ‖], A0) is a normed quasi *-algebra, denote by Rc(A, A0) the subset of R(A, A0) consisting of all 
continuous representable linear functionals on (A, A0).

As shown in [23, Proposition 2.7] if ω ∈ Rc(A, A0) for a given normed quasi *-algebra (A[‖ · ‖], A0), then 
the sesquilinear form ϕω defined on A0 × A0 by

ϕω(x, y) := ω(y∗x), ∀ x, y ∈ A0, (2.3)

is closable; that is, for a sequence {xn} in A0, one has that

‖xn‖ → 0 and ϕω(xn − xm, xn − xm) → 0 implies ϕω(xn, xn) → 0.

In this case, ϕω has a closed extension ϕω to a dense domain D(ϕω) ×D(ϕω) containing A0 × A0, where

D(ϕω) = {a ∈ A : ∃ {xn} ⊂ A0 : with xn →
‖·‖

a and ϕω(xn − xm, xn − xm) → 0},

so that if (a, a′) ∈ D(ϕω) ×D(ϕω), we put

ϕω(a, a′) := lim
n→∞

ϕω(xn, x
′
n). (2.4)

In this regard, having a normed quasi *-algebra (A[‖ ·‖], A0) and D(ϕ) a dense subspace of A[‖ ·‖], we shall say 
that a sesquilinear form ϕ : D(ϕ) ×D(ϕ) → C is closed [19, Definition 53.12], if whenever {vn}∞n=1 ⊂ D(ϕ)
is a sequence, such that vn → v in A[‖ · ‖] and

ϕ(vn − vm, vn − vm) → 0, as n,m → ∞

one has v ∈ D(ϕ) and limn→∞ ϕ(v − vn, v − vn) = 0.
Coming back to ϕω, note that in [3, Proposition 3.6] is proved that in every Banach quasi *-algebra one 

has that D(ϕω) = A.
Consider now the set

AR :=
⋂

ω∈Rc(A,A0)

D(ϕω). (2.5)

If Rc(A, A0) = {0}, we put AR = A. Note that, if for every ω ∈ Rc(A, A0), ϕω is jointly continuous with 
respect to the norm ‖ · ‖ of A, we obtain AR = A. In this regard, see also [3, Proposition 3.6].

Furthermore, we put

A+
0 :=

{
n∑

k=1

x∗
kxk, xk ∈ A0, n ∈ N

}
.

Then A+
0 is a wedge in A0 and we call the elements of A+

0 positive elements of A0. As in [23, beginning of 
Section 3], we call positive elements of A the elements of A+

0

‖·‖
. We set A+ := A

+
0

‖·‖
and for an element 

a ∈ A+ we shall write a ≥ 0.
A linear functional ω on A is positive if ω(a) ≥ 0, for every a ∈ A+.
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Definition 2.10. [23, Definition 3.7] A family of positive linear functionals F on a normed quasi *-algebra 
(A[‖ · ‖], A0) is called sufficient, if for every a ∈ A+, a �= 0, there exists ω ∈ F , such that ω(a) > 0.

Definition 2.11. [23, Definition 4.1] We call a normed quasi *-algebra (A[‖ · ‖], A0) fully representable if 
Rc(A, A0) is sufficient and AR = A.

It is clear from the discussion before (2.5) that every Banach quasi *-algebra is fully representable if 
Rc(A, A0) is sufficient. In fact, by [3, Theorem 3.9], sufficiency of Rc(A, A0) is a necessary and sufficient 
condition, in such a way that a Banach quasi *-algebra is fully representable.

Observe that a Hilbert quasi *-algebra, by its very definition, is *-semisimple (cf. Definition 2.13), therefore 
by [3, Theorem 3.9] is fully representable.

Further examples of fully representable topological quasi *-algebras can be found in [23, Section 4].

Remark 2.12. Let (A[‖ · ‖], A0) be a normed quasi *-algebra and ω ∈ Rc(A, A0). For x ∈ A0 define 
ωx(a) := ω(x∗ax), for every a ∈ A. Then ωx ∈ Rc(A, A0). Note that the condition of sufficiency required in 
Definition 2.11 together with the following condition

a ∈ A and ωx(a) ≥ 0, for all ω ∈ Rc(A,A0) and x ∈ A0, implies a ≥ 0,

says that, if a ∈ A, with ω(a) = 0, for every ω ∈ Rc(A, A0), then a = 0.

Denote by SA0(A) the subset of QA0(A) consisting of all continuous sesquilinear forms Ω : A × A → C, 
such that

|Ω(a, b)| ≤ ‖a‖‖b‖, ∀ a, b ∈ A.

Defining

‖Ω‖ := sup
‖a‖=‖b‖=1

|Ω(a, b)| ,

one obviously has ‖Ω‖ ≤ 1, for every Ω ∈ SA0(A).

Definition 2.13. A normed quasi *-algebra (A[‖ · ‖], A0) is called *-semisimple if, for every 0 �= a ∈ A, there 
exists Ω ∈ SA0(A), such that Ω(a, a) > 0.

Note that taking an element ω ∈ R(A, A0), one may associate to ω two sesquilinear forms. One is already 
given by (2.3) and the second one is defined as follows:

Ωω(a, b) := 〈πω(a)ξω|πω(b)ξω〉, a, b ∈ A, (2.6)

where ξω is the cyclic vector of the GNS representation πω associated to the representable linear functional 
ω (see comments after Theorem 3.2.1 and relation (3.2.15) in [24]). It is clear that Ωω(a, e) = ω(a), for every 
a ∈ A.

Part II: tensor products

For algebraic tensor products the reader is referred to [16,30]; for topological tensor products to [18,20,
25,36,43,45].
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Suppose that A0, B0 are *-algebras and (x, y) ∈ A0×B0. The element x ⊗y is called an elementary tensor
of the vector space tensor product A0⊗B0. An arbitrary element z in A0⊗B0 has the form z =

∑n
i=1 xi⊗yi. 

Let z′ =
∑m

j=1 x
′
j ⊗ y′j be another arbitrary element in A0 ⊗B0; set

zz′ :=
n∑

i=1

m∑
j=1

xix
′
j ⊗ yiy

′
j .

Then, zz′ is a well defined (associative) product on A0 ⊗ B0, under which A0 ⊗ B0 becomes a complex 
algebra (see, for instance, [36, p. 361, Lemma 1.4], [37, pp. 188,189]).

Using the involutions of A0, B0, an involution is defined on A0 ⊗B0, in a natural way:

A0 ⊗B0 � z =
n∑

i=1
xi ⊗ yi 
→ z∗ :=

n∑
i=1

x∗
i ⊗ y∗i ∈ A0 ⊗B0. (2.7)

Thus, A0 ⊗ B0 becomes a *-algebra. If A1, B1 are ∗-subalgebras of A0, B0 respectively, we may obviously 
regard A1 ⊗B1 as a ∗-subalgebra of A0 ⊗B0

Instead of the *-algebras A0 and B0, consider now two locally convex spaces E[τE], F[τF] and let E ⊗ F
be their vector space tensor product.

Definition 2.14. [25, pp. 88, 89] A topology τ on E ⊗ F is called compatible (with the tensor product vector 
space structure of E ⊗ F) if the following conditions are satisfied:

(1) The vector space E ⊗ F equipped with τ is a locally convex space, that will be denoted by E⊗τF.
(2) The tensor map Φ : E ×F → E⊗τF : (x, y) 
→ x ⊗y is separately continuous (that is, continuous in each 

variable).
(3) For any equicontinuous subset M of E∗ and N of F∗, the set M ⊗N ≡ {f ⊗ g : f ∈ M, g ∈ N} is an 

equicontinuous subset of 
(
E⊗τF

)∗; E∗ and F∗ denote the topological dual of E[τE] and F[τF] respectively.

The completion of the locally convex space E⊗τF is denoted by E⊗̂τF. For *-compatibility, see beginning 
of Section 6.

Let now E1[‖ · ‖1], E2[[‖ · ‖2] be Banach spaces. A norm ‖ · ‖ on the tensor product space E1 ⊗ E2 that 
satisfies the equality

‖x1 ⊗ x2‖ = ‖x1‖1‖x2‖2, ∀ x1 ∈ E1, x2 ∈ E2, (2.8)

is called a cross-norm on E1 ⊗ E2.

The injective cross-norm on E1 ⊗ E2

Taking an arbitrary element z =
∑n

i=1 xi ⊗ yi in E1 ⊗ E2, we put

‖z‖λ := sup
{∣∣∣ n∑

i=1
f(xi)g(yi)

∣∣∣ : f ∈ E∗
1 , ‖f‖ ≤ 1; g ∈ E∗

2 , ‖g‖ ≤ 1
}
. (2.9)

The quantity ‖ · ‖λ is a well-defined cross-norm on E1 ⊗ E2, called the injective cross-norm. It is also a 
compatible topology, fulfilling Definition 2.14, and it is the least cross-norm on E1 ⊗ E2.

Denote as E1⊗λE2 the normed space induced by (E1 ⊗E2)[‖ · ‖λ]. The respective completion of E1⊗λE2, 
which is a Banach space, will be denoted by E1⊗̂λE2. Grothendieck’s notation for the latter Banach space, 
used also by many authors, is E1

̂̂⊗E2.
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When A1[τ1], A2[τ2] are two locally convex *-algebras (in this case, we shall always assume that involution 
is continuous and multiplication is jointly continuous), then Definition 2.14 can be modified as follows

Definition 2.15. [20] Let A1[τ1], A2[τ2] be as before, where the topologies τ1, τ2, are defined by upwards 
directed families of seminorms, say {p} and {q}, respectively. Let A1 ⊗ A2 be their corresponding tensor 
product *-algebra. A topology τ on A1 ⊗ A2 is called ∗-admissible (that is, compatible with the tensor 
product *-algebra structure of A1 ⊗ A2), if the following conditions are satisfied:

(1) A1 ⊗ A2 endowed with τ is a locally convex ∗-algebra, denoted by A1⊗τA2;
(2) the tensor map Φ : A1[τ1] × A2[τ2] → A1⊗τA2 is continuous, in the sense that if τ is determined by the 

family of ∗-seminorms {r}, then for every r there exist p, q, such that

r(x⊗ y) ≤ p(x)q(y), ∀ (x, y) ∈ A1 × A2;

(3) for any equicontinuous subsets M of A∗
1 and N of A∗

2 , the set M ⊗N = {f ⊗ g : f ∈ M, g ∈ N} is an 
equicontinuous subset of 

(
A1⊗τA2

)∗; A∗
1 , A∗

2 denote respectively the dual of A1, A2.

The completion of A1⊗τA2 is a complete locally convex *-algebra denoted by A1⊗̂τA2.
Let us now assume that A1[‖ · ‖1], A2[‖ · ‖2] are normed *-algebras with isometric involution. We shall 

define the projective cross-norm on the tensor product *-algebra A1 ⊗ A2 (see [45, p. 189]).

The projective cross-norm on A1 ⊗ A2

Let z =
∑n

i=1 xi ⊗ yi be an arbitrary element in A1 ⊗ A2. Put

‖z‖γ = inf
{

n∑
i=1

‖xi‖1‖yi‖2

}
, (2.10)

where the infimum is taken over all representations 
∑n

i=1 xi ⊗ yi of z. The quantity ‖ · ‖γ is a well-defined 
cross-norm that majorizes all other cross-norms on A1 ⊗A2; it is called projective cross-norm. The normed 
*-algebra induced by (A1 ⊗ A2)[‖ · ‖γ ], will be denoted as A1⊗γA2 and its respective completion, which is 
a Banach *-algebra, will be denoted by A1⊗̂γA2. Grothendieck’s notation for the latter, used also by many 
authors, is A1⊗̂A2. Note that the cross-norm ‖ ·‖γ satisfies Definition 2.15, therefore is a *-admissible (hence, 
compatible) cross-norm, whereas the injective cross-norm ‖ · ‖λ is not *-admissible, in general.

In particular, any compatible cross-norm ‖ · ‖ on E1 ⊗ E2 lies between the injective and projective cross-
norm, i.e.,

‖ · ‖λ ≤ ‖ · ‖ ≤ ‖ · ‖γ . (2.11)

Even more, a cross-norm ‖ · ‖ on E1 ⊗ E2 is compatible, if and only if, the inequality (2.11) is valid.
For the specific case, when the topology τ is generated by a cross-norm ‖ · ‖, the condition (2) in 

Definition 2.15 always holds by the cross-norm property. Condition (3) clearly implies that the tensor 
product of continuous linear functionals is bounded.

The situation is different for operators, i.e., the tensor product of continuous operators is bounded only 
for certain cross-norms, those that are uniform. For further reading in this aspect, see [42].

More precisely, if E1[‖ · ‖1], E2[‖ · ‖2] are Banach spaces, let E1⊗̂‖·‖E2 be their respective tensor product 
Banach space, under a cross-norm ‖ · ‖. If T1 : E1 → E1, T2 : E2 → E2 are linear operators, then the 
map T1 ⊗ T2 : E1 ⊗ E2 → E1 ⊗ E2 is uniquely defined by the linearization of the bilinear map E1 ⊗ E2 
→
T1(x) ⊗ T2(y) ∈ E1 ⊗ E2, for all x ∈ E1, y ∈ E2. Hence T1 ⊗ T2 is a linear operator, such that
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(T1 ⊗ T2)
(

n∑
i=1

xi ⊗ yi

)
:=

n∑
i=1

T1(xi) ⊗ T2(yi), ∀
n∑

i=1
xi ⊗ yi ∈ E1 ⊗ E2.

If T1 and T2 are bounded operators, we would like T1 ⊗T2 to be a bounded operator too. This is true if ‖ · ‖
is a uniform cross-norm, in sense of the following

Definition 2.16. Let E1⊗̂‖·‖E2 and T1, T2 be exactly as before. If the tensor product operator T1⊗T2 :
E1⊗‖·‖E2 → E1⊗‖·‖E2 is continuous and its extension T1⊗̂T2 : E1⊗̂‖·‖E2 → E1⊗̂‖·‖E2 satisfies the relation 
‖T1⊗̂T2‖ ≤ ‖T1‖‖T2‖, then the cross-norm ‖ · ‖ is said to be uniform.

Remark 2.17. The injective and projective cross-norms λ and γ are examples of uniform cross-norms.

Observe that the condition ‖T1⊗̂T2‖ ≤ ‖T1‖‖T2‖ automatically implies the equality. Indeed, we have the 
following

Proposition 2.18. Under the hypotheses of Definition 2.16, the operator T1⊗̂T2 : E1⊗̂‖·‖E2 → E1⊗̂‖·‖E2

verifies the equality ‖T1⊗̂T2‖ = ‖T1‖‖T2‖.

Proof. To prove the claim, we have to show that ‖T1⊗̂T2‖ ≥ ‖T1‖‖T2‖. For z ∈ E1⊗̂‖·‖E2 and x ∈ E1, y ∈ E2, 
what we have is

‖T1⊗̂T2‖ = sup
‖z‖≤1

‖T1⊗̂T2(z)‖ ≥ sup
‖x⊗y‖≤1

‖(T1 ⊗ T2)(x⊗ y)‖

= sup
‖x‖1‖y‖2≤1

‖T1(x)‖1‖T2(y)‖2 ≥ sup
‖x‖1≤1,‖y‖2≤1

‖T1(x)‖1‖T2(y)‖2

= sup
‖x‖1≤1

‖T1(x)‖1 sup
‖y‖2≤1

‖T2(y)‖2 = ‖T1‖‖T2‖.

This completes the proof. �
� Let A1[‖ ·‖1], A2[‖ ·‖2] and ‖ ·‖ be again as above. If B1 and B2 are subspaces of A1 and A2 respectively, 

then B1 ⊗B2 is a subspace of A1 ⊗ A2 and in this paper, if not explicitly said, it will be endowed with the 
topology induced by that of A1 ⊗‖·‖ A2.

3. Algebraic tensor product of quasi *-algebras

Let (A, A0), (B, B0) be given quasi *-algebras. It is then known that the algebraic tensor product A0⊗B0

of the *-algebras A0, B0 is again a *-algebra (see Section 2, beginning of Part II) contained as a vector 
subspace in the vector space tensor product A ⊗B.

Since A and B carry an involution a 
→ a∗, a ∈ A, respectively b 
→ b∗, b ∈ B, extending those of A0, 
B0 respectively, then A ⊗ B attains an involution such that a ⊗ b 
→ (a ⊗ b)∗ := a∗ ⊗ b∗, a ∈ A, b ∈ B, 
extending the involution of A0 ⊗B0 (see (2.7)).

As stated in Definition 2.1, the vector space tensor product of A and B for the given above quasi *-
algebras has to be endowed with the left and right multiplications by elements of a *-algebra contained in 
it, verifying certain properties. A natural candidate for this is A0 ⊗ B0 as a *-algebra and a subspace of 
A ⊗B.

Define now the following actions on A ⊗B, with respect to A0 ⊗B0:

(a⊗ b) · (x⊗ y) := Rx⊗y(a⊗ b) = (ax) ⊗ (by),

(x⊗ y) · (a⊗ b) := Lx⊗y(a⊗ b) = (xa) ⊗ (yb),
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with (x, y) in A0 ×B0 and (a, b) in A ×B. By the universal property of the vector space tensor product, 
both actions are well defined and extend to bilinear maps, extending the multiplication of A0 ⊗B0 (see [37, 
p. 188, 189], for similar arguments). Routine calculations show that using the laws of Definition 2.1 (ii) for 
A and B, we obtain the corresponding laws for A ⊗B.

If eA, eB are the identities of our given quasi *-algebras respectively, then eA ⊗ eB is an identity element 
for A0 ⊗B0, i.e., (see discussion after Definition 2.1)

(a⊗ b) · (eA ⊗ eB) = a⊗ b = (eA ⊗ eB) · (a⊗ b),

for all a ∈ A and b ∈ B.

� From now on we shall simply write

(x⊗ y)(a⊗ b) instead of (x⊗ y) · (a⊗ b).

Similarly, of course, for (a ⊗ b) · (x ⊗ y).

Concerning the extension of the involution * of A0 ⊗B0 on A ⊗B, we clearly have the property (iii) of 
Definition 2.1 for the extension of the involutions of A0, B0 on A, B respectively, i.e.,

(
(a⊗ b)(x⊗ y)

)∗ = (ax)∗ ⊗ (by)∗ = x∗a∗ ⊗ y∗b∗ = (x⊗ y)∗(a⊗ b)∗,

for all (x, y) in A0 ×B0 and (a, b) in A ×B.
In conclusion, all properties of Definition 2.1 are fulfilled, therefore A ⊗B is a quasi*-algebra over A0⊗B0.

Definition 3.1. The algebraic tensor product A ⊗B that was constructed above from two quasi *-algebras 
(A, A0), (B, B0), will be called tensor product quasi *-algebra over A0 ⊗ B0, or we shall just say that 
(A ⊗B, A0 ⊗B0) is a tensor product quasi *-algebra.

4. Topological tensor products of normed and Banach quasi *-algebras

Let (A[‖ · ‖A], A0), (B[‖ · ‖B], B0) be given normed (resp. Banach) quasi *-algebras. We shall construct 
their tensor product normed (resp. Banach) quasi *-algebra.

We have already seen in the preceding Definition 3.1 that A ⊗B is a quasi *-algebra over A0⊗B0. Hence, 
according to Definition 2.3, we still have to show that A ⊗B becomes a normed (resp. Banach) space, under 
a suggesting tensor norm that fulfils the conditions of Definition 2.3.

First we consider on A ⊗B the injective cross-norm (2.9) and as we have already said in Section 2, A⊗̂λB

is the Banach space, completion of the respective normed space A⊗λB ≡ (A ⊗B)[‖ · ‖λ].

� In the sequel, for distinction, we shall often denote by ‖ ·‖A, ‖ ·‖B, the given norms on A, B, respectively.

By Definition 2.3 (i), the (extended) involution on A and B from that of A0 and B0 respectively, is 
isometric, therefore since the injective cross-norm λ is uniform (see Remark 2.17) the map (2.7) defines a 
continuous involution on A⊗λB, which is continuously extended on A⊗̂λB. Applying Proposition 2.18 for 
the operators ∗1 : A → A, with ∗1(a) = a∗, for all a ∈ A, and ∗2 : B → B, with ∗2(b) = b∗, for all b ∈ B, 
we obtain that ‖ ∗1 ⊗̂ ∗2 ‖ = ‖ ∗1 ‖‖ ∗2 ‖ = 1, since ‖ ∗1 ‖ = 1 = ‖ ∗2 ‖. Using the latter in the definition of 
‖ · ‖λ (see (2.9)), we conclude that

‖z∗‖λ = ‖z‖λ, ∀ z ∈ A⊗λB.



12 M.S. Adamo, M. Fragoulopoulou / J. Math. Anal. Appl. 490 (2020) 124323
Hence by continuity of ∗1⊗̂∗2, we pass to limits, having finally that A⊗̂λB has an isometric involution.
We prove now that A0⊗B0 is dense in A⊗λB and A⊗̂λB. Without loss of generality, take an elementary 

tensor a ⊗ b in A⊗λB.
By Definition 2.3, A0 is dense in A[‖ · ‖A] and B0 in B[‖ · ‖B]. Thus, since a is in A and b in B there exist 

sequences {xn} in A0 and {yn} in B0, such that

‖xn − a‖A → 0 and ‖yn − b‖B → 0.

Then the sequence {xn ⊗ yn} in A0 ⊗B0 is ‖ · ‖λ-converging to a ⊗ b. Indeed, from (2.9), we have

‖xn ⊗ yn − a⊗ b‖λ = sup
{
|f(xn)g(yn) − f(a)g(b)| : f ∈ A∗, ‖f‖ ≤ 1, g ∈ B∗, ‖g‖ ≤ 1

}
→ 0.

The above argument shows that A0 ⊗B0 is dense in A⊗λB and consequently also in A⊗̂λB.
It remains to show that, for every z =

∑
i∈F xi ⊗ yi in A0 ⊗ B0, F a finite subset in N, the (right) 

multiplication operator

Rz : A⊗λB → A⊗λB : c 
→ cz (4.1)

is continuous.
First recall that for x ∈ A0 and y ∈ B0 the operators Rx : A → A, Ry : B → B with Rx(a) := ax and 

Ry(b) := by, a ∈ A, b ∈ B are continuous and the operator Rx⊗Ry is uniquely defined on A⊗λB into itself, 
such that

(Rx ⊗Ry)(a⊗ b) = Rx(a) ⊗Ry(b), a ∈ A, b ∈ B.

In particular, Rx ⊗Ry is continuous since Rx, Ry are continuous and ‖ · ‖λ is a uniform cross-norm (see 
Remark 2.17). Yet, it is easily seen that defining the map Rx⊗y : A⊗λB → A⊗λB as

Rx⊗y(a⊗ b) := (a⊗ b)(x⊗ y), a ∈ A, b ∈ B,

we obviously obtain that Rx⊗y = Rx ⊗Ry, so that the operator Rx⊗y is also continuous.
In conclusion, Rz in (4.1) is well-defined and continuous, such that

Rz =
∑
i∈F

Rxi⊗yi
=

∑
i∈F

Rxi
⊗Ryi.

By linearity and continuity we infer that Rz, z in A0 ⊗B0, is uniquely extended to a continuous operator 
on A⊗̂λB too.

Hence, we conclude that left and right multiplications by elements in A0 ⊗B0, as well as the involution 
*, are well defined on the completion A⊗̂λB and verify all the required properties. If, in addition, A, B
have identities (eA, eB respectively), from the comments right after (2.1), we have that ‖eA ⊗ eB‖λ =
‖eA‖A‖eB‖B = 1.

Summing up, according to Definition 2.3, we have that
• (A⊗λB, A0 ⊗B0) is a tensor product normed quasi *-algebra and
• (A⊗̂λB, A0 ⊗B0) is a tensor product Banach quasi *-algebra.
All the above arguments, as well as the fixed notation, can be equally well applied for the projective 

cross-norm ‖ · ‖γ (see (2.10)), to give that the pair (A⊗γB, A0 ⊗B0) is a normed quasi *-algebra and its 
‘completion’, i.e., the pair (A⊗̂γB, A0 ⊗B0) is a Banach quasi *-algebra.

The same is true for any uniform cross-norm on A ⊗B by Definition 2.16 and Proposition 2.18.
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5. Examples of tensor product Banach quasi *-algebras

Example 5.1. Take I to be the unit interval in the real line and consider the Banach quasi *-algebra 
(L1(I), C(I)) (see discussion before Definition 2.3, as well as Example 2.4). Consider the tensor product 
of (L1(I), C(I)) with itself. Then we obtain the Banach quasi *-algebra

(L1(I)⊗̂γL
1(I), C(I) ⊗ C(I)) = (L1(I × I), C(I) ⊗ C(I))

(see discussion at the end of Section 4).
It is known that the tensor product L1(I)⊗̂γL

1(I) is linearly and topologically isomorphic to L1(I×I) ≡
L1(I × I, λ × λ) (with λ the Lebesgue measure on I and λ × λ the product measure on I × I); see [25].

Example 5.2. Recently A.Ya. Helemskii [28] working in the context of L−quantizations with L ≡ Lp(Z, ζ), 
1 < p < ∞, (Z, ζ) a “convenient” measure space (i.e., Z has either no atoms or an infinite set of atoms) 
and p-convex tensor products of the spaces Lq(·), q ∈ (1, ∞) ([28], Section 6), showed a general result ([28], 
Theorem 6.4) and gave the Banach version of it, from which one obtains the following:

Let X, Y be measure spaces with countable bases, p ∈ (1, ∞) and q = p/(p − 1) the conjugate number of 
p. Then,

Lq(X)⊗̂pLL
q(Y ) = Lq(X × Y ), (5.1)

with respect to a well-defined L-isometric isomorphism [28, Remark 6.5], such that f⊗g 
→ h, with h(s, t) :=
f(s)g(t), f ∈ Lq(X), g ∈ Lq(Y ), h ∈ Lq(X × Y ) and (s, t) ∈ X × Y . The notation ⊗̂pL means completion 
with respect to the norm ‖ · ‖pL [28, (5.3)]. Note that the norm ‖ · ‖pL is, in fact, an analogue in the present 
context, of the projective cross-norm ‖ · ‖γ .

For the term countable base, see [46, p. 195]. For some ‘similar’ results to the preceding one, see also 
[17,18,46]. Note that the preceding term is equivalent to the fact that the measure μ on X is separable [14, 
Vol. II, p. 132, 7.14(iv)].

Consider the Banach quasi *-algebras (Lq(X, μ), C(X)) and (Lq(Y, ν), C(Y )) with (X, μ), (Y, ν) metric 
compact measure spaces and q ∈ (1, ∞) (see, for instance, [10] or [11, Example 2.7]). Suppose that μ, ν are 
Borel probability measures, that are also diffused [14, Vol. II, Definition 7.14.14]. We want to apply (5.1)
in this case. For this we must have on X (resp. Y ) an atomless ([14], Vol. II, Definition 7.14.15), separable 
measure. It is known that a Borel probability measure on a compact metric space is regular and (trivially) 
locally finite, therefore a Radon measure. But, every Radon measure is τ−additive (or τ−regular) (see [14, 
Vol. II, Definition 7.2.1 and Proposition 7.2.2(i)]) and since it is also diffused it follows that it is atomless 
([14], Lemma 7.14.16). Finally, our Radon measure is also separable, since every compact subset of X (resp. 
Y ) is metrizable ([14], Example 7.14.13).

Thus, applying (5.1), we have that

Lq(X,μ)⊗̂pLL
q(Y, ν) = Lq(X × Y, μ× ν);

therefore, (Lq(X, μ)⊗̂pLL
q(Y, ν), C(X) ⊗ C(Y )) is a Banach quasi *-algebra.

Example 5.3. Take two Hilbert quasi *-algebras (H1, A0), (H2, B0), (see Definition 2.7), with H1 and H2 the 
Hilbert space completions of A0 and B0, with inner product 〈·|·〉1 and 〈·|·〉2, respectively. Then, as it has 
been shown in [1], (H1⊗̂hH2, A0 ⊗B0) is a Banach quasi *-algebra, where H1⊗̂hH2 is, in fact, the Hilbert 
space completion of the pre-Hilbert space (and *-algebra) A0 ⊗B0, under the norm ‖ · ‖h induced by the 
inner product
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〈ξ|ξ′〉 :=
n∑

i=1

m∑
j=1

〈ξi|ξ′j〉1〈ηi|η′j〉2, ∀ ξ, ξ′ ∈ H1 ⊗h H2,

with ξ =
∑n

i=1 ξi ⊗ ηi and ξ′ =
∑m

j=1 ξ
′
j ⊗ η′j (cf., e.g., [43] and/or [20, p. 371]). The left and right outer 

multiplications on H1⊗̂hH2 are defined in the usual way:

(x⊗ y)(a⊗ b) := (xa) ⊗ (yb), (ax) ⊗ (by) =: (a⊗ b)(x⊗ y),

for any x ⊗ y in A0 ⊗B0 and a ⊗ b in H1 ⊗h H2; see also Section 3.

Example 5.4. A concrete realization of the Example 5.3 arises naturally from quantum physics. In quantum 
mechanics, for two quantum systems S1 and S2 both described by the Hilbert space L2(R2) of all square 
integrable complex functions of two variables, the joint system S will be well described by the tensor product 
Hilbert space of L2(R2) with itself, that is known to be isomorphic to L2(R4); for further reading, in this 
aspect, see for instance, [4,41]. Considering more abstract measure spaces (X, μ) and (Y, ν), there exists an 
isometric isomorphism, such that

L2(X,μ)⊗̂hL
2(Y, ν) = L2(X × Y, μ× ν),

where (X × Y, μ × ν) denotes the product measure space. In particular, taking X and Y to be the real line 
R endowed with the Lebesgue measure, say λ, we obtain

L2(R, λ)⊗̂hL
2(R, λ) = L2(R2, λ×λ),

thus L2(R, λ)⊗̂hL
2(R, λ) is a Banach quasi *-algebra over, for instance, C∞

c (R) ⊗ C∞
c (R), where C∞

c (R)
denotes the *-algebra of smooth functions on R with compact support.

6. Representations of tensor product normed and Banach quasi *-algebras

If (A[‖ · ‖A], A0) and (B[‖ · ‖B], B0) are normed quasi *-algebras, a compatible tensor norm n̄ on A ⊗B

that respects the involutive structure of A ⊗n̄ B (i.e., n̄ makes A ⊗n̄ B into a normed *-space, meaning 
a normed space endowed with a continuous involution * (see Definition 2.3)) is called *-compatible (cf. 
Definitions 2.14 and 2.15). If moreover n̄ is a cross-norm (see (2.8)), then we speak about a *-compatible 
cross-norm. Note that uniform cross-norms are *-compatible.

� For the calculations, we shall use the symbol ‖ ·‖n̄, instead of the symbol n̄, in order to be in accordance 
to (2.9) and (2.10).

For two given normed quasi *-algebras (A[‖ ·‖A], A0), (B[‖ ·‖B], B0) and a uniform cross-norm n̄ (e.g., the 
injective or projective cross-norm), the tensor product normed quasi *-algebra A ⊗n̄ B and its completion 
A⊗̂n̄B, have been studied in Sections 3 and 4.

We can assume, without loss of generality, that our normed, respectively Banach quasi *-algebras
(A[‖ · ‖A], A0) and (B[‖ · ‖B], B0) are unital. Indeed, if they are not, we can add a unit in a very stan-
dard way as in the Banach algebra case and obtain a unital normed, respectively Banach quasi *-algebra. 
Recall that the unit will be an element of the underlying *-algebra A0 or B0 respectively (see discussion 
before Example 2.2).

Denote by (AeA , A0) and (BeB , B0) the respective unitizations of (A, A0) and (B, B0), which are normed 
(resp. Banach) quasi *-algebras, under the norm ‖(a, λ)‖eA := ‖a‖A + |λ|, for every (a, λ) ∈ AeA , with 
‖ · ‖eA�A = ‖ · ‖A. In the same way, the norm ‖ · ‖eB is defined on BeB .
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Taking the tensor product AeA ⊗ BeB , it is obvious that the *-algebra A0 ⊗ B0, as well as the space 
A ⊗B can be regarded as subspaces of AeA ⊗BeB .

If n̄ is a uniform cross-norm on A ⊗B, it is technical to show that it lifts to a uniform cross-norm, say 
n̄1, on the tensor product AeA ⊗BeB of the unitizations of A and B respectively.

� From now on, we shall assume that our quasi *-algebras will be unital, unless otherwise specified.

Remark 6.1. Observe that the map

A[‖ · ‖A] → A⊗n̄ B : a 
→ a⊗ eB

is an isometric *-isomorphism if we restrict to its image A ⊗n̄{eB}. In the same way, B[‖ ·‖B] is isometrically 
*-isomorphic to {eA} ⊗n̄ B. In conclusion, we have the following identifications

A[‖ · ‖A] = A⊗n̄ {eB} and B[‖ · ‖B] = {eA} ⊗n̄ B.

6.1. Representable functionals and *-representations on tensor product topological quasi *-algebras

We are interested in studying properties concerning the representability of a tensor product normed 
(and/or Banach) quasi *-algebra. For this aim, we first begin stating and proving results connecting to the 
manner a *-representation on a tensor product, as before, is related to the *-representations on the tensor 
factors and vice versa.

Proposition 6.2. Let (A[‖ ·‖A], A0), (B[‖ ·‖B], B0) be Banach quasi *-algebras. Let n̄ be a uniform cross-norm 
on A ⊗B. Let π : A⊗̂n̄B → L†(Dπ, Hπ)[τw] be a continuous *-representation of the tensor product Banach 
quasi *-algebra A⊗̂n̄B. Then there exist unique continuous *-representations π1 : A[‖ ·‖A] → L†(Dπ, Hπ)[τw]
and π2 : B[‖ · ‖B] → L†(Dπ, Hπ)[τw], such that for any x ∈ A0, y ∈ B0 and a ∈ A, b ∈ B, we have

π(x⊗ b) = π1(x)�π2(b) = π2(b)�π1(x),

π(a⊗ y) = π1(a)�π2(y) = π2(y)�π1(a).
(6.1)

The *-representations π1, π2 are restrictions of the *-representation π to A[‖ · ‖A], B[‖ · ‖B] respectively.

Proof. Using the given continuous *-representation π of A⊗̂n̄B (see Definition 2.8), we define a map π1 on 
A in the following way

π1(a)ξ := π(a⊗ eB)ξ, ∀ a ∈ A, ξ ∈ Dπ.

It is easily seen that the map π1 is a *-representation of A in L†(Dπ1 , Hπ) with Dπ1 = Dπ. In a similar way, 
a *-representation π2 of B in L†(Dπ2 , Hπ) is defined, with Dπ2 = Dπ, i.e.,

π2(b)ξ := π(eA ⊗ b)ξ, ∀ b ∈ B, ξ ∈ Dπ.

Since π : A⊗̂n̄B → L†(Dπ, Hπ) is (‖ · ‖n̄-τw)-continuous, π1 and π2 are (‖ · ‖A-τw), (‖ · ‖B-τw)-continuous 
*-representations of (A[‖ ·‖A], A0) and (B[‖ ·‖B], B0) respectively. Indeed, let {an} be a sequence of elements 
in A[‖ · ‖A] and a ∈ A, such that ‖an − a‖A → 0, as n → ∞. By Remark 6.1, we have

‖an ⊗ eB − a⊗ eB‖n̄ → 0.

Hence by (‖ · ‖n̄-τw)-continuity of π, we obtain (see discussion before Definition 2.8)
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〈π1(an)ξ|η〉 = 〈π(an ⊗ eB)ξ|η〉 → 〈π(a⊗ eB)ξ|η〉 = 〈π1(a)ξ|η〉,

for all ξ, η ∈ Dπ1 = Dπ. Hence, π1(an) τw-converges to π1(a). The same argument is valid for π2.
Let us now show the equalities (6.1). Take x ∈ A0 and b ∈ B, then

π(x⊗ b) = π
(
(x⊗ eB)(eA ⊗ b)

)
= π(x⊗ eB)�π(eA ⊗ b)

= π1(x)�π2(b).

In an absolutely similar way, we obtain the 2nd line equalities of (6.1), for every y ∈ B0 and a ∈ A.
The uniqueness of π1, π2 is a direct consequence of their definition. �

Remark 6.3. Observe that in Proposition 6.2 the two Banach quasi *-algebras (A[‖ ·‖A], A0) and (B[‖ ·‖B], B0)
have been represented in the same family L†(Dπ, Hπ) of unbounded operators as their tensor product Banach 
quasi *-algebra (A⊗̂n̄B, A0⊗B0), i.e., Dπ1 = Dπ2 = Dπ and Hπ1 = Hπ2 = Hπ. Moreover, by (6.1) the image 
of A under π1 (resp. the image of B under π2) commutes with π2(B0) (resp. π1(A0)). We say that the 
*-representations π1 and π2 of the (Banach) quasi *-algebras (A, A0) and (B, B0) respectively have quasi-
commuting ranges.

Proposition 6.4. Under the assumptions of Proposition 6.2, for every fixed ξ ∈ Dπ, the linear functionals 
ω1(a) := 〈π(a⊗ eB)ξ|ξ〉, for all a ∈ A, and ω2(b) = 〈π(eB ⊗ b)ξ|ξ〉, for all b ∈ B, are representable and 
continuous respectively on (A[‖ · ‖A], A0) and (B[‖ · ‖B], B0).

Proof. Let π1 be the *-representation of (A, A0) defined by π as in the proof of Proposition 6.2. For every 
fixed ξ ∈ Dπ = Dπ1 define a linear functional ω1 : A → C as follows:

ω1(a) := 〈π(a⊗ eB)ξ|ξ〉 = 〈π1(a)ξ|ξ〉, ∀ a ∈ A.

We show that ω1 is representable. The conditions (L.1) and (L.2) of Definition 2.9 are easily verified. To 
show (L.3), consider a ∈ A and x ∈ A0. Then

|ω1(a∗x)| = |〈π1(a∗x)ξ|ξ〉| =
∣∣〈π1(a)†�π1(x)ξ|ξ〉

∣∣ = |〈π1(x)ξ|π1(a)ξ〉|

≤ ‖π1(a)ξ‖‖π1(x)ξ‖ ≤ (γa + 1)〈π1(x∗x)ξ|ξ〉 1
2

= (γa + 1)ω(x∗x) 1
2 ,

where γa = ‖π1(a)ξ‖ ≥ 0.
With a similar argument, it is shown that ω2 : B → C defined as

ω2(b) := 〈π(eA ⊗ b)ξ|ξ〉 = 〈π2(b)ξ|ξ〉, ∀ b ∈ B

is a representable linear functional on B.
We can prove now that ω1 is continuous. For a ∈ A, consider a sequence {an} in A[‖ · ‖A], such that 

‖an − a‖A → 0, as n → ∞. Then

|ω1(an − a)| = |〈π1(an − a)ξ|ξ〉| ≤ γξ‖an − a‖A,

for a positive constant γξ, since π1 is a (‖ · ‖A − τw)-continuous *-representation of (A, A0).
Using exactly the same steps, as before, we can show that ω2 is continuous on (B[‖ · ‖B], B0). �
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If we now consider two *-representations π1, π2 of the (Banach) quasi *-algebras (A[‖ · ‖A], A0) and 
(B[‖ · ‖B], B0) respectively with quasi-commuting ranges, it is unclear how to define a *-representation on 
the tensor product normed quasi *-algebra A ⊗n̄ B, since a priori the range π1(A) (resp. π2(B)) commutes 
only with the range π2(B0) (resp π1(A0)).

Let us see what we can do in this case. If π1 : A → L†(Dπ1 , Hπ1), π2 : B → L†(Dπ2 , Hπ2) are two *-rep-
resentations of the quasi *-algebras (A, A0), (B, B0) respectively, then there is a unique *-representation 
π : A ⊗B → L†(Dπ1 ⊗Dπ2 , Hπ1⊗̂hHπ2) on the tensor product quasi *-algebra (A ⊗B, A0 ⊗B0) defined as 
follows

π(c) :=
n∑

i=1
π1(ai) ⊗ π2(bi), ∀ c =

n∑
i=1

ai ⊗ bi ∈ A⊗B,

where Hπ1⊗̂hHπ2 is the Hilbert space completion of Hπ1 ⊗h Hπ2 with respect to the norm induced by 
the inner product of Hπ1 ⊗h Hπ2 (see Example 5.3). Moreover π1(ai) ⊗ π2(bi), i = 1, ..., n, are uniquely 
defined linear operators from Dπ1 ⊗ Dπ2 in Hπ1⊗̂hHπ2 as in the discussion before Definition 2.16. The 
*-representation π will be denoted by π1 ⊗ π2.

Notice that Dπ1 ⊗ Dπ2 is a dense subspace in Hπ1⊗̂hHπ2 . The linear operator (π1 ⊗ π2)(c) belongs to 
L†(Dπ1⊗Dπ2 , Hπ1⊗̂hHπ2), for every c ∈ A ⊗B, thus the map π1⊗π2 is well-defined and it is linear. Moreover, 
for every c ∈ A ⊗B, z ∈ A0 ⊗B0 we have (π1 ⊗ π2)(c∗) =

(
(π1 ⊗ π2)(c)

)† and π(cz) = π(c)�π(z). Hence, 
all the requirements of Definition 2.8 are verified and π is indeed a *-representation of (A ⊗B, A0 ⊗B0). 
Furthermore, we have the following

Proposition 6.5. Let (A[‖ · ‖A], A0), (B[‖ · ‖B], B0) be Banach quasi *-algebras. Let n̄ be a uniform cross-
norm on A ⊗B. Let π1 : A[‖ · ‖A] → L†(Dπ1 , Hπ1)[τw] and π2 : B[‖ · ‖B] → L†(Dπ2 , Hπ2)[τw] be continuous 
*-representations of (A[‖ · ‖A], A0) and (B[‖ · ‖B], B0), respectively. Then the map π1 ⊗ π2 : A ⊗n̄ B →
L†(Dπ1 ⊗Dπ2 , Hπ1⊗̂hHπ2)[τw] is a continuous *-representation of A ⊗n̄ B.

Proof. We have seen that π1⊗π2 : A ⊗n̄B → L†(Dπ1⊗Dπ2 , Hπ1⊗̂hHπ2)[τw] is a well defined *-representation 
of A ⊗n̄ B. What remains to be shown is that π1 ⊗ π2 is weakly continuous. Let c =

∑n
i=1 ai ⊗ bi ∈ A ⊗n̄ B

and Ψ =
∑m

j=1 ξj ⊗ ηj , Λ =
∑l

k=1 ζk ⊗ χk ∈ Dπ1 ⊗Dπ2 . Then,

〈(π1 ⊗ π2)(c)Ψ|Λ〉 =
m∑
j=1

l∑
k=1

n∑
i=1

〈(π1(ai) ⊗ π2(bi))(ξj ⊗ ηj)|ζk ⊗ χk〉

=
m∑
j=1

l∑
k=1

n∑
i=1

〈π1(ai)ξj ⊗ π2(bi)ηj |ζk ⊗ χk〉

=
m∑
j=1

l∑
k=1

n∑
i=1

〈π1(ai)ξj |ζk〉〈π2(bi)ηj |χk〉

=
m∑
j=1

l∑
k=1

n∑
i=1

fξj ,ζk(ai)gηj ,χk
(bi)

=
m∑
j=1

l∑
k=1

(fξj ,ζk ⊗ gηj ,χk
)
(

n∑
i=1

ai ⊗ bi

)
,

where, for a ∈ A, b ∈ B, we define the linear functionals fξj ,ζk(a) := 〈π1(a)ξj |ζk〉 and gηj ,χk
(b) :=

〈π2(b)ξj |χk〉 on A and B respectively, for j = 1, . . . , m, k = 1, . . . , l. Since π1 and π2 are weakly con-
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tinuous, these functionals are norm continuous, so the same is also true for their tensor product and their 
sum. This implies that π1 ⊗ π2 : A ⊗n̄ B → L†(Dπ1 ⊗Dπ2 , Hπ1⊗̂hHπ2)[τw] is continuous. �
Proposition 6.6. With the same assumptions as in Proposition 6.5, we have the following: for a fixed ξ1 ∈ Dπ1

and ξ2 ∈ Dπ2 , the linear functionals ω1(a) := 〈π1(a)ξ1|ξ1〉, for all a ∈ A, ω2(b) := 〈π2(b)ξ2|ξ2〉, for all 
b ∈ B, are representable and continuous on (A[‖ · ‖A], A0) and (B[‖ · ‖B], B0), respectively. Moreover, their 
tensor product ω1 ⊗ ω2 is a continuous and representable linear functional on A ⊗n̄ B, represented by the 
*-representation π1 ⊗ π2.

Proof. Similarly to Proposition 6.4, the linear functionals ω1 and ω2 are representable and continuous on 
the Banach quasi *-algebras (A[‖ · ‖A], A0) and (B[‖ · ‖B], B0), respectively and their tensor product is 
uniquely defined as

(ω1 ⊗ ω2)(c) :=
n∑

i=1
ω1(ai)ω2(bi), ∀ c =

n∑
i=1

ai ⊗ bi ∈ A⊗n̄ B.

We show that for ξ1 ⊗ ξ2 ∈ Dπ1 ⊗Dπ2 we have

(ω1 ⊗ ω2)(c) = 〈(π1 ⊗ π2)(c)(ξ1 ⊗ ξ2)|ξ1 ⊗ ξ2〉,

for all c =
∑n

i=1 ai ⊗ bi ∈ A ⊗n̄ B. Indeed,

(ω1 ⊗ ω2)
(

n∑
i=1

ai ⊗ bi

)
=

n∑
i=1

ω1(ai)ω2(bi)

=
n∑

i=1
〈π1(ai)ξ1|ξ1〉〈π2(bi)ξ2|ξ2〉

= 〈(π1 ⊗ π2)(c)(ξ1 ⊗ ξ2)|ξ1 ⊗ ξ2〉,

where the *-representation π1 ⊗ π2 is continuous from Proposition 6.5 and this implies that the linear 
functional ω1 ⊗ ω2 is continuous too. Since ω1 ⊗ ω2 is represented by π1 ⊗ π2, its representability can be 
deduced from Proposition 2.9 of [3]. �

Notice that, in Proposition 6.6, π1 ⊗ π2 may be not the *-representation obtained by the GNS-like triple
(see, [24, Theorem 2.4.8]) for the linear functional ω1 ⊗ ω2.

Remark 6.7. In Proposition 6.6, since ω1 ⊗ω2 is continuous, we can consider its extension ω1⊗̂ω2 to A⊗̂n̄B. 
We don’t know whether the aforementioned extension is still representable. However in [1,2] it has been proved 
that this is the case if (A, A0) and (B, B0) are both Hilbert quasi *-algebras. Later on (Proposition 6.10), we 
shall show other cases in the Banach quasi *-algebras framework in which this extension is representable.

Remark 6.8. If ω1 and ω2 are representable linear functionals on the quasi *-algebras (A, A0) and (B, B0)
respectively, then we can consider the tensor product of their GNS *-representations πω1 and πω2 , denoted 
by πω1 ⊗ πω2 . The tensor product ω1 ⊗ ω2 is represented by πω1 ⊗ πω2 , hence it is representable on A ⊗B

(see [3, Proposition 2.9]). However, it remains unclear if πω1 ⊗ πω2 is unitary equivalent to πω1⊗ω2 .

6.2. *-Semisimplicity and full representability

We now want to investigate how *-semisimplicity and full representability behave with the construction 
of a tensor product normed, respectively, Banach quasi *-algebra. For the normed case, we have to assume 
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some extra properties on the considered topological quasi *-algebras (see Theorems 6.11 and 6.20). For the 
Banach case, the question remains, at the moment, open.

Proposition 6.9. Let (A[‖ · ‖A], A0) and (B[‖ · ‖B], B0) be Banach quasi *-algebras. Let A⊗̂n̄B be their tensor 
product Banach quasi *-algebra for a uniform cross-norm n̄.

• If Ω is a representable and continuous linear functional on A⊗̂n̄B, then the linear functionals ω1(a) :=
Ω(a ⊗ eB), a ∈ A, ω2(b) := Ω(eA ⊗ b), b ∈ B, are representable and continuous on (A[‖ · ‖A], A0) and 
(B[‖ · ‖B], B0), respectively.

• If Φ is an element in SA0⊗B0(A⊗̂n̄B), then φ1(a1, a2) := Φ(a1 ⊗ eB, a2 ⊗ eB), for any a1, a2 ∈ A, is in 
SA0(A), and φ2(b1, b2) := Φ(eA ⊗ b1, eA ⊗ b2), for any b1, b2 ∈ B, is in SB0(B).

Proof. Let Ω and ω1 be as above. By Remark 6.1, A[‖ · ‖A] = A ⊗n̄ {eA}, with respect to a *-isometric 
isomorphism, therefore ω1 is continuous and representable on A[‖ · ‖A]. Analogously, the same is true for ω2.

Consider now Φ ∈ SA0⊗B0(A⊗̂n̄B) and define

φ1(a1, a2) := Φ(a1 ⊗ eB, a2 ⊗ eB), ∀ a1, a2 ∈ A,

φ2(b1, b2) := Φ(eA ⊗ b1, eA ⊗ b2), ∀ b1, b2 ∈ B.

Then, again by Remark 6.1, φ1 ∈ SA0(A) and φ2 ∈ SB0(B) as restrictions of Φ on A × A and B × B

respectively. �
We would like to know whether the two assertions of Proposition 6.9 have a kind of converse. More 

precisely, if ω1 ∈ Rc(A, A0), ω2 ∈ Rc(B, B0), then their tensor product ω1 ⊗ ω2, defined as

(ω1 ⊗ ω2)
(

n∑
i=1

ai ⊗ bi

)
:=

n∑
i=1

ω1(ai)ω2(bi), ∀
n∑

i=1
ai ⊗ bi ∈ A⊗B,

is a well-defined linear functional on A ⊗n̄B. Moreover, it is continuous by the uniform cross-norm property 
and representable by Remark 6.8. Thus ω1⊗ω2 ∈ Rc(A ⊗n̄B, A0⊗B0). Concerning its extension to A⊗̂n̄B, 
see Remark 6.7.

The situation is different when considering φ1 ∈ SA0(A), φ2 ∈ SB0(B). Indeed, their tensor product 
φ1 ⊗ φ2, defined as

(φ1 ⊗ φ2)(c, c′) :=
n∑

i=1

m∑
j=1

φ1(ai, cj)φ2(bi, dj), (6.2)

for any c =
∑n

i=1 ai⊗bi, c′ =
∑m

j=1 cj ⊗dj in A ⊗n̄B, is a sesquilinear form, but only separately continuous. 
To get its continuity, we have to assume an extra condition (see Proposition 6.10). Moreover, as in the case 
of continuous and representable linear functionals, discussed above, if (A, A0) and (B, B0) are Hilbert quasi 
*-algebras, then for φ1 ∈ SA0(A) and φ2 ∈ SB0(B), one has that φ1⊗̂φ2 belongs to SA0⊗B0(A⊗̂hB); see [2].

� In the sequel, we shall assume barrelledness (cf. [40, Definition 4.1.1]) for our normed space A ⊗n̄ B. 
Note that all Banach spaces are barrelled, so by [40, Corollary 11.3.8], A ⊗n̄ B is barrelled when n̄ = γ, the 
projective cross-norm.

Proposition 6.10. Let (A[‖ · ‖A], A0), (B[‖ · ‖B], B0) be Banach quasi *-algebras. Let n̄ be a uniform cross-
norm, such that A ⊗n̄ B is a barrelled normed space. The following hold:
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(1) if φ1 ∈ SA0(A), φ2 ∈ SB0(B), then φ′ = (φ1 ⊗ φ2)/‖φ1 ⊗ φ2‖ can be extended to an element
Φ ∈ SA0⊗B0(A⊗̂n̄B);

(2) if ω1 ∈ Rc(A, A0), ω2 ∈ Rc(B, B0), then ω1⊗ω2 can be extended to an element of Rc(A⊗̂n̄B, A0⊗B0).

Proof. (1) Let 0 �= φ1 ∈ SA0(A), 0 �= φ2 ∈ SB0(B) be given. Then by (6.2) the map φ1 ⊗φ2 is non-zero and 
well-defined. We show that it is positive, i.e., for c =

∑n
i=1 ai ⊗ bi ∈ A ⊗n̄ B, one has (φ1 ⊗ φ2)(c, c) ≥ 0. 

Indeed, by [3, Proposition 2.9] (see also (2.6) and proofs of [3, Proposition 3.6 and Theorem 3.9]), we have

φ1(ai, aj) = 〈πωφ1
(ai)ξωφ1

|πωφ1
(aj)ξωφ1

〉,

φ2(bi, bj) = 〈πωφ2
(bi)ξωφ2

|πωφ2
(bj)ξωφ2

〉,

for all i, j = 1, . . . , n, where πωφ1
and πωφ2

are the GNS *-representations associated to ωφ1 and ωφ2 , 
respectively. Therefore,

(φ1 ⊗ φ2)(c, c) =
n∑

i,j=1
φ1(ai, aj)φ2(bi, bj)

=
n∑

i,j=1
〈πωφ1

(ai)ξωφ1
|πωφ1

(aj)ξωφ1
〉〈πωφ2

(bi)ξωφ2
|πωφ2

(bj)ξωφ2
〉

=
n∑

i,j=1
〈(πωφ1

⊗ πωφ2
)(ai ⊗ bi)(ξωφ1

⊗ ξωφ2
)|(πωφ1

⊗ πωφ2
)(aj ⊗ bj)(ξωφ1

⊗ ξωφ2
)〉

= ‖(πωφ1
⊗ πωφ2

)(c)(ξωφ1
⊗ ξωφ2

)‖2 ≥ 0

Moreover, by the properties of φ1, φ2, we obtain

(φ1 ⊗ φ2)(cz, z′) = (φ1 ⊗ φ2)(z, c∗z′), ∀ c ∈ A⊗n̄ B, z, z′ ∈ A0 ⊗B0.

What remains to be shown is that φ1⊗φ2 is continuous. For this aim, we associate an operator T1 : A → A∗, 
where A∗ is the topological dual of A, to φ1, in the following way

a 
→ T1(a) := φ1(·, a), ∀ a ∈ A,

where φ1(·, a) is a continuous linear functional defined as follows

φ1(·, a) : A[‖ · ‖A] → C : a1 
→
(
φ1(·, a)

)
(a1) := φ1(a1, a).

Similarly, we can define T2 : B → B∗. Then for c, c′ as above we have

|(φ1 ⊗ φ2)(c, c′)| =

∣∣∣∣∣∣
n∑

i=1

m∑
j=1

φ1(ai, cj)φ2(bi, dj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m∑
j=1

T1(cj) ⊗ T2(dj)
(

n∑
i=1

ai ⊗ bi

)∣∣∣∣∣∣
≤

∥∥∥∥∥
m∑
j=1

T1(cj) ⊗ T2(dj)

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

ai ⊗ bi

∥∥∥∥∥
n̄

,
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since T1(cj), T2(dj) are continuous for j = 1, . . . , m and n̄ is a uniform cross-norm. On the other hand, by 
the fact that φ1 and φ2 are hermitian (i.e., Φ1(a, b) = Φ1(b, a), (a, b) ∈ A × A, similarly for Φ2), using the 
previous inequality, we obtain

|(φ1 ⊗ φ2)(c, c′)| ≤
∥∥∥∥∥

n∑
i=1

T1(ai) ⊗ T2(bi)

∥∥∥∥∥
∥∥∥∥∥

n∑
j=1

cj ⊗ dj

∥∥∥∥∥
n̄

.

Thus we have shown that φ1 ⊗ φ2 is separately continuous on each component. By hypothesis, A ⊗n̄ B is 
a barrelled normed space and the same is true for its product with itself [29, p. 215, Corollary (b)]. Hence 
([29], p. 357, Theorem 1), φ1 ⊗ φ2 : (A ⊗n̄ B) × (A ⊗n̄ B) → C is a continuous sesquilinear form and thus 
it can be uniquely extended to the Banach space (A⊗̂n̄B)×(A⊗̂n̄B), the completion of the normed space 
(A ⊗n̄ B) × (A ⊗n̄ B), and its extension φ1⊗̂φ2 is given as follows

(φ1⊗̂φ2)(u, v) = lim
n→∞

(φ1 ⊗ φ2)(cn, dn), u, v ∈ A⊗̂n̄B,

where {cn} and {dn} are sequences in A ⊗n̄ B, ‖ · ‖n̄-converging to u and v, respectively. Notice that φ1⊗̂φ2
belongs to QA0⊗B0(A⊗̂n̄B) (see after Definition 2.9) and if we consider Φ := (φ1⊗̂φ2)/‖φ1⊗̂φ2‖, then 
Φ ∈ SA0⊗B0(A⊗̂n̄B).

(2) Let ω1, ω2 be representable and continuous linear functionals on A[‖ · ‖A] and B[‖ · ‖B], respectively. 
Then by [3, Proposition 3.6], the associated sesquilinear forms ϕω1

and ϕω2
, defined as

ϕω1
(a, a) := lim

n→∞
ϕω1(xn, xn), ϕω2

(b, b) := lim
n→∞

ϕω2(yn, yn),

whenever {xn} in A0 and {yn} in B0 are sequences converging respectively to a ∈ A and b ∈ B, are bounded. 
Hence, employing the same arguments as in (1), ϕω1

⊗ϕω2
is a continuous sesquilinear form on the normed 

space (A ⊗n̄ B)×(A⊗n̄ B) and thus it can be uniquely extended to the Banach space (A⊗̂n̄B)×(A⊗̂n̄B)
completion of (A ⊗n̄ B)×(A⊗n̄ B). Let us denote this extension as ϕω1

⊗̂ ϕω2
.

Define now the linear functional Ω(u) := (ϕω1
⊗̂ ϕω2

)(u, eA ⊗ eB), for u in A⊗̂n̄B. Ω is continuous and 
representable, since as in the proof of (1) ϕω1

⊗̂ ϕω2
belongs to QA0⊗B0(A⊗̂n̄B) and it is continuous.

Notice that ω1 ⊗ ω2 is continuous (see comments after Proposition 6.9), hence it can be extended to 
A⊗̂n̄B. We want to show that its (continuous) extension ω1⊗̂ω2 corresponds to Ω. For this aim, it suffices 
to show that they agree on the dense subspace A ⊗n̄ B of A⊗̂n̄B.

Let c =
∑n

i=1 ai ⊗ bi ∈ A ⊗n̄ B. Then

Ω(c) = (ϕω1
⊗ ϕω2

)(c, eA ⊗ eB) =
n∑

i=1
ϕω1

(ai, eA)ϕω2
(bi, eB)

=
n∑

i=1
ω1(ai)ω2(bi) = (ω1 ⊗ ω2)(c).

We conclude that Ω = ω1⊗̂ω2 and therefore ω1⊗̂ω2 is representable. �
In the rest of this section we investigate whether full representability and *-semisimplicity (see Defini-

tions 2.11, 2.13, resp.) of a tensor product normed quasi *-algebra passes to the normed quasi *-algebras, 
factors of the tensor product under consideration and vice versa. Note that full representability is closely re-
lated with *-semisimplicity, but also with the existence of faithful continuous *-representations on topological 
quasi *-algebras [13, Theorem 7.3]. We begin with an answer to the question concerning *-semisimplicity.
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Theorem 6.11. Let (A[‖ · ‖A], A0), (B[‖ · ‖B], B0) be Banach quasi *-algebras and let n̄ be a uniform cross-
norm. Consider the following statements:

(1) (A ⊗n̄ B, A0 ⊗B0) is *-semisimple;
(2) (A[‖ · ‖A], A0) and (B[‖ · ‖B], B0) are *-semisimple;

Then (1) ⇒ (2) and when A ⊗n̄ B is barrelled, one also has that (2) ⇒ (1).

Proof. (1) ⇒ (2) Let a �= 0. We show that A[‖ · ‖A] is *-semisimple. By Remark 6.1, a ⊗ eB �= 0. Since 
A ⊗n̄ B is *-semisimple, there exists Φ in SA0⊗B0(A ⊗n̄ B), such that Φ(a ⊗ eB, a ⊗ eB) > 0.

By Proposition 6.9, there exists a sesquilinear form φ1 ∈ SA0(A) defined as restriction of Φ on A × A. 
Thus we have

φ1(a, a) = Φ(a⊗ eB, a⊗ eB) > 0, ∀ a ∈ A \ {0},

which implies that (A[‖ ·‖A], A0) is *-semisimple. In the same way, we have that (B[‖ ·‖B], B0) is *-semisimple.
(2) ⇒ (1) Suppose now that A ⊗n̄ B is barrelled. Let 0 �=

∑n
i=1 ai ⊗ bi ∈ A ⊗n̄ B. Then for some index 

i0, ai0 ⊗ bi0 �= 0, so that ai0 �= 0 and bi0 �= 0. Since (A[‖ · ‖A], A0) and (B[‖ · ‖B], B0) are *-semisimple, 
there will exist φ1 ∈ SA0(A) and φ2 ∈ SB0(B), such that φ1(ai0 , ai0) > 0 and φ2(bi0 , bi0) > 0. Take now 
Φ ∈ SA0⊗B0(A ⊗n̄ B) defined by the pair (φ1, φ2) ∈ SA0(A) × SB0(B), as in Proposition 6.10 (1). Then

Φ

⎛⎝ n∑
i=1

ai ⊗ bi,
n∑

j=1
aj ⊗ bj

⎞⎠ = γφ1⊗φ2

n∑
i,j=1

φ1(ai, aj)φ2(bi, bj)

= γφ1⊗φ2

⎡⎣ ∑
i∧j �=i0

φ1(ai, aj)φ2(bi, bj) + φ1(ai0 , ai0)φ2(bi0 , bi0)

⎤⎦ > 0,

where γφ1⊗φ2 = ‖φ1 ⊗ φ2‖ > 0. Thus, (A ⊗n̄ B, A0 ⊗B0) is *-semisimple. �
From the comments before Proposition 6.10 and Theorem 6.11, we have the following characterization 

of *-semisimplicity for a projective tensor product normed quasi *-algebra.

Corollary 6.12. Let (A[‖ · ‖A], A0), (B[‖ · ‖B], B0) be Banach quasi *-algebras and let γ be the projective 
cross-norm. Then the following statements are equivalent:

(1) (A ⊗γ B, A0 ⊗B0) is *-semisimple;
(2) (A[‖ · ‖A], A0) and (B[‖ · ‖B], B0) are *-semisimple.

The property of *-semisimplicity for a normed quasi *-algebra A can also be characterized through the 
existence of faithful (‖ · ‖A-τs∗)-continuous *-representations. More precisely, one has Theorem 6.14 (on the 
same lines of proof of the following result from [13])

Theorem 6.13. [13, Theorem 7.3] Let (A[‖ · ‖A], A0) be a normed quasi *-algebra. Then the following state-
ments are equivalent:

(1) there exists a faithful (‖ · ‖A - τs∗)-continuous *-representation π of (A[‖ · ‖A], A0);
(2) (A[‖ · ‖A], A0) is *-semisimple.
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As a direct consequence of Theorem 6.11 and Theorem 6.13, we obtain

Theorem 6.14. Let (A[‖ · ‖A], A0), (B[‖ · ‖B], B0) be Banach quasi *-algebras and let n̄ be a uniform cross-
norm on A ⊗B. Consider the following statements:

(1) there exists a faithful (‖ · ‖n̄ - τs∗) continuous *-representation π of (A ⊗n̄ B, A0 ⊗B0);
(2) there exist faithful (‖ · ‖ - τs∗) continuous *-representations π1 of (A[‖ · ‖], A0) and π2 of (B[‖ · ‖], B0), 

with ‖ · ‖ being ‖ · ‖A and ‖ · ‖B, respectively.

Then (1) ⇒ (2) and when A ⊗n̄ B is barrelled, one also has that (2) ⇒ (1).

Theorems 6.15 and 6.20 below give an answer to the second question posed right before Theorem 6.11
and concerns full representability.

Theorem 6.15. Let (A[‖ · ‖A], A0) and (B[‖ · ‖B], B0) be Banach quasi *-algebras. Let n̄ be a uniform cross-
norm. If (A ⊗n̄B, A0⊗B0) is fully representable, then (A[‖ ·‖A], A0) and (B[‖ ·‖B], B0) are fully representable 
too.

Proof. We show that (A[‖ ·‖A], A0) is fully representable. By [3, Theorem 3.9], it suffices to show equivalently 
that Rc(A, A0) is sufficient. Let a ∈ A+, with a �= 0. Then, by Remark 6.1, a ⊗ eB is positive and nonzero in 
A ⊗n̄B. So by full representability of A ⊗n̄B, there exists Ω ∈ Rc(A ⊗n̄B, A0⊗B0), such that Ω(a ⊗eB) > 0.

Now, by Proposition 6.9, there exists a representable and continuous linear functional ω1 on A defined as 
restriction of Ω on A ×A. Thus ω1(a) = Ω(a ⊗ eB) > 0. Therefore, we conclude that Rc(A, A0) is sufficient. 
The same argument applies for the Banach quasi *-algebra (B[‖ · ‖B], B0). �

For the opposite direction of Theorem 6.15, we shall assume the condition (of positivity) (P ), which reads 
as follows:

a ∈ A with ω(x∗ax) ≥ 0, ∀ ω ∈ Rc(A,A0) and ∀ x ∈ A0 implies a ∈ A+, (6.3)

see e.g., [23, Section 3] and [3, Remark 2.18].
For the type of converse to Theorem 6.15 mentioned before we shall first prove a series of lemmas. We 

begin with two Banach quasi *-algebras (A[‖ · ‖A], A0) and (B[‖ · ‖B], B0). Let (A ⊗n̄ B, A0 ⊗B0) be the 
corresponding tensor product normed quasi *-algebra with respect to the uniform cross-norm n̄ as above. 
Consider Ω ∈ Rc(A ⊗n̄B, A0⊗B0). Then a sesquilinear form ϕΩ is defined on (A0⊗B0) ×(A0⊗B0) by (2.3). 
Employing the GNS representation πΩ of the representable linear functional Ω, as well as the corresponding 
cyclic vector ξΩ (see, e.g., [24, Theorem 2.4.8]), we have that

Ω(c) = 〈πΩ(c)ξΩ|ξΩ〉, ∀ c ∈ A⊗n̄ B.

Consider the sesquilinear form φΩ : (A ⊗n̄ B) × (A ⊗n̄ B) → C defined by

φΩ(c, c′) = 〈πΩ(c)ξΩ|πΩ(c′)ξΩ〉, ∀ c, c′ ∈ A⊗n̄ B, (6.4)

where πΩ and ξΩ are as before. Moreover note that φΩ = ϕΩ on (A0 ⊗B0) × (A0 ⊗B0). Then we have the 
following

Lemma 6.16. The sesquilinear form φΩ, defined everywhere on (A ⊗n̄ B) × (A ⊗n̄ B) → C, is closed.
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Proof. If {vn} is a sequence in A ⊗n̄ B, such that vn → v in A ⊗n̄ B and

φΩ(vn − vm, vn − vm) → 0, as n,m → ∞, (6.5)

we must show that φΩ(vn − v, vn − v) → 0, as n → ∞ (see, for instance [19, Definition 53.12]). From (6.5), 
we obtain

φΩ(vn − vm, vn − vm) = 〈πΩ(vn − vm)ξΩ|πΩ(vn − vm)ξΩ〉
= ‖πΩ(vn − vm)ξΩ‖2

= ‖πΩ(vn)ξΩ − πΩ(vm)ξΩ‖2 → 0.

This proves that {πΩ(vn)ξΩ} is a Cauchy sequence in HΩ. Thus there exists ζ ∈ HΩ, such that
‖πΩ(vn)ξΩ − ζ‖ → 0. The weak continuity of πΩ gives

〈πΩ(vn)ξΩ|η〉 → 〈πΩ(v)ξΩ|η〉, ∀ η ∈ DπΩ .

Therefore, 〈ζ|η〉 = 〈πΩ(v)ξΩ|η〉, for every η ∈ DπΩ . We conclude that ζ = πΩ(v)ξΩ, v ∈ D(φΩ) = A ⊗n̄ B

and that

‖πΩ(vn)ξΩ − πΩ(v)ξΩ‖ = φΩ(vn − v, vn − v) → 0,

i.e., φΩ is a closed sesquilinear form. �
On the quasi *-algebra A ⊗B define the norm [38, Subsection 1.2]

‖c‖φΩ :=
√

‖c‖2
n̄ + φΩ(c, c) =

√
‖c‖2

n̄ + ‖πΩ(c)ξΩ‖2, ∀ c ∈ A⊗B. (6.6)

The normed space A ⊗B[‖ · ‖φΩ ] will be denoted, for short, by A ⊗φΩ B and its respective completion by 
A⊗̂φΩB.

In this regard, we have the following

Lemma 6.17. The correspondence

j : A⊗n̄ B → A⊗̂φΩB : j(c) = c ∈ A⊗̂φΩB, ∀ c ∈ A⊗n̄ B,

is a well defined closed linear operator.

Proof. We first prove that j is well defined. Indeed, let c ∈ A ⊗n̄B with c =
∑n

i=1 ai⊗bi = 0. Then ‖c‖n̄ = 0
and πΩ(c) = 0. Hence ‖πΩ(c)ξΩ‖2 = 0. Therefore, ‖c‖φΩ = 0, i.e., j(c) = 0. Clearly, the map j is the identity 
map and it is linear.

We know that j will be closed if, and only if, its graph Gj := {(c, j(c)) : c ∈ A ⊗n̄ B} is closed in 
(A⊗̂n̄B) × (A⊗̂φΩB). To show the closedness of the operator j means that for any sequence {cn} in A ⊗n̄ B, 
such that ‖cn−c‖n̄ → 0 and ‖j(cn) −d‖φΩ → 0, for some d ∈ A⊗̂φΩB, it holds that c ∈ A ⊗n̄B and j(c) = d.

The sequences {cn} and {j(cn)} are ‖ · ‖n̄-, respectively ‖ · ‖φΩ-Cauchy, so

‖j(cn) − j(cm)‖2
φΩ

= ‖cn − cm‖2
n̄ + φΩ(cn − cm, cn − cm) → 0,

which implies that φΩ(cn − cm, cn − cm) → 0. Since ‖cn − c‖n̄ → 0 and φΩ is closed (see Lemma 6.16), we 
have that c ∈ A ⊗n̄ B and φΩ(cn − c, cn − c) → 0. Hence
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‖j(cn) − j(c)‖2
φΩ

= ‖cn − c‖2
n̄ + φΩ(cn − c, cn − c) → 0,

consequently j(c) = d. �
In the proof of Lemma 6.19 below we use a closed graph theorem in the context of locally convex spaces 

due to A.P. Robertson and W. Robertson, that we state for the sake of completeness.

Theorem 6.18. Let E be a barrelled space, F a Pták space, f : E → F a linear map, and suppose that the 
graph G of f is closed in the product space E × F . Then f is continuous.

For the proof of Theorem 6.18 and the corresponding terminology, see [29, p. 299, Definition 2 and p. 301, 
Theorem 4].

Lemma 6.19. Let (A[‖ · ‖A], A0), (B[‖ · ‖B], B0) be Banach quasi *-algebras, such that their n̄-tensor product 
normed quasi *-algebra (A ⊗n̄ B, A0 ⊗B0) is barrelled. Then if Ω ∈ Rc(A ⊗n̄ B, A0 ⊗B0), the sesquilinear 
form φΩ defined in (6.4) is continuous.

Proof. Consider the closed identity operator j of Lemma 6.17. Notice that its domain A ⊗n̄ B is a barrelled 
space and its range A⊗̂φΩB is a Pták space, as a Banach space (see [29, p. 299, Definition 2 and Proposition 
3(a)]). Moreover, the identity operator j being closed has a closed graph, so, by Theorem 6.18, is continuous. 
Therefore, there exists a non-negative constant γ, such that

‖j(c)‖2
φΩ

≤ γ2‖c‖2
n̄, ∀ c ∈ A⊗n̄ B.

From (6.6), we now obtain

φΩ(c, c) ≤ γ2‖c‖2
n̄, ∀ c ∈ A⊗n̄ B,

that yields continuity of φΩ. �
We are now ready to state and prove the type of converse to Theorem 6.15 announced after the proof of 

the aforementioned theorem.

Theorem 6.20. Let (A[‖ · ‖A], A0), (B[‖ · ‖B], B0) be Banach quasi *-algebras that are fully representable and 
satisfy the condition (P) (see (6.3)). Suppose also that the normed quasi *-algebra (A ⊗n̄ B, A0 ⊗ B0) is 
barrelled. Then (A ⊗n̄ B, A0 ⊗B0) is fully representable.

Proof. Following the same argument as in [3, Theorem 3.9], we can show that fully representability and 
condition (P) for (A[‖ · ‖A], A0) and (B[‖ · ‖B], B0) implies their *-semisimplicity. From Theorem 6.11, this 
gives that (A ⊗n̄ B, A0 ⊗B0) is *-semisimple. Hence the family Rc(A ⊗n̄ B, A0 ⊗B0) is sufficient. We still 
have to show that D(ϕΩ) = A ⊗n̄ B, for every Ω ∈ Rc(A ⊗n̄ B, A0 ⊗B0); for the definition of ϕΩ, see (2.4).

For this aim, consider now the sesquilinear form

φΩ : (A⊗n̄ B) × (A⊗n̄ B) → C

defined in (6.4). Observe that the restriction of φΩ on (A0⊗B0) ×(A0⊗B0) is ϕΩ (see discussion after (6.3)) 
and that A0 ⊗B0 is dense in A ⊗n̄ B. Since by Lemma 6.19, φΩ is continuous, we conclude that φΩ = ϕΩ
on the whole of (A ⊗n̄ B) × (A ⊗n̄ B); thus D(ϕΩ) = A ⊗n̄ B and this completes the proof. �

An immediate consequence of Theorem 6.15 and Theorem 6.20 is the following
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Corollary 6.21. Let (A[‖ · ‖A], A0), (B[‖ · ‖B], B0) be Banach quasi *-algebras satisfying condition (P). Con-
sider on A ⊗B the projective cross-norm γ. Then the following are equivalent:

(1) both of (A[‖ · ‖A], A0) and (B[‖ · ‖B], B0) are fully representable;
(2) the tensor product normed quasi *-algebra A ⊗γ B is fully representable.

Note that in all the results of Section 6, the uniform cross-norm n̄ can be replaced by the projective 
cross-norm γ. The tensor product Banach quasi *-algebra defined in Example 5.3 is, in particular, a tensor 
product Hilbert quasi *-algebra (see [1, Theorem 3.3]); therefore it is automatically *-semisimple and fully 
representable (see [3, Theorem 3.9]). The questions raised at the beginning of Subsection 6.2 have been 
answered in the case of the tensor product normed quasi *-algebras, with the extra condition of barrelledness 
on the aforementioned tensor product, and under the assumption of condition (P) on the given Banach 
quasi*-algebras, in the case of full representability (see Theorems 6.11 and 6.20). Moreover, employing the 
projective cross-norm γ, Corollaries 6.12 and 6.21 come up with a full characterization of *-semisimplicity, 
respectively full representability, in the last case under the condition (P) for the Banach quasi *-algebras 
involved. Thus one naturally asks ‘under which conditions Theorems 6.11 and 6.20 hold for a tensor product 
Banach quasi *-algebra. Both of these last questions do not look so manageable. Thus there is still a lot of 
work to be carried out. As we know, both (topological) tensor products and (topological) quasi *-algebras 
have applications to quantum dynamics and quantum statistics (for more information, in this aspect, see 
[24]), consequently, it is worth continuing the study we have started with this paper.
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