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Distributional equation is an important tool in the characterization theory because 
many characteristic properties of distributions can be transferred to such equations. 
Using a novel and natural approach, we retreat a remarkable distributional equation 
whose corresponding functional equation in terms of Laplace–Stieltjes transform is 
of the Poincaré type. The necessary and sufficient conditions for the equation to have 
a unique distributional solution with finite variance are provided. This complements 
the previous results which involve at most the mean of the distributional solution. 
Besides, more general distributional (or functional) equations are investigated as 
well.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

One useful method to characterize probability distributions is through suitable distributional equations 
(see, e.g., [18,19,11,7,9], and the references therein). In this paper, we will retreat a remarkable distributional 
equation described below.

Let X and T be two nonnegative random variables having distributions F and FT , respectively, denoted 
X ∼ FX = F , T ∼ FT . Let {Xi}∞i=1 be a sequence of independent and identically distributed (i.i.d.) random 
variables having distribution F on R+ ≡ [0, ∞), and let {Ti}∞i=1 be another sequence of i.i.d. random 
variables having distribution FT . Moreover, let N be a random variable taking values in N0 ≡ {0, 1, 2, . . . }, 
and assume that all the random variables X, Xi, T, Ti, N are independent. For given T and N , we will 
investigate the distributional equation
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X
d=

N∑
i=1

TiXi, (1)

where ‘ d=’ means equality in distribution and the summation is zero if N takes value 0. For applications of 
Eq (1) in various fields, see, e.g., the survey paper by Liu [14].

Let PN denote the probability generating function (pgf) of N and let F̂ be the Laplace–Stieltjes transform 
of X ∼ F ; namely, PN (t) = E[tN ] =

∑∞
k=0 Pr(N = k)tk, t ∈ [0, 1], where 00 ≡ 1, and F̂ (s) = E[exp(−sX)], 

s ≥ 0. Then the distributional equation (1) can be further transferred to the following functional equation 
in terms of F̂ , FT and PN :

F̂ (s) = PN

( ∞∫
0

F̂ (ts)dFT (t)
)

= PN

(
E[exp(−sTX)]

)
, s ≥ 0. (2)

When FT is a degenerate distribution at p ∈ (0, 1), namely, Pr(T = p) = 1, Eq (1) reduces to X
d=
∑N

i=1 pXi, 
and Eq (2) is exactly the Poincaré functional equation

F̂ (s) = PN

(
F̂ (ps)

)
, s ≥ 0, (3)

which arises in the Galton–Watson processes [16,17]. So we call the general Eq (2) a functional equation of 
the Poincaré type.

It is seen that once Eq (1) or Eq (2) has a solution X ∼ F , each constant multiplication of X also plays 
a solution to Eq (1). However, the solution might be unique, provided we fix the mean of the distributions. 
In this sense, Eq (1) or Eq (2) becomes a characteristic property of the distributional solution. A typical 
example is the classical characterization of the exponential distribution through Eq (3), where we can take 
N obeying the geometric distribution: Pr(N = n) = p(1 − p)n−1, n ≥ 1; see, e.g., Azlarov and Volodin [1], 
p. 79.

The properties of the solutions X ∼ F heavily depend on those of the given T and N . Some results about 
Eqs (1) and (2) are available in the literature. For example, denote the counting number Ñ =

∑N
i=1 I{Ti>0}, 

where IA is the indicator function of the set A. Then for given N and T ∼ FT with the conditions Pr(Ñ =
0 or 1) < 1 and Pr(T = 0 or 1) < 1 (which are used to exclude some trivial cases), the following results 
hold (see [15], Theorem 1.1, and the references therein):
(i) Eq (1) (or Eq (2)) has a solution 0 ≤ X ∼ F iff the random variables N and T together satisfy the 
conditions

Pr(T > 0)E[N ] > 1, E[N ]E[Tα] = 1 and E[Tα log T ] ≤ 0 for some α ∈ (0, 1]; (4)

(ii) Eq (1) (or Eq (2)) has a solution 0 ≤ X ∼ F with finite mean iff the random variables N and T together 
satisfy the conditions

Pr(T > 0)E[N ] > 1, E[N ]E[T ] = 1, E[N log+ N ] < ∞ and E[T log T ] < 0, (5)

where log+ x = log x if x ≥ 1 and log+ x = 0 otherwise, and 0 log 0 ≡ 0.
One of the main purposes in this paper is to find the necessary and sufficient conditions for which Eq 

(2) (or Eq (1)) has a unique solution F (on R+) with a fixed mean and finite variance, and hence it can 
be used to characterize distributions. This complements the above results (i) and (ii) which involve at most 
the mean of the distributional solution. Our approach is different from the previous ones and is somehow 
more natural. Moreover, some general cases are also investigated. The main results are stated in the next 
section, while their proofs are given in Section 4. The needed lemmas are provided in Section 3. Finally, we 
have some discussions in Section 5.
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2. Main results

We start with the simplest case Eq (1) (or Eq (2)). More complicated cases will follow.

Theorem 1. Let 0 ≤ X ∼ F with Laplace–Stieltjes transform F̂ and μ = E[X] ∈ (0, ∞). Let T ≥ 0 and 
N ≥ 0 be two given random variables, where N takes values in N0 and has pgf PN . Then for given μ, the 
random variables N and T together satisfy the conditions

E[N ]E[T ] = 1, 0 < E[T 2] < E[T ] < 1, and E[N2] < ∞ (6)

iff the functional equation (2) has exactly one solution F with mean μ and a finite variance. Moreover, the 
variance is of the form

Var(X) = (E[T ])2Var(N) + E[N ]Var(T )
1 − E[N ]E[T 2] · μ2 (7)

with E[N ] = 1/E[T ].

Unlike the previous results (i) and (ii) (which assume some initial conditions on Ñ and T to exclude the 
trivial cases), we don’t assume explicitly any initial condition in Theorem 1. But each of the sufficiency and 
necessity parts does imply implicitly the following: Pr(N = 1) < 1 or Pr(T = 1) < 1. To see this, if on the 
contrary Pr(N = 1) = Pr(T = 1) = 1, then the second condition in (6) fails to hold. Moreover, in this case, 
Eqs (1) and (2) reduce to the identities X d= X1 and F̂ (s) = F̂ (s), s ≥ 0, respectively, so the solution to 
Eq (2) is not unique, a contradiction to the assumption in the sufficiency part.

The following result is about a characterization of degenerate distributions.

Corollary 1. Under the setting of Theorem 1, the functional equation (2) has exactly one solution F degen-
erate at mean μ = E[X] iff the random variables N and T are degenerate at E[N ] and E[T ], respectively, 
and E[T ] = (E[N ])−1 ∈ (0, 1); precisely, Pr(N = n0) = 1 for some integer n0 ≥ 2 and Pr(T = 1/n0) = 1.

When Pr(T = p) = 1 for some p ∈ (0, 1) in Theorem 1, we are able to rewrite Hu and Cheng’s [6]
Theorem 1 with α = 1 and Corollary 1 as follows.

Corollary 2. Let p ∈ (0, 1) and μ ∈ (0, ∞) be two constants. Let N ≥ 0 be a random variable taking values 
in N0 and let 0 ≤ X ∼ F with mean μ and Laplace–Stieltjes transform F̂ . Then for given μ, the random 
variable N satisfies the conditions

E[N ] = 1/p and E[N2] < ∞

iff the Poincaré functional equation (3) has exactly one solution F with mean μ and a finite variance. 
Moreover, the variance is equal to

Var(X) = p2Var(N)
1 − p

· μ2.

It is seen that the set of conditions (5) is stronger than (4), while (6) is stronger than both (4) and (5), 
as seen below. This in turn implies that the solution F in Theorem 1 belongs to the classes of the previous 
solutions to Eq (2) under conditions (4) or (5).

Proposition 1. Suppose that N and T are two nonnegative random variables satisfying E[N ]E[T ] = 1 and 
0 < E[T 2] < E[T ] < 1. Then Pr(T > 0)E[N ] > 1 and E[T log T ] < 0.
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If, in addition to (1), assume that N ≥ m, where m ≥ 1 is an integer, then we can split the RHS of (1)
into two parts:

X
d=

m∑
i=1

TiXi +
N∗∑
j=1

Tj+mXj+m, (8)

where N∗ = N −m ≥ 0. This is equivalent to study the functional equation

F̂ (s) =
( ∞∫

0

F̂ (ts)dFT (t)
)m

PN

( ∞∫
0

F̂ (ts)dFT (t)
)

(9)

=
(
E[exp(−sTX)]

)m
PN

(
E[exp(−sTX)]

)
, s ≥ 0,

where N ≥ 0 as in Eq (2).
In the next two theorems, we consider Eq (9) for the cases m = 1 and m ≥ 2, separately (see the 

explanations right after Theorem 3).

Theorem 2. Let 0 ≤ X ∼ F with Laplace–Stieltjes transform F̂ and μ = E[X] ∈ (0, ∞). Let T ≥ 0 and 
N ≥ 0 be two given random variables, where N takes values in N0 and has pgf PN . Then for given μ, the 
random variables N and T together satisfy the conditions

E[N ] = 1 − E[T ]
E[T ] , 0 < E[T 2] < E[T ] < 1, and E[N2] < ∞ (10)

iff the functional equation (9) with m = 1 has exactly one solution F with mean μ and a finite variance. 
Moreover, the variance is of the form

Var(X) = (E[T ])2Var(N) + E[N + 1]Var(T )
1 − E[N + 1]E[T 2] · μ2 (11)

with E[N ] = (1 − E[T ])/E[T ].

Corollary 3. Under the setting of Theorem 2, the functional equation (9) with m = 1 has exactly one 
solution F degenerate at mean μ = E[X] iff the random variables N and T are degenerate at E[N ] and 
E[T ], respectively, and E[T ] = 1/(E[N ] + 1) ∈ (0, 1); precisely, Pr(N = n0) = 1 for some integer n0 ≥ 1
and Pr(T = 1/(n0 + 1)) = 1.

When Pr(T = p) = 1 for some p ∈ (0, 1), Theorem 2 reduces to the following.

Corollary 4. Under the setting of Corollary 2, the random variable N satisfies the conditions

E[N ] = (1 − p)/p and E[N2] < ∞

iff the functional equation

F̂ (s) = F̂ (ps)PN

(
F̂ (ps)

)
, s ≥ 0,

has exactly one solution F with mean μ and a finite variance. Moreover, the variance equals

Var(X) = p2Var(N) · μ2.
1 − p
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Theorem 3. Let 0 ≤ X ∼ F with Laplace–Stieltjes transform F̂ and μ = E[X] ∈ (0, ∞). Let T ≥ 0 and 
N ≥ 0 be two given random variables, where N takes values in N0 and has pgf PN . Assume further that 
m ≥ 2 is an integer. Then for given μ, the random variables N and T together satisfy the conditions

E[N ] = 1 −mE[T ]
E[T ] , 0 < E[T 2] < E[T ] ≤ 1

m
< 1, and E[N2] < ∞ (12)

iff the functional equation (9) has exactly one solution F with mean μ and a finite variance. Moreover, the 
variance is of the form

Var(X) = (E[T ])2Var(N) + E[N + m]Var(T )
1 − E[N + m]E[T 2] · μ2 (13)

with E[N ] = (1 −mE[T ])/E[T ].

Note that we don’t exclude the case N = 0 in Theorem 3, because when N = 0, Eq (9) with m ≥ 2 is 
not a trivial case. Besides, when N = 0, E[T ] in (12) equals 1/m (≤ 1/2 < 1), while the first two conditions 
in (10) fail to hold together. Therefore, Theorem 2 is not a special case of Theorem 3; namely, we cannot 
derive Theorem 2 from Theorem 3 by just letting m = 1. On the other hand, it is seen that Eq (9) with 
m ≥ 2 and N = 0 is equivalent to Eq (2) with N = m ≥ 2.

Corollary 5. Under the setting of Theorem 3, the functional equation (9) has exactly one solution F
degenerate at mean μ = E[X] iff the random variables N and T are degenerate at E[N ] and E[T ], re-
spectively, and E[T ] = 1/(E[N ] + m) ∈ (0, 1/m]; precisely, Pr(N = n0) = 1 for some integer n0 ≥ 0 and 
Pr(T = 1/(n0 + m)) = 1.

When Pr(T = p) = 1 for some p ∈ (0, 1/m], Theorem 3 reduces to the following.

Corollary 6. Under the setting of Corollary 2, assume, in addition, p ∈ (0, 1/m], where m ≥ 2 is an integer. 
Then for given μ, the random variable N satisfies the conditions

E[N ] = (1 −mp)/p and E[N2] < ∞

iff the functional equation

F̂ (s) = (F̂ (ps))mPN

(
F̂ (ps)

)
, s ≥ 0,

has exactly one solution F with mean μ and a finite variance. Moreover, the variance equals

Var(X) = p2Var(N)
1 − p

· μ2.

The distributional equations (1) and (8) are homogeneous cases, because X, X1, X2, . . . are i.i.d random 
variables. We now consider a nonhomogeneous case defined below. In addition to the setting for Eq (1), 
suppose 0 ≤ B ∼ FB is another random variable independent of all X, Xi, T, Ti, N . We will find necessary 
and sufficient conditions on B, T and N for which the distributional equation

X
d= B +

N∑
i=1

TiXi, (14)

has a solution X ∼ F with finite variance. Like Eq (2), Eq (14) has the functional form
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F̂ (s) = F̂B(s) · PN

( ∞∫
0

F̂ (ts)dFT (t)
)

(15)

= F̂B(s) · PN

(
E[exp(−sTX)]

)
, s ≥ 0.

Theorem 4. Let 0 ≤ X ∼ F with Laplace–Stieltjes transform F̂ and μ = E[X] ∈ (0, ∞). Let T ≥ 0 and 
N ≥ 0 be two given random variables with finite variances, where N takes values in N0 and has pgf PN . 
Suppose that 0 ≤ B ∼ FB is another random variable with mean E[B] > 0 and a finite variance. Assume 
further that (i) Pr(N = 0) < 1, Pr(T = 0) < 1 and (ii) Var(B) + Var(T ) + Var(N) > 0. Then for given μ, 
the following statements are true.
(a) The random variables B, N and T together satisfy the conditions

μ = E[B]
1 − E[N ]E[T ] , 0 < E[N ]E[T ] < 1, and 0 < E[N ]E[T 2] < 1 (16)

iff the functional equation (15) has one solution F with mean μ and a finite variance. Moreover, the variance 
is of the form

Var(X) = Var(B) + μ2(E[T ])2Var(N) + μ2E[N ]Var(T )
1 − E[N ]E[T 2] (17)

with μ = E[B]/(1 − E[N ]E[T ]).
(b) If, in addition to (16), E[T 2] < E[T ], then the solution F to Eq (15) is unique.

The purpose of the assumptions (i) and (ii) in Theorem 4 is to exclude the trivial cases:
(a) if N = 0 or T = 0, Eq (14) reduces to the equality X

d= B;
(b) if Var(B) +Var(T ) +Var(N) = 0, all B, T, N have degenerate distributions, and so does the solution X.

The following interesting theorem points out the one-to-one correspondence between solutions to Eq (1)
and Eq (18) defined below, where α ∈ (0, 1).

Theorem 5. Let α ∈ (0, 1) and let 0 ≤ Tα ∼ Hα have the stable distribution with Laplace–Stieltjes transform 
Ĥα(s) = exp(−sα), s ≥ 0. Then, under the setting of Eq (1) with given N and T , X∗ ∼ F∗ is a solution 
to Eq (1) with a mean μ ∈ (0, ∞) iff Xα ∼ Fα, where Xα = TαX

1/α
∗ and Tα is independent of X∗, is a 

solution to the distributional equation

X
d=

N∑
i=1

T
1/α
i Xi (18)

with lims→0+(1 − F̂α(s))/sα = μ ∈ (0, ∞).

3. Lemmas

To prove the main results, we need some lemmas in the sequel. Recall that the pgf PN of a random 
variable N taking values in N0 is an absolutely monotone function on [0, 1] with PN (1) = 1, because 
PN (t) = E[tN ] =

∑∞
n=0 rnt

n, t ∈ [0, 1], with each rn = Pr(N = n) ≥ 0. For the first two lemmas, see, e.g., 
Steutel and van Harn [20], pp. 483–484; Lemma 1 is the so-called Bernstein Theorem.

Lemma 1. The Laplace–Stieltjes transform F̂ of a nonnegative random variable X ∼ F is a completely 
monotone function on [0, ∞) with F̂ (0) = 1, and vice versa.
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Lemma 2. Let Q be a pgf on [0, 1] and let ρ1, ρ2 be two completely monotone functions on [0, ∞) with 
ρ1(0) = ρ2(0) = 1. Then each of the composition function Q ◦ρ1 and the product function ρ1ρ2 is completely 
monotone on [0, ∞), and is the Laplace–Stieltjes transform of a nonnegative random variable.

Lemma 3. If a, b ∈ [0, 1] and t ≥ 1 are three real numbers, then |at − bt| ≤ t|a − b|.

Proof. If t = 1, the result is trivial. Suppose now that t > 1. There are two possible cases for a and b: 
(i) 0 ≤ a ≤ b ≤ 1 and (ii) 0 ≤ b ≤ a ≤ 1. It suffices to prove Case (i), because Case (ii) follows from 
Case (i) immediately by the symmetry property. Consider the function: g(x) = xt − tx, x ∈ [0, 1]. Since 
g′(x) = t(xt−1 − 1) ≤ 0, x ∈ [0, 1], the function g is decreasing on [0, 1]. Therefore, g(a) ≥ g(b) for Case (i). 
That is, at − ta ≥ bt − tb for 0 ≤ a ≤ b ≤ 1. Equivalently, bt − at ≤ t(b − a) or

|at − bt| = bt − at ≤ t(b− a) = t|a− b| for 0 ≤ a ≤ b ≤ 1.

The proof is complete.

For a proof of the next crucial lemma, see Eckberg [2], Guljas et al. [4] or Hu and Lin [8].

Lemma 4. Let 0 ≤ X ∼ F have a finite positive second moment. Then its Laplace–Stieltjes transform 
satisfies

F̂ (s) ≤ 1 − μ2
1

μ2
+ μ2

1
μ2

e−(μ2/μ1)s, s ≥ 0, (19)

where μj , j = 1, 2, is the jth moment of X.

Note that in Lemma 4, if the variance of X is zero, then μ2 = μ2
1 and X is degenerate at the mean 

μ1 > 0. In this case, (19) becomes an equality: F̂ (s) = e−μ1s, s ≥ 0.
The next two lemmas are taken from Lin [13,10]. The sufficiency parts of Corollaries 1, 3, and 5 can be 

proved directly by using Lemma 5.

Lemma 5. Let g be a nonnegative function defined on [0, ∞) and let g satisfy (i) g(0) = 1, (ii) g′(0) = b ∈
R ≡ (−∞, ∞) and (iii) for some positive real r 	= 1, g(rx) = (g(x))r, x ≥ 0. Then g is the exponential 
function g(x) = ebx, x ≥ 0.

Lemma 6. Let 0 ≤ X ∼ F with Laplace–Stieltjes transform F̂ . Then for each integer n ≥ 1, the nth moment 
E[Xn] = lims→0+(−1)nF̂ (n)(s) = (−1)nF̂ (n)(0+) (finite or infinite).

For 0 ≤ X ∼ F with finite positive mean μ1, we define the first-order equilibrium distribution by 
F(1)(x) = μ−1

1
∫ x

0 F (y) dy, x ≥ 0, where F (x) = 1 − F (x). The high-order equilibrium distributions are 
defined iteratively. Namely, the nth-order equilibrium distribution is F(n)(x) = μ−1

(n−1)
∫ x

0 F (n−1)(y) dy, 
x ≥ 0, provided the mean μ(n−1) of F(n−1) is finite (equivalently, the nth moment μn = E[Xn] of F is 
finite). For the next relationship between the means of {F(n)} and moments of F , see, e.g., Lin [12], p. 265, 
or Harkness and Shantaram [5].

Lemma 7. Let 0 ≤ X ∼ F have the nth moment μn ∈ (0, ∞) for some n ≥ 2. Then the mean of the 
(n − 1)th-order equilibrium distribution F(n−1) is equal to μ(n−1) = μn/(n μn−1).

Lemma 8. Let 0 ≤ X ∼ F with finite mean μ ∈ (0, ∞) and let X(1) ∼ F(1) have the first-order equilibrium 
distribution. Then for s > 0, the following statements are true:
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(i) (1 − F̂ (s))/s =
∫∞
0 e−sx(1 − F (x))dx;

(ii) F̂(1)(s) = (1 − F̂ (s))/(μs) ≤ 1;
(iii) (F̂ (s) − 1 + μs)/s2 = μ 

∫∞
0 e−sx(1 − F(1)(x))dx;

(iv) lims→0+(1 − F̂ (s))/s = μ and lims→0+(F̂ (s) − 1 + μs)/s2 = E[X2]/2 (finite or infinite).

Proof. For part (i), see Lin [12], p. 260, or Feller [3], p. 435. Parts (ii)–(iv) follow from the definition of 
equilibrium distribution and Lemmas 6 and 7 immediately.

The next two lemmas are key tools to prove the main results.

Lemma 9. Let 0 ≤ Yn ∼ Gn, n = 0, 1, 2, . . ., be a sequence of random variables having the same first two 
finite moments, say μ1 and μ2. Suppose that their Laplace–Stieltjes transforms {Ĝn}∞n=0 form a decreasing 
sequence of functions. Then the limiting function limn→∞ Ĝn(s) = Ĝ∞(s), s ≥ 0, exists and is the Laplace–
Stieltjes transform of a nonnegative random variable, say Y∞, which has the mean E[Y∞] = μ1 and second 
moment E[Y 2

∞] ∈ [μ2
1, μ2].

Proof. For each fixed s ≥ 0, Ĝn(s) ∈ [0, 1], n ≥ 0, so the decreasing sequence {Ĝn(s)}∞n=0 has a limit, 
denoted Ĝ∞(s) = limn→∞ Ĝn(s). On the other hand, we have, by Jensen’s inequality and the assumption,

e−μ1s ≤ Ĝn(s) ≤ Ĝ0(s), s ≥ 0, n ≥ 1. (20)

Therefore, the limiting function Ĝ∞ satisfies e−μ1s ≤ Ĝ∞(s) ≤ Ĝ0(s), s ≥ 0, and hence lims→0+ Ĝ∞(s) =
1 = Ĝ∞(0). By the continuity theorem for Laplace–Stieltjes transforms (see, e.g., [20], p. 479), we conclude 
that Ĝ∞ is the Laplace–Stieltjes transform of a nonnegative random variable, denoted Y∞. It remains to 
verify E[Y∞] = μ1 and E[Y 2

∞] ∈ [μ2
1, μ2]. From (20) it follows that the limiting function Ĝ∞ satisfies

1 − e−μ1s

s
≥ 1 − Ĝ∞(s)

s
≥ 1 − Ĝ0(s)

s
, s > 0, (21)

and

e−μ1s − 1 + μ1s

s2 ≤ Ĝ∞(s) − 1 + μ1s

s2 ≤ Ĝ0(s) − 1 + μ1s

s2 , s > 0. (22)

Finally, applying Lemma 8(iv) first to (21) gets E[Y∞] = μ1 and then to (22) yields μ2
1/2 ≤ E[Y 2

∞]/2 ≤ μ2/2. 
This completes the proof.

Lemma 10. Let W1 ∼ FW1 and W2 ∼ FW2 be two nonnegative random variables with the same mean 
μW ∈ (0, ∞), and let 0 ≤ Z∗ ∼ FZ∗ have a mean μZ∗ ∈ (0, 1). Assume further that the Laplace–Stieltjes 
transforms of W1 and W2 satisfy

|F̂W1(s) − F̂W2(s)| ≤
∞∫
0

|F̂W1(ts) − F̂W2(ts)|dFZ∗(t), s ≥ 0, (23)

or, equivalently,

∣∣E[exp(−sW1)] − E[exp(−sW2)]
∣∣ ≤ ∣∣E[exp(−sZ∗W1)] − E[exp(−sZ∗W2)]

∣∣, s ≥ 0.

Then F̂W1 = F̂W2 and hence FW1 = FW2 .
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Proof. For each s > 0, applying the inequality (23) (n − 1) more times yields

|F̂W1(s) − F̂W2(s)| ≤
∞∫
0

· · ·
∞∫
0

|F̂W1(t1 · · · tns) − F̂W2(t1 · · · tns)|dFZ∗(t1) · · · dFZ∗(tn)

=
∞∫

0+

· · ·
∞∫

0+

∣∣∣∣ F̂W1(t1 · · · tns) − F̂W2(t1 · · · tns)
μW t1 · · · tns

∣∣∣∣μW t1 · · · tnsdFZ∗(t1) · · · dFZ∗(tn). (24)

We now estimate the first part of the integrand:

∣∣∣∣ F̂W1(t1 · · · tns) − F̂W2(t1 · · · tns)
μW t1 · · · tns

∣∣∣∣ =
∣∣∣∣1 − F̂W1(t1 · · · tns)

μW t1 · · · tns
− 1 − F̂W2(t1 · · · tns)

μW t1 · · · tns

∣∣∣∣
≤

∣∣∣∣1 − F̂W1(t1 · · · tns)
μW t1 · · · tns

∣∣∣∣ +
∣∣∣∣1 − F̂W2(t1 · · · tns)

μW t1 · · · tns

∣∣∣∣ ≤ 2. (25)

The last inequality is due to Lemma 8(ii). Combining (24) and (25) together leads to

|F̂W1(s) − F̂W2(s)| ≤ 2μW s

∞∫
0+

· · ·
∞∫

0+

t1 · · · tndFZ∗(t1) · · · dFZ∗(tn)

= 2μW s(E[Z∗])n −→ 0 as n → ∞,

in which the last conclusion follows from the assumption E[Z∗] = μZ∗ ∈ (0, 1). Therefore, F̂W1 = F̂W2 . This 
completes the proof.

4. Proofs of main results

Proof of Theorem 1. (Sufficiency) Suppose that Eq (2) has exactly one solution 0 ≤ X ∼ F with mean 
μ ∈ (0, ∞) and a finite variance (and hence E[X2] ∈ (0, ∞)). Then we want to prove that the conditions 
(6) hold true.

Rewrite Eq (2) as

F̂ (s) = PN

( ∞∫
0

F̂ (ts)dFT (t)
)

=
∞∑

n=0
Pr(N = n)

( ∞∫
0

F̂ (ts)dFT (t)
)n

, s ≥ 0.

Differentiating twice the above equation with respect to s, we have, for s > 0,

F̂ ′(s) =
∞∑

n=1
Pr(N = n)n

( ∞∫
0

F̂ (ts)dFT (t)
)n−1 ∞∫

0

F̂ ′(ts)tdFT (t), (26)

F̂ ′′(s) =
∞∑

n=2
Pr(N = n)n(n− 1)

( ∞∫
0

F̂ (ts)dFT (t)
)n−2( ∞∫

0

F̂ ′(ts)tdFT (t)
)2

+
∞∑

n=1
Pr(N = n)n

( ∞∫
0

F̂ (ts)dFT (t)
)n−1 ∞∫

0

F̂ ′′(ts)t2dFT (t). (27)

Letting s → 0+ in (26) and (27) yields, respectively,
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F̂ ′(0+) = F̂ ′(0+)E[N ]E[T ],

F̂ ′′(0+) = E[N(N − 1)](F̂ ′(0+)E[T ])2 + F̂ ′′(0+)E[N ]E[T 2].

Equivalently, we have, by Lemma 6,

μ = μ E[N ]E[T ], (28)

E[X2] = E[N(N − 1)](μE[T ])2 + E[X2]E[N ]E[T 2]. (29)

From (28) and (29) it follows that E[N ]E[T ] = 1 (which implies that E[N ], E[T ] > 0) and E[N2] < ∞
because μ, E[X2] ∈ (0, ∞). It remains to prove that 0 < E[T 2] < E[T ] < 1.

Since E[N(N − 1)] ≥ 0, we have by (29) that E[N ]E[T 2] ≤ 1, and hence E[T 2] ≤ E[T ] due to the fact 
E[N ]E[T ] = 1. Namely,

0 < (E[T ])2 ≤ E[T 2] ≤ E[T ], (30)

from which we further have 0 < E[T ] ≤ 1. We now prove that E[T ] < 1. Suppose on the contrary E[T ] = 1. 
Then E[N ] = 1 (by the fact E[N ]E[T ] = 1) and from (30) it follows that E[T 2] = 1, Var(T ) = 0 and 
Pr(T = 1) = 1. Plugging these in (29) yields

1 = (E[N ])2 ≤ E[N2] = E[N ] = 1, (31)

which implies Pr(N = 1) = 1 as in the case of T . These together imply that Eq (2) is an identity for any 
0 ≤ X ∼ F as described before, which contradicts the unique solution to Eq (2). So we conclude that 
E[T ] ∈ (0, 1).

Finally, we prove E[T 2] < E[T ]. Suppose on the contrary E[T 2] = E[T ]. Then (31) follows from (29) 
again (using E[N ]E[T ] = 1) and hence Pr(N = 1) = 1. This is impossible because E[T ] ∈ (0, 1) and 
E[N ]E[T ] = 1. The proof of the sufficiency part is complete.

(Necessity) Suppose that the conditions (6) hold true. Then we will prove the existence of a solution F
to Eq (2) with mean μ and a finite variance.

Set first

μ1 = μ and μ2 = E[N(N − 1)](E[T ])2

1 − E[N ]E[T 2] · μ2
1. (32)

Note that the denominator 1 − E[N ]E[T 2] = 1 − E[T 2]/E[T ] > 0 by (6) and that μ2 ≥ μ2
1 by the facts: 

E[N2] ≥ (E[N ])2 and E[T 2] ≥ (E[T ])2. Therefore, the RHS of (19) with μ1, μ2 defined in (32) is a bona 
fide Laplace–Stieltjes transform, say F̂0, of a nonnegative random variable Y0 ∼ F0 (by Lemma 1). Namely,

F̂0(s) = 1 − μ2
1

μ2
+ μ2

1
μ2

e−(μ2/μ1)s, s ≥ 0.

Next, using the initial Y0 ∼ F0 we define iteratively the sequence of random variables Yn ∼ Fn, n =
1, 2, . . ., through Laplace–Stieltjes transforms:

F̂n(s) = PN

( ∞∫
0

F̂n−1(ts)dFT (t)
)

= PN

(
E[exp(−sTYn−1)]

)
, n ≥ 1, (33)

which is well-defined due to Lemma 2. Differentiating twice the above equation with respect to s and letting 
s → 0+, we have, for n ≥ 1,
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F̂ ′
n(0+) = F̂ ′

n−1(0+)E[N ]E[T ] = F̂ ′
n−1(0+), (34)

F̂ ′′
n (0+) = E[N(N − 1)](F̂ ′

n−1(0+)E[T ])2 + F̂ ′′
n−1(0+)E[N ]E[T 2]. (35)

With the help of Lemma 6 and by induction on n, we can show through (34) and (35) that E[Yn] =
E[Y0] = μ1, E[Y 2

n ] = E[Y 2
0 ] = μ2 (defined in (32)) for all n ≥ 1 and hence

Var(Yn) = μ2 − μ2
1 = (E[T ])2Var(N) + E[N ]Var(T )

1 − E[N ]E[T 2] · μ2
1, n ≥ 0. (36)

Moreover, by Lemma 4, we first have F̂1 ≤ F̂0, and then by the iteration (33), F̂n ≤ F̂n−1 for all n ≥ 2 (due 
to the absolute monotonicity of PN). Namely, {Yn}∞n=0 is a sequence of nonnegative random variables having 
the same first two moments μ1, μ2, and their Laplace–Stieltjes transforms {F̂n} are decreasing. Therefore, 
Lemma 9 applies. Denote the limit of {F̂n} by F̂∞, which is the Laplace–Stieltjes transform of a nonnegative 
random variable Y∞ ∼ F∞ with E[Y∞] = μ1 and E[Y 2

∞] ∈ [μ2
1, μ2]. Consequently, it follows from (33) that 

the limit F∞ is a solution to Eq (2) with mean μ and a finite variance. Applying Lemma 6 to Eq (2) again 
(with F = F∞), we conclude that E[Y 2

∞] = μ2 as given in (32), and hence the solution Y∞ ∼ F∞ has the 
required variance as shown in (7) or (36).

Finally, we prove the uniqueness of the solution to Eq (2). Suppose there are two solutions to Eq (2), 
denoted 0 ≤ X ∼ FX and 0 ≤ Y ∼ FY . We want to show that FX = FY . As before, with the help of 
Lemma 6 and the conditions (6), we have from Eq (2) that

E[X] = E[Y ] = μ1 = μ, E[X2] = E[Y 2] = μ2 = E[N(N − 1)](E[T ])2

1 − E[N ]E[T 2] · μ2
1.

Let W1 ∼ FW1 , W2 ∼ FW2 have the first-order equilibrium distributions of X, Y , respectively. By 
Lemma 8(ii), their Laplace-Stieltjes transforms are of the form:

F̂W1(s) = 1 − F̂X(s)
μs

, F̂W2(s) = 1 − F̂Y (s)
μs

, s > 0. (37)

Therefore, it remains to prove that F̂W1(s) = F̂W2(s), s > 0.
From Lemma 7 it follows that E[W1] = E[W2] = μ2/(2μ1) ≡ μW ∈ (0, ∞). Using Eq (2), we first estimate 

the difference between F̂X and F̂Y as follows: for s > 0,

|F̂X(s) − F̂Y (s)| =
∣∣∣∣PN

( ∞∫
0

F̂X(ts)dFT (t)
)
− PN

( ∞∫
0

F̂Y (ts)dFT (t)
)∣∣∣∣

=
∣∣∣∣

∞∑
n=0

Pr(N = n)
[( ∞∫

0

F̂X(ts)dFT (t)
)n

−
( ∞∫

0

F̂Y (ts)dFT (t)
)n]∣∣∣∣

≤
∞∑

n=0
Pr(N = n) · n

∞∫
0

|F̂X(ts) − F̂Y (ts)|dFT (t)

= E[N ]
∞∫
0

|F̂X(ts) − F̂Y (ts)|dFT (t)

= 1
E[T ]

∞∫
|F̂X(ts) − F̂Y (ts)|dFT (t),
0
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in which the inequality follows from Lemma 3, while the last equality is due to the condition E[N ]E[T ] = 1
in (6). Therefore, we have, for s > 0,

∣∣∣∣ F̂X(s) − F̂Y (s)
μs

∣∣∣∣ ≤
∞∫
0

∣∣∣∣ F̂X(ts) − F̂Y (ts)
μst

∣∣∣∣ t

E[T ]dFT (t) ≡
∞∫
0

∣∣∣∣ F̂X(ts) − F̂Y (ts)
μst

∣∣∣∣dFZ∗(t),

where Z∗ ∼ FZ∗ has the length-biased distribution of T ∼ FT and E[Z∗] = E[T 2]/E[T ] < 1. Equivalently, 
we have, by (37), that

|F̂W1(s) − F̂W2(s)| ≤
∞∫
0

|F̂W1(ts) − F̂W2(ts)|dFZ∗(t), s > 0.

Lemma 10 applies and hence F̂W1 = F̂W2 . This proves the uniqueness of the solution to Eq (2). The proof 
of the necessity part is complete.

Proof of Proposition 1. (i) Since E[N ]E[T ] = 1, we have E[N ], E[T ] > 0 and hence Pr(T > 0) > 0. Rewrite

1 = E[N ]E[T ] = E[N ]E[T |T > 0] Pr(T > 0).

Therefore, 0 < Pr(T > 0)E[N ] = (E[T | T > 0])−1. We will show that E[T | T > 0] < 1. Write

E[T |T > 0] = 1
Pr(T > 0)

∞∫
0+

tdFT (t) = E[T ]
Pr(T > 0) .

Similarly, E[T 2| T > 0] = E[T 2]/Pr(T > 0). From the condition E[T 2] < E[T ] it then follows that (E[T | T >

0])2 ≤ E[T 2| T > 0] < E[T | T > 0]. Consequently, E[T | T > 0] < 1. This proves the first conclusion of the 
proposition.
(ii) We next prove the second conclusion E[T log T ] < 0. Note first that the function g(t) = t2−t −t log t ≥ 0
for t > 0. So we have E[T 2 − T − T log T | T > 0] ≥ 0. Equivalently,

E[T 2 − T |T > 0] ≥ E[T log T |T > 0].

Finally, by the condition 0 < E[T 2] < E[T ] < 1, we have

0 > E[T 2 − T ] = E[T 2 − T |T > 0] Pr(T > 0)

≥ E[T log T |T > 0] Pr(T > 0) = E[T log T ].

This completes the proof.

Proof of Theorem 2. Note that Eq (9) with m = 1 is equivalent to

F̂ (s) = PN+1

( ∞∫
0

F̂ (ts)dFT (t)
)

= PN+1
(
E[exp(−sTX)]

)
, s ≥ 0,

and that Var(N + 1) = Var(N) in (11). Therefore, Theorem 2 follows from Theorem 1 by replacing N by 
N + 1 taking values in N ≡ {1, 2, 3, . . .}. The proof is complete.
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Proof of Theorem 3. The proof is similar to that of Theorem 1. We give the details here for completeness.
(Sufficiency) Suppose that Eq (9) with m ≥ 2 has exactly one solution 0 ≤ X ∼ F with mean μ ∈ (0, ∞)

and a finite variance (and hence E[X2] ∈ (0, ∞)). Then we want to prove that the conditions (12) hold true.
Rewrite Eq (9) with m ≥ 2 as

F̂ (s) =
( ∞∫

0

F̂ (ts)dFT (t)
)m

PN

( ∞∫
0

F̂ (ts)dFT (t)
)

=
∞∑

n=0
Pr(N = n)

( ∞∫
0

F̂ (ts)dFT (t)
)n+m

, s ≥ 0.

Differentiating twice the above equation with respect to s, we have, for s > 0,

F̂ ′(s) =
∞∑

n=0
Pr(N = n)(n + m)

( ∞∫
0

F̂ (ts)dFT (t)
)n+m−1 ∞∫

0

F̂ ′(ts)tdFT (t), (38)

F̂ ′′(s) =
∞∑

n=0
Pr(N = n)(n + m)(n + m− 1)

( ∞∫
0

F̂ (ts)dFT (t)
)n+m−2( ∞∫

0

F̂ ′(ts)tdFT (t)
)2

+
∞∑

n=0
Pr(N = n)(n + m)

( ∞∫
0

F̂ (ts)dFT (t)
)n+m−1 ∞∫

0

F̂ ′′(ts)t2dFT (t). (39)

Letting s → 0+ in (38) and (39) yields, respectively,

F̂ ′(0+) = F̂ ′(0+)E[N + m]E[T ],

F̂ ′′(0+) = E[(N + m)(N + m− 1)](F̂ ′(0+)E[T ])2 + F̂ ′′(0+)E[N + m]E[T 2].

Equivalently, we have, by Lemma 6,

μ = μ E[N + m]E[T ], (40)

E[X2] = E[(N + m)(N + m− 1)](μE[T ])2 + E[X2]E[N + m]E[T 2]. (41)

Therefore, from (40) and (41) it follows that E[N +m]E[T ] = 1 and E[N2] < ∞ because μ, E[X2] ∈ (0, ∞). 
It remains to prove that 0 < E[T 2] < E[T ] ≤ 1/m < 1.

Since E[(N + m)N ] ≥ 0, it further follows from (41) that E[N + m]E[T 2] ≤ 1, and hence E[T 2] ≤ E[T ]
because E[N + m]E[T ] = 1. The latter also implies that E[T ] > 0, and hence

0 < (E[T ])2 ≤ E[T 2] ≤ E[T ] = 1
E[N + m] ≤

1
m

< 1.

Finally, we prove E[T 2] < E[T ]. Suppose on the contrary E[T 2] = E[T ]. Then from (41) it follows (by 
using E[N + m]E[T ] = 1) that

E[(N + m)(N + m− 1)] = 0.

This is impossible because N ≥ 0 and m ≥ 2. The proof of the sufficiency part is complete.
(Necessity) Suppose that the conditions (12) hold true. Then we will prove the existence of a solution F

to Eq (9) with m ≥ 2, which has mean μ and a finite variance.
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Set first

μ1 = μ and μ2 = E[(N + m)(N + m− 1)](E[T ])2

1 − E[N + m]E[T 2] · μ2
1. (42)

Note that the denominator 1 − E[N + m]E[T 2] = 1 − E[T 2]/E[T ] > 0 by (12) and that μ2 ≥ μ2
1 by the 

facts: E[(N + m)2] ≥ (E[N + m])2 and E[T 2] ≥ (E[T ])2. Therefore, the RHS of (19) with μ1, μ2 defined in 
(42) is a bona fide Laplace–Stieltjes transform, say F̂0, of a nonnegative random variable Y0 ∼ F0. Namely,

F̂0(s) = 1 − μ2
1

μ2
+ μ2

1
μ2

e−(μ2/μ1)s, s ≥ 0.

Next, using the initial Y0 ∼ F0 we define iteratively the sequence of random variables Yn ∼ Fn, n =
1, 2, . . ., through Laplace–Stieltjes transforms:

F̂n(s) =
( ∞∫

0

F̂n−1(ts)dFT (t)
)m

PN

( ∞∫
0

F̂n−1(ts)dFT (t)
)
, n ≥ 1, (43)

which is well-defined due to Lemma 2. Differentiating twice the above equation with respect to s and letting 
s → 0+, we have, for n ≥ 1,

F̂ ′
n(0+) = F̂ ′

n−1(0+)E[N + m]E[T ] = F̂ ′
n−1(0+), (44)

F̂ ′′
n (0+) = E[(N + m)(N + m− 1)](F̂ ′

n−1(0+)E[T ])2 + F̂ ′′
n−1(0+)E[N + m]E[T 2]. (45)

With the help of Lemma 6 and by induction on n, we can show through (44) and (45) that E[Yn] =
E[Y0] = μ1, E[Y 2

n ] = E[Y 2
0 ] = μ2 (defined in (42)) for all n ≥ 1 and hence

Var(Yn) = μ2 − μ2
1 = (E[T ])2Var(N) + E[N + m]Var(T )

1 − E[N + m]E[T 2] · μ2
1, n ≥ 0. (46)

Moreover, by Lemma 4, we first have F̂1 ≤ F̂0, and then by the iteration (43), F̂n ≤ F̂n−1 for all n ≥ 2. 
Namely, {Yn}∞n=0 is a sequence of nonnegative random variables having the same first two moments μ1, μ2, 
and their Laplace–Stieltjes transforms {F̂n} are decreasing. Therefore, Lemma 9 applies. Denote the limit 
of {F̂n} by F̂∞, which is the Laplace–Stieltjes transform of a nonnegative random variable Y∞ ∼ F∞ with 
E[Y∞] = μ1 and E[Y 2

∞] ∈ [μ2
1, μ2]. Consequently, it follows from (43) that the limit F∞ is a solution to 

Eq (9) with m ≥ 2, which has mean μ and a finite variance. Applying Lemma 6 to Eq (9) with m ≥ 2 again, 
we conclude that E[Y 2

∞] = μ2 as given in (42), and hence the solution Y∞ ∼ F∞ has the required variance 
as shown in (13) or (46).

Finally, we prove the uniqueness of the solution to Eq (9) with m ≥ 2. Suppose that there are two 
solutions, denoted 0 ≤ X ∼ FX and 0 ≤ Y ∼ FY . We want to show FX = FY . As before, with the help of 
Lemma 6 and the conditions (12), we have from Eq (9) with m ≥ 2 that

E[X] = E[Y ] = μ1 = μ, E[X2] = E[Y 2] = μ2 = E[(N + m)(N + m− 1)](E[T ])2

1 − E[N + m]E[T 2] · μ2
1.

Let W1 ∼ FW1 , W2 ∼ FW2 have the first-order equilibrium distributions of X, Y , respectively. By 
Lemma 8(ii), their Laplace–Stieltjes transforms are of the form:

F̂W1(s) = 1 − F̂X(s)
, F̂W2(s) = 1 − F̂Y (s)

, s > 0. (47)

μs μs
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Therefore, it remains to prove that F̂W1(s) = F̂W2(s), s > 0.
From Lemma 7 it follows that E[W1] = E[W2] = μ2/(2μ1) ≡ μW ∈ (0, ∞). Using Eq (9) with m ≥ 2, we 

first estimate the difference between F̂X and F̂Y as follows: for s > 0,

|F̂X(s) − F̂Y (s)| =
∣∣∣∣

∞∑
n=0

Pr(N = n)
[( ∞∫

0

F̂X(ts)dFT (t)
)n+m

−
( ∞∫

0

F̂Y (ts)dFT (t)
)n+m]∣∣∣∣

≤
∞∑

n=0
Pr(N = n) · (n + m)

∞∫
0

|F̂X(ts) − F̂Y (ts)|dFT (t)

= E[N + m]
∞∫
0

|F̂X(ts) − F̂Y (ts)|dFT (t)

= 1
E[T ]

∞∫
0

|F̂X(ts) − F̂Y (ts)|dFT (t),

in which the inequality follows from Lemma 3, while the last equality is due to the condition E[N+m]E[T ] =
1 in (12). Therefore, we have, for s > 0,

∣∣∣∣ F̂X(s) − F̂Y (s)
μs

∣∣∣∣ ≤
∞∫
0

∣∣∣∣ F̂X(ts) − F̂Y (ts)
μst

∣∣∣∣ t

E[T ]dFT (t) ≡
∞∫
0

∣∣∣∣ F̂X(ts) − F̂Y (ts)
μst

∣∣∣∣dFZ∗(t),

where Z∗ ∼ FZ∗ has the length-biased distribution of T ∼ FT and E[Z∗] = E[T 2]/E[T ] < 1. Equivalently, 
we have, by (47), that

|F̂W1(s) − F̂W2(s)| ≤
∞∫
0

|F̂W1(ts) − F̂W2(ts)|dFZ∗(t), s > 0.

Lemma 10 applies and hence F̂W1 = F̂W2 . This proves the uniqueness of the solution to Eq (9) with m ≥ 2. 
The proof of the necessity part is complete.

Proof of Theorem 4. We first sketch the proof of part (a).
(Sufficiency) Suppose that Eq (15) has one solution 0 ≤ X ∼ F with mean μ ∈ (0, ∞) and a finite 

variance (and hence E[X2] ∈ (0, ∞)). Then we want to prove that the conditions (16) hold true.
Rewrite Eq (15) as

F̂ (s) = F̂B(s)
∞∑

n=0
Pr(N = n)

( ∞∫
0

F̂ (ts)dFT (t)
)n

, s ≥ 0.

Differentiating twice the above equation with respect to s and letting s → 0+ yield

F̂ ′(0+) = F̂ ′
B(0+) + F̂ ′(0+)E[N ]E[T ],

F̂ ′′(0+) = F̂ ′′
B(0+) + 2F̂ ′

B(0+)F̂ ′(0+)E[N ]E[T ]

+E[N(N − 1)](F̂ ′(0+)E[T ])2 + F̂ ′′(0+)E[N ]E[T 2].

Equivalently, we have, by Lemma 6,
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μ = E[B] + μ E[N ]E[T ] > μ E[N ]E[T ], (48)

E[X2] = E[B2] + 2μE[B]E[N ]E[T ] + E[N(N − 1)](μE[T ])2 + E[X2]E[N ]E[T 2]

= Var(B) + μ2(E[T ])2Var(N) + μ2(1 − E[N ](E[T ])2) + E[X2]E[N ]E[T 2]. (49)

Therefore, 0 < E[N ]E[T ] < 1 by (48) and μ = E[B]/(1 − E[N ]E[T ]). Moreover, it follows from (48) and 
(49) that

Var(X)(1 − E[N ]E[T 2]) = Var(B) + μ2(E[T ])2Var(N) + μ2E[N ]Var(T ) ∈ (0,∞).

The last conclusion is due to the assumptions. Thus, 0 < E[N ]E[T 2] < 1, and we have the variance of X as 
required in (17). The proof of the sufficiency part of (a) is complete.

(Necessity) Suppose that the conditions (16) hold true. Then we will prove the existence of a solution F
to Eq (15), which has mean μ and a finite variance.

Set first

μ1 = μ = E[B]
1 − E[N ]E[T ] , (50)

μ2 = Var(B) + μ2(E[T ])2Var(N) + μ2(1 − E[N ](E[T ])2)
1 − E[N ]E[T 2] . (51)

Note that the denominators 1 − E[N ]E[T ], 1 − E[N ]E[T 2] > 0 by (16) and that μ2 ≥ μ2
1 by the fact 

Var(T ) ≥ 0. Therefore, the RHS of (19) with (50) and (51) is a bona fide Laplace–Stieltjes transform, say 
F̂0, of a nonnegative random variable Y0 ∼ F0. Namely,

F̂0(s) = 1 − μ2
1

μ2
+ μ2

1
μ2

e−(μ2/μ1)s, s ≥ 0.

Next, using the initial Y0 ∼ F0 we define iteratively the sequence of random variables Yn ∼ Fn, n =
1, 2, . . ., through Laplace–Stieltjes transforms:

F̂n(s) = F̂B(s)PN

( ∞∫
0

F̂n−1(ts)dFT (t)
)
, n ≥ 1, (52)

which is well-defined due to Lemma 2. Differentiating twice the above equation with respect to s and letting 
s → 0+, we have, for n ≥ 1,

F̂ ′
n(0+) = F̂ ′

B(0+) + F̂ ′
n−1(0+)E[N ]E[T ], (53)

F̂ ′′
n (0+) = F̂ ′′

B(0+) + 2F̂ ′
B(0+)F̂ ′

n−1(0+)E[N ]E[T ]

+E[N(N − 1)](F̂ ′
n−1(0+)E[T ])2 + F̂ ′′

n−1(0+)E[N ]E[T 2]. (54)

With the help of Lemma 6 and by induction on n, we can show through (53) and (54) that E[Yn] = E[Y0] =
μ1, E[Y 2

n ] = E[Y 2
0 ] = μ2 (defined in (50) and (51)) for all n ≥ 1 and hence

Var(Yn) = μ2 − μ2
1 = Var(B) + μ2(E[T ])2Var(N) + μ2E[N ]Var(T )

1 − E[N ]E[T 2] , n ≥ 0. (55)

Moreover, by Lemma 4, we first have F̂1 ≤ F̂0, and then by the iteration (52), F̂n ≤ F̂n−1 for all n ≥ 2. 
Namely, {Yn}∞n=0 is a sequence of nonnegative random variables having the same first two moments μ1, μ2, 
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and their Laplace–Stieltjes transforms {F̂n} are decreasing. Therefore, Lemma 9 applies. Denote the limit 
of {F̂n} by F̂∞, which is the Laplace–Stieltjes transform of a nonnegative random variable Y∞ ∼ F∞ with 
E[Y∞] = μ1 and E[Y 2

∞] ∈ [μ2
1, μ2]. Consequently, it follows from (52) that the limit F∞ is a solution to 

Eq (15), which has mean μ and a finite variance. Applying Lemma 6 to Eq (15) again, we conclude that 
E[Y 2

∞] = μ2 as given in (51), and hence the solution Y∞ ∼ F∞ has the required variance as shown in (17)
or (55). This proves the necessity part of (a).

For part (b), the proof of the uniqueness of the solution to Eq (15) is similar to that of Theorem 1, and 
is omitted. The proof of the theorem is complete.

Proof of Theorem 5. In view of Eqs (1) and (18), we want to prove the equivalence of the two functional 
equations:

F̂∗(s) = PN

( ∞∫
0

F̂∗(ts)dFT (t)
)
, s ≥ 0, (56)

with lims→0+(1 − F̂∗(s))/s = μ ∈ (0, ∞), and

F̂α(s) = PN

( ∞∫
0

F̂α(t1/αs)dFT (t)
)
, s ≥ 0, (57)

with lims→0+(1 − F̂α(s))/sα = μ ∈ (0, ∞). Here

F̂α(s) = E
[
exp(−sXα)

]
= E

[
exp(−sTαX

1/α
∗ )

]
=

∞∫
0

e−sαxdF∗(x) = F̂∗(sα), s ≥ 0. (58)

Suppose F̂∗ satisfies (56) with lims→0+(1 − F̂∗(s))/s = μ. Then it follows from (58) that

F̂α(s) = F̂∗(sα) = PN

( ∞∫
0

F̂∗(tsα)dFT (t)
)

= PN

( ∞∫
0

F̂α(t1/αs)dFT (t)
)
, s ≥ 0,

and lims→0+(1 − F̂α(s))/sα = lims→0+(1 − F̂∗(sα))/sα = lims→0+(1 − F̂∗(s))/s = μ. This means that (56)
implies (57). The converse implication can be proved similarly.

5. Discussions

We have to mention that under the setting of Eq (1), the distributional equation is different from the 
following one (in which all i.i.d. Ti are replaced by the same T ):

X
d= T

N∑
i=1

Xi. (59)

It is seen that Eq (59) has instead the corresponding functional form

F̂ (s) =
∞∫
PN

(
F̂ (ts)

)
dFT (t) =

∞∫
PN

(
E[exp(−stX)]

)
dFT (t), s ≥ 0, (60)
0 0
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which is not equal to Eq (2) in general. But when T is degenerate at p ∈ (0, 1), Eq (60) also reduces to the 
Poincaré functional equation (3) as Eq (2) does. Therefore, Eq (60) is another generalization of the Poincaré 
functional equation (3).

The solutions to Eqs (2) and (60) are distinct in general; in fact, the second moments of the distributional 
solutions are different from each other. More precisely, the second moment of the solution X ∼ F (with 
mean μ) to Eq (60) is of the form

E[X2] = E[N(N − 1)]E[T 2]
1 − E[N ]E[T 2] · μ2,

which is greater than or equal to that in (32) because E[T 2] ≥ (E[T ])2.
It is interesting, however, that the necessary and sufficient conditions for Eq (60) to have exactly one 

solution with finite variance are the same as those for Eq (2). Namely, we have the following result. The 
proof is similar to that of Theorem 1 and is omitted.

Theorem 6. Under the setting of Theorem 1 with given μ, the random variables N and T together satisfy the 
conditions (6) iff the functional equation (60) has exactly one solution F with mean μ and a finite variance. 
Moreover, the variance is of the form

Var(X) = E[N2]E[T 2] − 1
1 − E[N ]E[T 2] · μ2

with E[N ] = 1/E[T ].

Theorem 5 about Eq (1) has a parallel result for Eq (59), which extends both Theorems 1 and 2 of 
Hu and Cheng [6]. In this regard, see also Hu and Lin [7], Section 4, for characterizations of the so-called 
semi-Mittag-Leffler distributions.

Analogously, Eq (14) is different from the following:

X
d= B + T

N∑
i=1

Xi,

which has the corresponding functional form

F̂ (s) = F̂B(s) ·
∞∫
0

PN

(
F̂ (ts)

)
dFT (t) (61)

= F̂B(s) ·
∞∫
0

PN

(
E[exp(−stX)]

)
dFT (t), s ≥ 0.

For this case, we have the next result analogous to Theorem 4. The proof is also omitted.

Theorem 7. Under the setting of Theorem 4, the following statements are true.
(a) The random variables B, N and T together satisfy the conditions (16) iff the functional equation (61)
has one solution F with mean μ and a finite variance. Moreover, the variance is of the form

Var(X) = Var(B) + E[B](2μ− E[B]) + (E[N2]E[T 2] − 1)μ2

2
1 − E[N ]E[T ]
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with μ = E[B]/(1 − E[N ]E[T ]).
(b) If, in addition to (16), E[T 2] < E[T ], then the solution F to Eq (61) with given mean is unique.

Finally, we remark that two different distributional equations may be transferred to the same functional 
form which of course leads to the same distributional solution. This means that a probability distribution 
may have several kinds of characteristic properties.
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