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1. INTRODUCTION

The study of difference equations has had important growth in the last
years, not only as a fundamental tool in the discretization of a differential
equation, but also as a useful model for several economical and population
problems. Models in traffic in channels or the study of the logistic
equation give us an idea of the importance of this theory. These and other
examples coupled with the basic theory of this type of equations can be
found in the classical monograph by S. Goldberg [9] and in the more
recent books by V. Lakshmikantham and D. Trigiante [11] and S. N. Elaydi
[7].

The second order centered Dirichlet difference problem
Uppy — 2up +uyy = f(k,uy);
ke{l,...,N},u(0) =u(N+1) =0,
is studied in [14]. There, the authors obtain the existence of solutions lying

in the sector formed by a lower solution « and an upper solution 8 such
that a < B.
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For first order periodic problems, the existence of a pair of ordered
lower and upper solutions without any other assumption over the continu-
ous function f does not imply in general the existence of a solution of the
periodic problem lying between « and B. This result is proved in [6] and
makes evident the differences with classical results for differential equa-
tions [13].

The second order periodic problem is treated in [12], in which maximum
principles are obtained studying the sign of the Green function. Higher
order equations have been studied, for instance in [1, 3] where, among
others, the focal boundary conditions are treated, and in [4] considering in
this last case lower and upper solutions. Multiplicity results for higher
order equations can be found in [2].

This paper is devoted to the study of the nth order difference equation

u(k +n)
=f(k,u(k),u(k +1),...,u(k + n)), ke{0,...,N—1},

with periodic boundary conditions.

Supposing the existence of a pair of ordered lower and upper solutions,
we obtain optimal existence results for those problems. To this end, we
give optimal discernment to assure the validity of comparison results for
the linear operator

T,[Ky,...,K,Ju(k) =u(k +n) + iKiu(k + 1),
i=0

in the space of periodic functions.

We prove that such existence results are equivalent to finding the values
of K; for which T, is an inverse positive operator (if the lower solution is
under the upper solution) in the space of periodic solutions. This assertion
is proved in Section 2, where existence of extremal solutions (each other
solution in [, B] lies between those solutions) is warranted via monotone
iterative techniques derived from the comparison results of operator 7. In
Section 3 conditions on f are weakened in two senses: the first one is not
imposing on function f a lateral Lipschitz condition in the space variables,
for this we cannot assure the existence of extremal solutions; the second
point of view, in the way of Heikkild and Lakshmikantham [10], consists of
relaxing their continuity properties. In this case the existence of extremal
solutions is warranted; however, it is not given as the limit of a sequence of
approximate solutions. In both sections the optimality of the obtained
results is exposed.

In Section 4 we present a topological property verified by the values of
K,,..., K, for which the operator 7, satisfies a comparison result and, in
Section 5, we obtain the expression of the Green function for the linear
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problem
T[Ky,.... K, Ju(k) = o (k),
ke{0,....,N—1};u(i) —u(N+i)=1v,i=0,...,n — 1.
This expression is deduced from the solution of the equation
T,[Ky,...,K,]z(k) = 0; ke {0,...,N—1}
z(i) —z(N +1i) = 0; i=0,....,n -2,
z(h—=1)—z(N+n-1)=1.

Clearly to obtain the expression of this solution we only need to solve a
linear n X n linear algebraic system.

Finally, in Section 6, we apply the results proved in the previous sections
to first and second order equations.

Throughout the paper, for each p > 0 given, if x = {x,,...,x,} and
y={yp;---»y,} €RP"! are such that x, <y, (x, >y, for all ke
{0,..., p}, we shall denote x <y (x >y) on {0,..., p} and

[x,y] = {z= {zg»..,z,} ERPT iy <z, <y, k € {0,...,p}}.

We will denote x <y in {0,...,p} (x>y in {0,...,p) if x <y in
{0,...,p} (x =y in {0,..., p}) and there exists k €{0,..., p} such that
X <y (e > yp).

Furthermore, we shall denote / ={0,..., N —1}and J=1{0,...,N +n
- 1}

2. MONOTONE METHOD

In this section we present a constructive method to warrant the exis-
tence of extremal solutions of the following nth order periodic boundary
value difference problem

A'u(k) + ni NAu(k) =g(k,u(k),Au(k),...,A"u(k));
@ .,
Au(0) — Au(N)=wv, i=0,...,n—1,

with NeR,j=1,....n =1Ly, €R,i=0,....,n — 1, Au(k) = u(k + 1)
— u(k), and Au(k) = AN~ 'u(k)),l=2,...,n,and k € I.

To do this, we translate this problem to the following more readable
expression which is, obviously, equivalent for a convenient function f and
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some real constants A,

p u(k +n) =f(k,u(k),u(k +1),...,u(k +n)), kel,
(F.) u(i) —u(N +1i) = A, i=0,...,n—1.
To obtain existence results for problem (P,) we define the concept of
lower and upper solutions as follows.

DEFINITION 2.1. A real sequence « = {ay, a;,..., oy, is said to
be a lower solution for problem (P,) if

G Sf(Ks o s apyy), ke,
o — Ay = A, i=0,...,n—2,

Qg — Oy S A,

The concept of upper solution for (P,) is defined in an analogous wayj; it
suffices to reverse the inequalities in the previous definition.
Now, we consider the following preliminary condition on f:

(H) There exists {M,,..., M,} € R"*! such that
n n
fUe, xgsosx,) + X Mx; < f(k, g5 9,) + 2 My,
i=0 i=0

forall keland o ; <x; <y, < By,;,i=0,...,n.
Before proving the main result of this work, we introduce the concept of
an inverse positive operator:

DErFINITION 2.2. Let K,,..., K, € R be fixed, such that 1 + K, > 0
and 1 + X7_, K; > 0. We say that the operator

T,[Ky,...,K,Ju(k) =u(k +n) + i Ku(k +1i)
i=0
is inverse positive on
Wy ={ueR" " u(i) =u(N+i),i=0,...,n —2;
u(n —1) > u(N +n—1)},
if the two following properties hold:
(1) There exists T,[K,,...,K,]"! on

O ={ue R u(i) =u(N+1i),i=0,...,n — 1}.
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(2) If u e Wy is such that T,[K,...,K,Jlu >0 on I then u >0
on J.

Remark 2.1. 1If there exists not T,[K,,...,K,]”' on QF, then there
exists v € QF, v # 0 in J, such that v € Ker(7,[K,,..., K,]. Then we
have that Av € Ker(T,[K,,...,K,] for all A € R. In consequence, if
condition (2) in Definition 2.2 holds then condition (1) is also verified.

We use this definition for the convenience of the reader and for
understanding the fundamental importance that the existence of
T[K,,...,K,]"' represents in the development of the theory exposed in
this paper.

Remark 2.2. Given C, <0, let u ={C,,...,C,} € R¥*". Since we
have that 7,[K,,..., K,Ju > 0on I when 1 + X} , K, < 0, it is clear that
T, will never be an inverse positive operator in W, in this case. It is for
this that the condition 1 + X7_, K, > 0 is not restrictive.

To see that 1 + K, > 0 is not restrictive too it suffices to take some
C, <0 and v =A0,...,0,C,} € R¥*". Clearly, v € W), T[K,,...,K,]v
>0on [ when 1 + K, <0, and v takes negative values on J.

Remark 2.3. Clearly, there exists T,[K,,..., K,]”! on Q% if and only if
for all ug,..., m,_; € R there exists T,[K,,..., K,]”" on
W]\lfq[/*‘bo""!“nfl]
= {ue R " u(i) —u(N+i)=p;,i=0,...,n—1}.

Now, we are in a position to prove the following existence result

THEOREM 2.1.  Suppose that there exist a < 8 lower and upper solutions
of problem (P,) and that f is a continuous function satisfying condition (H)
for some M,,..., M, € R such that the operator T,[M,,, ..., M,] is inverse
positive on Wy!. Then there exist two monotone sequences in RN"", {a, } and
{b,} with ay = a and b, = B, which converge pointwise to the extremal
solutions of problem (P,) in [a, B].

Proof. For each n € [, B], we consider the linear problem

Tn[MO""’Mn]u(k) =f(k’77(k)’ n(k + 1)""’77(k + n))

(P,) + Y Mn(k+i), kel,
i=0

u(iy —u(N+i)y=2, i=0,...,n—1.

Since T,[M,,...,M,] is inverse positive on Wy, we know that (P,)
admits a unique solution u for each n given (see Remark 2.3).
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Condition (H) implies that 7,[M,,..., M,J(u — «) > 0 on I. Now, since
u—aecW} and T[M,,...,M,] is inverse positive on W,;, we conclude
that u > « on J. Similarly we prove that u < 8 on J.

Now, let u;, i = 1,2, be the unique solutions of problem (P,), with
m < m, on J. We know that T,[M,,..., M, Nu, — u;) > 0 on I. Clearly,
u, —u, € Wy and then u, > u, on J.

The sequences {a,} and {b,} are obtained by recurrence: a, = a,
b, = B, and a,, and b,, are given as the unique solutions of (P, ) and
(P, ), respectively.

Obviously, {a,,(k)} and {b,(k)} are two monotone and bounded se-
quences for each k J; as a consequence there exist (k) =
lim, . a,(k)and (k) =lim, . b, (k), k J. It is not difficult to see

that ¢ and ¢ are the extremal solutions of (P,) in [a, 8] |

In the following result, we prove that the previous theorem is, in some
sense, optimal.

THEOREM 2.2. The assertion proved in Theorem 2.1 is optimal in the
sense that for all real sequences {M,,..., M,} such that 1 + ¥X}_, M; > 0
and 1+ M, >0, for which there exists T[M,,...,M,]"" on QF, but
T[M,,..., M,] is not inverse positive on Wy}, we can find a function f and
real sequences « and B satisfying the assumptions of Theorem 2.1 and for
which problem (P,) has no solution in [a, B].

Proof. The assertions of the theorem imply that there exists a real
sequence o = {c(0),...,0(N — 1)} € RY, o(k) =0 for all k €1 and
v = 0 such that the problem

u(k +n) =a(k) — i‘;)Miu(k + i)
=f(k,u(k),...,u(k + n)), kel, (2.1)
u(i) —u(N +1i) =0, i=0,....,n—2, (2.2)
u(n —1) —u(N+n-1) =y, (2.3)

has a unique solution u, which is not nonnegative on J. Thus, C =
min; . ; u(j) <O0.
Clearly, @ € {0,...,0} € RV*" is a lower solution of (2.1)—(2.3).
Consider B(k) = u(k) — C, k €J. Then

B(k +n) + iMiB(k + 1)
i=0

=o(k)-C

1+ ZM,) > o(k), forallkel.
i=0

Thus, B8 is an upper solution of (2.1)—(2.3).

However, this problem has no solution in [«, 8] |
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3. EXISTENCE UNDER WEAKER ASSUMPTIONS

In this section we obtain existence results for problem (P,) when f is a
function verifying weaker conditions than were imposed in Theorem 2.1;
i.e., f is a continuous function that does not satisfy condition (H) or f is a
discontinuous function satisfying condition (H). In the first case, it is not
possible to assure existence of extremal solutions in the sector [a, 8] of
problem (P,); however, the given result is optimal. In the second case the
existence of extremal solutions is not given via the monotone method.

To develop the first case we consider the following hypothesis:

(J) There exist {M,,..., M,} € R"*! such that

n n
flkyap, o, app,) + ZMiak+i < f(k,xp,-..,%,) + ZMz‘xi
i=0 i=0

Sf(k> Bk?"'>Bk+n) + ZMinJri
i=0

forall k €eland o ,; <x, < B;,;,i=0,...,n.
The result obtained is the following.

THEOREM 3.1. Suppose that there exist o < B lower and upper solutions
of problem (P,) and that f is a continuous function that satisfies condition (J)
for some My,...,M, € R such that T[M,,..., M,] is inverse positive on
Wy. Then problem (P,) has at least one solution in [a, B].

Proof. Consider the modified problem

u(k +n) + iMiu(k + 1)
i=0

=f(k,p(k,u(k)),...,p(k +n,u(k +n)))

+ Y M;p(k +i,u(k +1i)), kel,
i=0

u(i) —u(N+i)y=2x, i=0,...,n—-1,

where p(k,r) = max{a(k), min{r, 8(k)}} for all k €I and r € R.

Now, there exists a Green function G(k, j) depending on M,,..., M,
and a function H(k) which depends on M,,..., M, and A,..., A,_,, such
that

N-1
u(k) = Y, G(k,j)Pu(j) + H(k) = Fu(k), kel,
j=0
with  Pu(k) = f(k, p(k, u(k)), ..., p(k + n,u(k + n))) + X', M, p(k +
i, u(k +1)).
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By definition of P, we know that F: RY*" - R¥*" is a continuous and
bounded function. Thus, the Brower fixed point theorem implies the
existence of a solution of the modified problem.

Let w be one such solution and for every k£ € I, we have

T,[M,,....,M,lw(k) = f(k, p(k,w(k)),...,p(k +n,w(k +n)))

+ Y M;p(k +i,w(k +i))
i=0

> f(k,a(k),...,a(k+n)) + iMia(k + 1)
i=0

> T,[M,,...,M,]a(k).

Taking into account the fact that w — a € Wy, the inverse positive
character of 7, permits us to conclude that w > « in J.
Analogously w < B8 in J and the proof is complete. |

Remark 3.1. One can prove an equivalent result to Theorem 2.2 in
which the optimality of this result is exposed.

Now, we give an existence result for discontinuous functions as follows:

THEOREM 3.2. Suppose that there exist a and B lower and upper solu-
tions of problem (P,) and f is a discontinuous function satisfying (H) for a
real sequence {M,, ..., M,} such that T,[M,,..., M,] is inverse positive on
Wy. Then problem (P,) has extremal solutions in [a, B1.

Proof. For each n € [a, B], we define G(n) as the unique solution of
problem (P,).

As in the proof of Theorem 2.1, we prove that G is a nondecreasing
function such that G(«, 8] [, B1.

Then [10, Theorem 1.2.2] assures the existence of extremal fixed points
in [, B] of function G. By construction, such fixed points are the extremal
solutions of (P,) in [«, B]. |

3.1. The Reverse Order Case

All the results given in the paper relative to problem (P,) and o <
can be developed for this problem when « > .

For this we say that for a real sequence {K,..., K,} such that 1 + K,
> 0and 1+ X, K; <0, the operator T,[K,,..., K,] is inverse negative
in Wy if there exists T[K,,...,K,]”! in Q% and for all u € Wy} such
that 7 [K,,..., K,Ju = 0 on I we have that u < 0 on J.
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Thus, Theorems 2.1, 2.2, 3.1, and 3.2 remain valid if we replace in the
enunciates @ < B by @ > B, inverse positive by inverse negative, condition
(H) by (IH), and condition (J) by (1J), where

(IH) there exist {M,,..., M,} € R"*! such that

n n
flh,xgseonx,) + X Mix; < f(kyyo,es ) + X My,
i=0 i=0

forall k€eland B, <y; <x; < ay,,,i=0,...,n,
(1)) there exist {M,,..., M,} € R"*! such that

n
f(k7 Qpsenns ak+n) + Z Miak‘*'i
i=0

n
<f(k,xgr...,%,) + Y, Mx,
i=0

<f(ky Bis-os Bisn) + 2 M Bisis
i=0

forall k €eland B, <x; <o ,;,i=0,...,n.

4. STRUCTURE OF THE K,,..., K, VALUES SET

In this section we study the structure of the set of the values K,..., K,
e R, for which T[K,,...,K,] is inverse positive on W,;. The result
obtained is the following:

THEOREM 4.1. Let K ={K,,...,K,} such that 1 + K, >0 and 1 +

" K;>0. Le¢ L={Ly,...,L,}, such that L > K. Suppose that
T,[K,, ..., K,]is not inverse positive on Wy;. Then the operator T,[L,, ..., L,]
is not inverse positive on Wy.

Proof. Suppose that there exists T,[K,,...,K,]”' on Q. In conse-
quence we know that there exists o = {d(0),...,c(N — 1)} € R", o(k)
> 0 for all k €I and y > 0, such that problem (2.1)-(2.3) has a unique
solution u # 0 in J. As we have seen in Theorem 2.2, o = {0,...,0} is a
lower solution and B = u — min, . ,{u(k)} is an upper solution of problem

(2.D-(2.3).
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Now, for f defined in Eq. (2.1), since

fCk,xg,eeisx,) + ZLixi = Z(Li - K;)x; + o(k),
i=0 i=0

we have that it is a continuous function satisfying condition (H) for every
L >K.

In consequence, if T,[L,...,L,] is inverse positive on W} for some
L > K, we are in the hypothesis of Theorem 2.1 and we conclude that
there exists at least one solution of problem (2.1)—(2.3) in [«, 8], which is
not true.

If there does not exist T,[K,...,K,]”! in QF then there is &=
{7 (0),..., (N — 1)} such that problem

u(k +n) = (k) — Zn:Ml-u(k+i), kel (4.0)
i=0

u(i) —u(N+i)=0, i=0,....n—1, (4.2)

does not have a unique solution.
Now, we consider the equivalent first order system,

x(k + 1) = Ax(k) + b(k), kel x(0) =x(N), (4.3)

with
0
A 0 | Infl b k
I PR I T Y ) =1 &) |
1+K,

I,_, the (n — 1) X (n — 1) identity matrix and T, = K, /(1 + K,).
We know that (see [8])

k-1
x(k) = A*x(0) + ¥ A* I 'p(j)  forall k € I.
j=0
Thus, x(0) = x(N) if and only if
N—1

(I, = AN)x(0) = ¥ AN~ 'p. (4.4)
j=0
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Now, let I, — AN = (a; ), jcq

ny- Since there does not exist (7, —
AN)™1 we have two possibilities:

.....

(a) There exists i, €1{2,...,n} and §, € R, k=1,...,i, — 1 with

some &, # 0, such that a; ; = Y= §.a, ; forall j €{1,...,n}.
(b) There exists i, €{l,...,n} such that a; ;=0 for all je
{1,...,n}.

Suppose case (a).
Forl €{1,...,N — 1} we denote A' = (b)), ;.. -
A necessary condition to assure the existence of solution of (4.4) is given
by
ig—1

N-1
Yo b = X el ()) = 0.
j=0 k=1

Suppose that

ig—1
NI = 3 s bN I, forall j e . (4.5)
k=1

Clearly y(j) = (b{" 7=V, ..., bN 7/, D) satisfies the equation

in—1,n

y(j—1)=Dy(j), je{l,....,N-1},
y(N—-1) =0,

with

D=

0| L, > )

5, ‘ 8yy.nny ®

> Yig—1

This problem has a unique solution given by y(j) = DN7/"1y(N — 1) =
0, for all j € I; that is, b{", /=D = 0, for all k €{0,...,ij — 1} and j € .
Now, Eq. (4.5) gives us that

pN-I=D =, forall j € 1.

ig,n
By recurrence, we conclude

0=pri) = ... =pd =1,

ig,n n—1,n

which is a contradiction.
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If case (b) holds, we know that a necessary condition for such a & to
exist is that

N—-1 )
2 DN () = 0.
j=0
Now, if
bN TV =0 forall jE1, (4.6)

we attain a contradiction as in the previous case.

In consequence, we have that (4.5) and (4.6) do not hold. Then there
exists & such that problem (4.1)—(4.2) has no solution. Using the fact that
there exist C; < 0 < C, such that

¢y

1+ ZK,-) <a(k) <C,
i=0

1+ ZKi), forall k € I,
i=0

we know that « = {C,,...,C,} is a lower solution and B = {C,,...,C,} is
an upper solution of problem (4.1)—(4.2). Reasoning as in the first part of
the proof we conclude the result. [

Remark 4.1. If we replace L > K by L < K, this theorem is true for
inverse negative operators such that 1 + K, > 0and 1 + X7, K; < 0.

5. EXPRESSION OF THE GREEN FUNCTION

As we have seen in Theorems 2.1, 2.2, 3.1, and 3.2 and in Remark 3.1,
the existence of solution of problem (P,) is translated to the study of the
values K, ..., K, for which operator T,[K,,..., K,] is inverse positive on
Wy

To do this, we present here a formula to obtain the expression of the
Green function G(k, j) associated to the operator T,[K,,..., K,]"". Such
a function is obtained solving a n X n linear algebraic system. As we will
see, this expression is given for the case K, = 0; obviously the general case
is translated to this one dividing by 1 + K,,.

THEOREM 5.1. Let K,,...,K,_; € R be fixed. Suppose that for all

v, €R,i=0,....,n — 1 andforall o € R" there exists a unique solution of
the problem
n—1
u(k +n) + Y, Ku(k +i) = o(k), kel, (5.1)

i=0
u(i) —u(N+i) =y, i=0,...,n—1. (52)
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This solution u is given by the expression

n—1

u(k) =x(k) + Y pi(k)y_i_1s forallk €7, (5.3)
i=0
where
k-1 N-1
Yz(k—j—1Do(j)+ X z2(N+k—j-1)a(j),
j=0 j=k
ifk el
x(k) = kffl_i N-1
Y z2k—j-1-Nyo(j)+ X z(k—j—1o()),
j=0 j=k-N
ifk eJ\I,
n—1
pi(k) =z(k+i)+ ), Kiz(k+j—n+i),
Jj=n—i

and z is the unique solution of the problem

n—1
zZ(k+n)+ Y Kiz(k+i) =0, k=0, (54)
i=0

z(i) —z(N +1i) =0, i=0,....,n—2, (5.5)
z(hn—=1) —z(N+n-1)=1. (5.6)

Proof. Let k €{0,..., N —n — 1}. Using the boundary conditions im-
posed on function z, we obtain that

n—1

x(k+n)+ Y Kx(k+i)
i=0

k—1 n—1
= _Z (z(k+n—j—1)+ ZKiz(k+i—j—1))a(j)

j=0 i=0

N-1 n—1
+ ) (Z(N+k+n—j—1)+ ZKiz(N—i—k—i—i—j—l))
j=k+1 i=0
X o(J)
n—1

+lz(n—1) + E K,z(i — 1) + Kyz(N — 1))0'(k).




80 CABADA AND OTERO-ESPINAR

Now, since z satisfies (5.4), using the boundary conditions of function z
again, we conclude that

x(k +n) + nilK,»x(k+i)
i=0
=[1+z(N+n—-1) + nilsz(N +j—=1]o(k) =o(k).
j=0

Now, suppose that k € {N —n —1,...,N—1}. Let [ €{0,...,n — 1}
be such that kK + n = N + [; thus
n—1
x(k+n)+ Y Kx(k+i)

i=0

-1 N-1
=Yz(U-j-Do(j)+ X z(N+1—j—1o(j)
j=0 j=1

! 1-i—1
+A2Kn_l-( Y 2(l-i—j-1o())

j=0

+ i z(N-I—l—i—j—l)o-(j))

j=1—i
n N+1-i—1
+ X K| X z(N+I-i—j-1o())
i=1+1 j=0
N-1
+ ) z(2N+l—i—j—1)a'(j)).
j=N+1-i

Ordering this expression and using that z satisfies the boundary condi-
tion (5.5), we have that it is equals

N+l-n—1 n
~§) (Z(N-l—l—j—l)a'(j)-i-._ZKniZ(N+l—j—i—1)0'(j))
+lz(n—1) +ni1Kn_iz(n—i—1) +KOZ(N—1))O'(/€)
i=1
+ i z2N+1—j—1)o())
j=N+l-n+1

+ iKn_iZ(ZN'i-l—j —i— 1)0'(]')).

i=1
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Since z satisfies Eq. (5.4), from the boundary conditions it is derived
that this last expression equals o (k).
To verify that

x(i) =x(N +1i) forall i € {0,...,n — 1}

is immediate.

Obviously, p; verifies Eq. (5.4) for all i € {0,...,n — 1}. By definition,
we have that p,(k) = z(k) and then p, satisfies (5.4)—(5.6). In conse-
quence, using that p(k) =p,_(k + 1) + K, _;z(k) forall i € {1,...,n —
1} and k > 0, by recurrence, we conclude that p; satisfies Eq. (5.4) and the
conditions p(n —1—-i) —p(N+n—-1-i) =1 and p(n—-1-j) —
p(N+n—-1—-j)=0forall j+i

Hence, the function

n—1
u(k) =x(k) + Y pi(k)v,—i_1, kel,
i=0

is the unique solution of problem (5.1)-(5.2). 1

COROLLARY 5.1. Let z be the unique solution of T,[K,/(1 +
K), K, /(1 +K,),...,01z(k) = 0, k €1 satisfying the boundary condi-
tions (5.5)-(5.6). Then, if 1 + K, >0 and 1+ X'_ K, >0 1 + X7, K,
< 0) then we have that operator T[K,,..., K,] is inverse positive (inverse
negative) on Wy} if and only if z(k) > 0 on J(z(k) < 0 on J).

6. APPLICATIONS TO FIRST AND SECOND ORDER
PROBLEMS

In this section we obtain the expression of function z (and then of the
Green function) for some particular first and second order problems. We
study the values of the constants for which operators 7| and T, are inverse
positive and inverse negative on W, and W}, respectively.

6.1. First Order Equations

It is clear that the unique solution of the equation
z(k+1)—Az(k) =0, k>0, (6.1)
z(0)—z(N) =1, (6.2)

is given by the expression z(k) = A*/(1 — AY) for all A # 0 and by
z(0) = 1 and z(k) = 0 for k > 0 when A = 0. This is negative in J for all
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A > 1 and nonnegative in J for A €[0,1). In the other cases z takes
negative and positive values on J.

For this, we consider the explicit problem (which appears in Euler’s
discretization method of a first order differential equation)

Au(k) = f(k,u(k)), k €1, u(0) —u(N) = vy,.

We have that T,[M, — 1,0] is inverse positive on Wy if and only if
0 <M, < 1, and inverse negative for all M, < 0. Thus, we can, by virtue
of Theorem 2.1 and Subsection 3.1, assure the existence and approxima-
tion of extremal solutions between a given lower solution « and an upper
solution B if f(k,x) + x is a nondecreasing function in [a(k), B(k)],
k €I when a < B and, when a > B holds, if f(k,x) — M,x is nonin-
creasing in [ B(k), a(k)] for some M, > 0.

Now the implicit case is considered,

Au(k) =f(k,u(k+1)),kel; u(0) —u(N) = vy,.

We know that for all M, > 0 the operator T[—1, M,]is inverse positive
on Wy and inverse negative for M, € (—1,0). In consequence if a < 8
and f(k,x) + M,x is nondecreasing in [a(k), (k)] for some M, > 0 or
a> B and f(k,x) — M,x is a nonincreasing function in [ 8(k), a(k)],
k € I, for some M, € (0, 1), then this problem has extremal solutions lying
between « and B.

6.2. Second Order Equations

Now, the unique solution of (5.4)-(5.6) for n =2 is given by the
following expressions, depending on the circumstances:

(1) The characteristic polynomial has two real roots A; > A,,

1 A M
z(k) = ( - )

DI W I D FAR B YA

In this case we have that z is nonnegative on J when 0 < A, < A; <1 or
if 1 <A, < A;. On the other hand, if 0 < A, < 1 < A, the function z has
only negative values. In all the other cases z changes sign in J.

(2) The characteristic polynomial has a double real root A, = A,,
MTH(N = k) AY + k)

z(k) = (1 _ )\f,)z

if A, #0,and z ={0,1,0,...,0} when A, = 0. Thus z is nonnegative on J
when A, > 0, A; # 1. In the other cases function z changes sign in J.
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(3) The characteristic polynomial has complex roots rcos 6 +
irsin . Here r > 0 and 6 € (0, ),

r¥=1(rN sin(N — k)6 + sin k6)

z(k) = .
sin 0[(rN — cos N§)” + sin? NG]

This function is nonnegative on J if and only if § € (0, w/N] and sin(N +
1)6 > r" sin 6.

For this, if we consider the problem
Au(k) = f(k,u(k)),kel; u(i)—u(N+i)=1y,i=0,1, (6.3)
we know that operator T,[ M, + 1, —2,0] is inverse negative on W)} if and

only if M, € [—1,0) and inverse positive if and only if M, € (0, M,], with
M, = min{tan® =, M,} and M, the first positive zero of the expression

sin((N + 1)arctan\/M_O) = \/ﬁo( 1+ Mo)Ni

In consequence if @ < pB and f(k,x)+ My is nondecreasing in
[a(k), B(k)], k €I, or a = B and f(k,x) — x is a nonincreasing function
in [ B(k), a(k)], k €I, then this problem has extremal solutions lying
between « and B.

Now we consider

1

Nu(k) =f(k,u(k+1)),kel; u(i)—u(N+i)=vy, i=0,1
(6.4)

The operator T,[1, M; — 2,0] is inverse negative if and only if M; < 0 and
inverse positive if and only if M, € [0, M,], with M, = min{2(1 — cos ), M }

and ]\7: the first positive zero of the expression

VaM, — M}
2sin| (N + 1)arctan# = V4M, — M} .
M
For this, « < B and f satisfying condition (H) for some M, € [0, M,] or
a > B and f verifying condition (IH) for some M, < 0 assure the exis-

tence of extremal solutions lying between a and S.
Finally, we consider problem

Nu(k) =f(k,u(k+2)),kel; u(i)—u(N+i)=1y,i=0,1.
(6.5)
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We conclude that operator T,[1, —2, M,] is inverse negative in W, if
and only if —1 < M, < 0 and inverse positive if and only if M, € (0, M,]
(M, defined above). In consequence if a < B8 and f(k, x) + My is nonde-
creasing in [a(k), B(k)], k € I or a = B, and f verifies condition (IH) for
some M, € (—1,0), then we know that this problem has extremal solu-
tions lying between « and .

6.3. Final Remarks

The boundary conditions imposed in the definition of the lower solution
are equivalent to

Na(0)—Na(N) =1, i=0,...,n—2,
Al (0)— Al (N) < A,

We choose this definition by analogies with the classical definition of
such functions for differential equations [5].

As we have seen, this definition forces us to study maximum and
anti-maximum principles of the operator 7, in the space W}, which can be
rewritten as

Wy = {u e RY""; Au(0) = Au(N),i=0,...,n — 2;
A" 'u(0) > A" 'u(N)},

in the same way that in differential equations we study the inverse positive
or inverse negative character of the corresponding linear operator in the
space

Wy = {u e wm'0,27]; u®(0) = u?(27),i =0,...,n — 2;
u"=(0) > u""V(2m)}.

Despite this, we could choose a more restrictive definition of lower and
upper solutions, imposing the equalities in all the boundary conditions;
that is, A'a(0) — Aa(N) = A,,i =0,...,n — 1, and the same for S.

Obviously, to develop the theory exposed in this work in this new
situation, we must study the values of M,,..., M, for which the operator
T,[M,,...,M,] is inverse positive or inverse negative in Q},. A similar
remark is valid also for differential equations, but in that case, as one can
see in [5], the values of M,,..., M, do not experiment any variation.

However, this is not true in our problem for n > 2 and represents a
substantial difference between differential and difference boundary prob-
lems. To see this, since for all u € Q% the inhomogeneous part of (5.3)
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vanishes, we only need to study function x. But, in the definition of such a
function we see that function z takes values only in I, and we can rewrite
Corollary 5.1 as “operator T,[M,,...,M,] is inverse positive (inverse
negative) in Q% if and only if z> 0(z < 0) on 1.”

For instance, studying the operators treated in the previous section we
have:

Operator T,[ M, + 1, —2,0] is inverse negative on Q3% if and only if
M, € [—1,0) and inverse positive if and only if M, € (0, tan’ % .

Operator T,[1, M, — 2,0] is inverse negative on Q% if and only if
M, < 0 and inverse positive if and only if M, € [0,2(1 — cos 2)].

Operator T,[1, —2, M,] is inverse negative on Q% if and only if
M, € (—1,0) and inverse positive if and only if M, € (0, tan? <1

In consequence, we extend the range of values M,, M,, and M, such
that problems (6.3), (6.4), and (6.5) have extremal solutions in the presence
of a lower solution and an upper solution in this new sense.
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