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1w xLet f be a locally univalent function on the unit disc and let a g 0, . We2

consider the family of operators extending f to a holomorphic map from the unit
n n Ž .Ž . Ž Ž . XŽ XŽ ..a . Xball B in C to C given by F f z s f z , z f z , where z sn, a 1 1

1Ž .z , . . . , z . When a s we obtain the Roper]Suffridge extension operator. We2 n 2
Ž .show that if f g S then F f can be imbedded in a Loewner chain. Our proofn, a

U pˆŽ . < <shows that if f g S then F f is starlike, and if f g S with b - thenn, a b 2
Ž .F f is a spirallike map of type b. In particular we obtain a new proof that then, a

Roper]Suffridge operator preserves starlikeness. We also obtain the radius of
Ž . Ž .starlikeness of F S and the radius of convexity of F S . We show that if fn, a n, 1r2

Ž .is a normalized univalent Bloch function on U then F f is a Bloch mapping onn, a

B. Finally we show that if f belongs to a class of univalent functions which satisfy
Ž .growth and distortion results, then F f satisfies related growth and coveringn, a

results. Q 2000 Academic Press
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1. INTRODUCTION AND PRELIMINARIES

n Ž .Let C denote the space of n complex variables z s z , . . . , z with1 n
n² :the Euclidean inner product z, w s Ý z w and the Euclidean normjs1 j j

5 5 ² :1r2 nz s z, z , z g C .
X Ž . Ž X. � n 5 5 4Let z s z , . . . , z so that z s z , z . Let B s z g C : z - r2 n 1 r

and let B s B denote the unit ball in Cn. In the case of one variable B is1 r
denoted by U and the unit disc U by U. If G is an open subset in Cn, letr 1
Ž . n Ž .H G be the set of holomorphic mappings from G into C . If f g H B ,r

Ž . Ž .0 - r F 1, we say that f is normalized if f 0 s 0 and Df 0 s I. Let
Ž . Ž .S B denote the class of normalized univalent mappings in H B . Ar r

Ž . Ž .mapping f g S B will be called convex respectively starlike if its imager
Ž . nis a convex respectively starlike with respect to the origin set in C . The

Ž .classes of normalized convex respectively starlike maps on B are de-r
Ž . Ž U Ž ..noted by K B respectively S B . In the case of one variable, the setsr r

Ž . U Ž . Ž . US U , S U , and K U are denoted by S, S , and K.
Ž . 0Ž .Another interesting subclass of S B is the class S B consisting ofr r

Žthose univalent mappings which can be imbedded in Loewner chains see
w x. w . n10, 13 . We recall that a mapping F: B = 0, ` ª C , 0 - r F 1, is ar

Ž . Ž . Ž . tLoewner chain if F ?, t is univalent on B , F 0, t s 0, DF 0, t s e I forr
all t G 0, and

F z , s $ F z , t , z g B , 0 F s F t - q`,Ž . Ž . r

0Ž .where the symbol $ means the usual subordination. Thus F g S B ifr
Ž . Ž . Ž .there exists a Loewner chain F z, t such that F z s F z, 0 , z g B . It isr

0Ž . nwell known that in the case of one variable S U s S; however, in C ,
0Ž . Ž . Ž w x.n G 2, S B m S B see 10 .

Ž .Certain subclasses of S B can be characterized in terms of Loewner
Ž . t Ž .chains. In particular, f is starlike iff f z, t s e f z , z g B, t G 0, is a

Ž w x.Loewner chain see 14 . Starlikeness also has an analytic characterization
w x w x ndue to Matsuno 12 and Suffridge 20 : a locally univalent map f : B ª C

Ž .such that f 0 s 0 is starlike iff

y1 � 4Re Df z f z , z ) 0 z g B_ 0 .Ž . Ž .² :
w xAnother such class is the following, introduced in 7 :
pŽ . < <DEFINITION 1.1. Let f g S B and b g R, b - . We say that f is a2

Ž yi b . Ž . Ž .spirallike mapping of type b if the spiral exp ye t f z t G 0 is
Ž .contained in f B for any z g B.

ˆ Ž .Let S B denote the set of spirallike mappings of type b on B. In theb
ˆcase of one variable this class is well known and is denoted by S .b
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pŽ . < <Let f g H B and b g R, b - , and let2

f z , t s eŽ1yi a. t f e iatz , z g B , t G 0, 1.1Ž . Ž . Ž .

w x nwhere a s tan b. Hamada and Kohr 7, 8 showed that if f : B ª C is a
Ž . Ž .normalized locally univalent map, then the map f z, t given by 1.1 is a

Loewner chain if and only if f is a spirallike mapping of type b.
Again there is an analytic characterization, also due to Hamada and

w x nKohr 7 : if f : B ª C is a normalized locally univalent map, then f is
spirallike of type b iff

y1yib � 4Re e Df z f z , z ) 0, z g B_ 0 .Ž . Ž .² :
We note that a spirallike map of type 0 is a starlike map.

There is a more general notion of spirallikeness in several variables}
spirallikeness with respect to a linear operator}which was considered by

w x w xGurganus 6 and Suffridge 22 . However, such maps need not belong to
0Ž . w xS B 9 .

0Ž .In order to generate mappings in S B , we will use the following result
w xdue to Pfaltzgraff 13 .

Ž . Ž . tLEMMA 1.2. Let f z s f z, t s e z q ??? be a mapping from B =t r
w . n Ž . Ž . Ž .0, ` into C such that f z g H B for each t G 0, and such that f z, t ist r
a locally absolutely continuous function of t locally uniformly with respect to
z g B , where 0 - r F 1.r

Ž . w . nLet h z, t : B = 0, ` ª C satisfy the following conditions:

Ž . Ž . Ž . ² Ž . : � 4i h 0, t s 0, Dh 0, t s I, Re h z, t , z ) 0, z g B_ 0 , t G 0;
Ž . Ž .ii for each z g B, h z, t is a measurable function of t on 0 F

t - q`;
Ž . Ž . Ž .iii for each T ) 0 and r g 0, 1 there exists a number K s K r, T

such that

5 5h z , t F K r , T , z F r , 0 F t F T .Ž . Ž .

Suppose that

­ f
z , t s Df z , t h z , t a.e. t G 0,Ž . Ž . Ž .

­ t

� 4and for all z g B , and suppose there exists a sequence t , t ) 0, increasingr m m
to ` such that

lim eyt m f z , t s G z ,Ž . Ž .m
mª`
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Ž .locally uniformly in B . Then f z, t is a Loewner chain and for each t G 0,r
Ž .f z, t can be extended to a map that is unï alent on B.

One further class of mappings we shall consider is the class of Bloch
Ž .mappings. A mapping f g H B is called a Bloch mapping if the family

FF s g : g z s f w z y f w 0 for some w g Aut B� 4Ž . Ž . Ž .Ž . Ž .f

is a normal family, where Aut B denotes the set of biholomorphic auto-
morphisms of the unit ball B. Letting

25 5m f s sup 1 y z Df z : z g B ,Ž . Ž .� 4Ž .
Ž .this condition is equivalent to m f - `.

Let BB denote the subclass of S consisting of functions with Bloch0
seminorm 1, i.e., such that

2 X X< <sup 1 y z f z s f 0 s 1.Ž . Ž .Ž .
zgU

Let BB denote the set of locally univalent functions on U with Bloch`

Ž . XŽ .seminorm 1, normalized so that f 0 s f 0 y 1 s 0.
The Roper]Suffridge extension operator is defined for normalized lo-

cally univalent functions on U by

X X
F f z s F z s f z , f z z , 1.2'Ž . Ž . Ž . Ž . Ž . Ž .ž /n 1 1

X'where the branch of the square root is chosen such that f 0 s 1.Ž .
w xRoper and Suffridge 17 obtained the beautiful result that if f g K then

Ž . w x U Ž .F f is convex on B, and in 3 it was shown that if f g S then F f isn n
starlike.

In this paper we introduce the operators

aX X
F f z s F z s f z , f z z , z g B , 1.3Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .n , a a 1 1

1w xwhere a g 0, and f is a locally univalent function in U, normalized by2
Ž . XŽ .f 0 s f 0 y 1 s 0. We choose the branch of the power function such

that
aX <f z s 1.Ž .Ž . z s01 1

1Of course when a s we obtain the Roper]Suffridge operator.2
1w xWe obtain a number of extension results which are valid for a g 0, :2

0 U U ˆŽ . Ž . Ž . Ž .If f g S then F f g S B ; if f g S then F f g S B ; if f g Sn, a n, a b
p ˆ< < Ž . Ž . Ž .where b - then F f g S B ; and if f g BB then F f is an, a b 0 n, a2
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Bloch mapping. We also show that F preserves growth and coveringn, a

Ž .results. In addition we obtain the radius of starlikeness of F S and then, a

Ž .radius of convexity of F S . We give a conjecture and an open problemn
0Ž .concerning the radius of starlikeness and convexity of S B . Also we will

U Ž .see that in dimension greater than one the radius of convexity of S B is
'strictly less than 2 y 3 .

w xIn 4 two of the present authors considered another one-parameter
Ž .family of extension operators from S to S B . For a particular value of the

w xparameter one obtains an operator used by Pfaltzgraff and Suffridge 15
to construct starlike mappings of B.

Ž .Thus the dependence of extension operators from S to S B on parame-
ters appears to be an interesting subject. However we have not yet been
able to show that there is any perturbation of the Roper]Suffridge
operator which has the convexity-preserving property.

2. LOEWNER CHAINS ASSOCIATED WITH THE
OPERATOR Fn, a

We begin this section with the following main result.
1w x Ž .THEOREM 2.1. Suppose that f g S and a g 0, . Then F s F f ga n, a2

0Ž .S B .

Proof. It suffices to give the proof in the case n s 2. Since f g S, there
Ž . Ž . Ž .exists a Loewner chain f z , t such that f z s f z , 0 , z g U. Let1 1 1 1

Ž .F z, t be the map defined bya

aXŽ1ya . tF z , t s f z , t , e z f z , t ,Ž . Ž . Ž .Ž .Ž .a 1 2 1

z s z , z g B , t G 0. 2.1Ž . Ž .1 2

Ž .We prove that F z, t is a Loewner chain.a

Ž . Ž .Since f z , t is a Loewner chain in U, it is well known that f z , ? is a1 1
w .locally absolutely continuous function in 0, ` for each z g U, and for1

Ž . Ž .each r g 0, 1 there exists K s K r ) 0 such that0 0

t < <f z , t F K e , z F r , t G 0.Ž .1 0 1

Ž .Also there exists a function p z , t that is holomorphic on U and1
Ž . Ž .measurable in t G 0, with p 0, t s 1, Rep z , t ) 0 for z g U, 0 F t -1 1

q`, and such that

­ f
Xz , t s z f z , t p z , t , a.e. t G 0, 2.2Ž . Ž . Ž . Ž .1 1 1 1­ t

Ž w x.and for all z g U see 16, Theorem 6.2 .1
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Ž . Ž . Ž . Ž .Now it is obvious to see that F ?, t g H B , F 0, t s 0, DF 0, t sa a a
t Ž .e I, and also F z, t satisfies the absolute continuity hypothesis of Lemmaa

Ž .1.2. From 2.1 we obtain

­ F ­ f aa XŽ1ya . tz , t s z , t , z 1 y a e f z , tŽ . Ž . Ž . Ž .Ž .1 2 1žž­ t ­ t

­ aXŽ1ya . tqe f z , t .Ž .Ž .1 / /­ t

Ž . w .Since f z , t is a locally absolutely continuous function in 0, ` , it1
follows that for almost all t G 0 we have

­ f X ­ ­ f ­
Xz , t s z , t s z f z , t p z , tŽ . Ž . Ž . Ž .Ž .1 1 1 1 1ž /­ t ­ z ­ t ­ z1 1

s f X z , t p z , t q z f Y z , t p z , tŽ . Ž . Ž . Ž .1 1 1 1 1

q z f X z , t pX z , t ,Ž . Ž .1 1 1

Ž .where we have used 2.2 and the fact that the order of differentiation can
be changed.

Thus

­ F aa X XŽ1ya . tz , t s z f z , t p z , t , z e f z , tŽ . Ž . Ž . Ž .Ž .1 1 1 2 1ž­ t

z f Y z , tŽ .1 1 X= 1 y a q a p z , t q a p z , t q a z p z , t ,Ž . Ž . Ž .X1 1 1 1ž / /f z , tŽ .1

Ž .a.e. t G 0, and for all z s z , z g B.1 2
A straightforward computation now yields

­ Fay1DF z , t z , tŽ . Ž .a ­ t

s z p z , t , 1 y a z q a z p z , t q a z z pX z , t ,Ž . Ž . Ž . Ž .Ž .1 1 2 2 1 1 2 1

a.e. t G 0 and for all z g B. Thus,

­ Fa
z , t s DF z , t h z , t , a.e. t G 0Ž . Ž . Ž .a­ t

for all z g B, where

h z , t s z p z , t , 1 y a z q a z p z , t q a z z pX z , t ,Ž . Ž . Ž . Ž . Ž .Ž .1 1 2 2 1 1 2 1

Ž .for z s z , z g B and t G 0.1 2
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Ž . Ž . Ž . Ž .Clearly, h ?, t g H B , h 0, t s 0, Dh 0, t s I, and

< < 2 < < 2² :Re h z , t , z s z Rep z , t q 1 y a zŽ . Ž . Ž .1 1 2

< < 2 < < 2 Xq a z Rep z , t q a z Re z p z , t ,Ž . Ž .Ž .2 1 2 1 1

z g B , t G 0. 2.3Ž .
Ž .Next we may assume that z s z , z , z / 0, because the case z s1 2 2

Ž . Ž .z , 0 is easily handled. Also we can suppose that p ?, t is holomorphic on1

U, for otherwise we can use a limiting procedure to reduce to this
situation.

Applying the minimum principle for harmonic functions, it suffices to
prove that

2 < < 2 < < 2² :Re h z , t , z G 0, z s z , z g C , z q z s 1,Ž . Ž .1 2 1 2

Ž .z / z , 0 , t G 0.1
Ž . Ž .Since p 0, t s 1 and Rep z , t ) 0, z g U, t G 0, we may write1 1

1 q w z , tŽ .1
p z , t s ,Ž .1 1 y w z , tŽ .1

Ž .where w z , t is a Schwarz function. Using the Schwarz]Pick lemma on1
the unit disc, we deduce that

2X2w z , t 2 1 y w z , tŽ . Ž .1 1Xp z , t s F ?Ž .1 2 2 2< <1 y z1 y w z , t 1 y w z , tŽ . Ž .Ž . 11 1

2
s Rep z , t .Ž .12< <1 y z1

Therefore,

< <2 z1XRe z p z , t G y Rep z , t , z g U, t G 0.Ž . Ž .Ž .1 1 1 12< <1 y z1

1Ž . w xHence using the relation 2.3 , the fact that a g 0, , and the above2

inequality, we obtain

< < 2² :Re h z , t , z G 1 y a 1 y zŽ . Ž . Ž .1

< < 2 < <qRep z , t 1 y a z y 2a z q a ) 0,Ž . Ž .Ž .1 1 1

Ž . 2 < < 2 < < 2 Ž .for z s z , z g C , z q z s 1, z / 0, and t G 0. Thus h ?, t1 2 1 2 2

Ž .satisfies the assumption i from Lemma 1.2, for all t G 0.
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On the other hand it is obvious to see that the mapping h satisfies the
Ž . Ž .measurability condition ii from Lemma 1.2. Moreover, because p 0, t s 1

Ž .and Rep z , t ) 0, z g U, t G 0, we obtain1 1

1 y r 1 q r
< <F p z , t F , z F r , t G 0.Ž .1 11 q r 1 y r

Hence

< <2 z 2 r1X < <z p z , t F Rep z , t F , z F r , t G 0.Ž . Ž .1 1 1 12 2< <1 y z 1 y rŽ .1

Ž .It follows that for each r g 0, 1 , there exists a positive constant
Ž .K s K r such that

5 5h z , t F K r , z F r , t G 0.Ž . Ž .

Ž .Thus the relation iii from Lemma 1.2 is also satisfied.
Ž .Finally, since f ?, t is locally uniformly bounded on U for each t G 0,

� 4there exists a sequence t , t ) 0, increasing to `, such thatm m

lim eyt m f z , t s g zŽ . Ž .1 m 1
mª`

locally uniformly in U. Therefore we obtain

aXytmlim e F z , t s g z , z g z s G zŽ . Ž . Ž . Ž .Ž .Ž .a m 1 2 1 a
mª`

locally uniformly in B.
Since all assumptions of Lemma 1.2 are satisfied, we conclude that
Ž .F z, t is a Loewner chain. But the initial element of this chain is F , soa a

0Ž .F g S B . This completes the proof.a

A direct consequence of the above theorem is the following result. We
1Ž .remark that for the case of the Roper]Suffridge operator a s , this2

w xresult was recently obtained in 3 , using the analytical characterization of
starlikeness due to Matsuno and Suffridge.

U 1w x Ž .COROLLARY 2.2. Let f g S and a g 0, . Then F s F f ga n, a2
U Ž .S B .

U Ž . t Ž .Proof. We recall that f g S iff f z , t s e f z , z g U, t G 0, is a1 1 1
Ž .Loewner chain. Hence, taking into account the relation 2.1 and the proof

Ž . t Ž .of Theorem 2.1, we deduce that F z, t s e F z , z g B, t G 0, is also aa a
U Ž .Loewner chain. This implies F g S B , as claimed.a
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Another consequence of Theorem 2.1 is given in the following
pˆ < <COROLLARY 2.3. Let f g S , where b g R, b - , and let F sb a2

ˆŽ . Ž .F f . Then F g S B .n, a a b

ˆProof. Since f g S , the following is a Loewner chainb

f z , t s eŽ1yi a. t f e iatz , z g U, t G 0,Ž . Ž .1 1 1

Ž w x.where a s tan b see 16, Theorem 6.6 . A short computation shows that

F z , t s eŽ1yi a. tF eiatz ,Ž . Ž .a a

Ž . Ž .where F z, t is given by 2.1 . In view of the proof of Theorem 2.1, wea
ˆ Ž .conclude that this map is a Loewner chain; hence F g S B too.a b

We have therefore established that the Roper]Suffridge extension oper-
ator preserves spirallikeness of type b.

Remark 2.4. As for the preservation of convexity under the operators
Ž . Ž . Ž . Ž . Ž w x.F , we know that F K : K B and F K o K B see 17 .n, a n, 1r2 n, 0

w xUsing arguments similar to those in the proof of 17, Theorem 2 , we can
show that the operator F does not preserve convexity for n G 2 andn, a

Ž .a g 0, 1r2 . For this purpose it suffices to consider the function f : U ª C
1 1 q z1Ž .given by f z s log .1 2 1 y z1

3. RADIUS OF STARLIKENESS AND RADIUS OF CONVEXITY

Ž .Let FF be a non-empty subset of S B . Then we let

U � 4r FF s sup r : f is starlike on B , f g FFŽ . r

and

� 4r FF s sup r : f is convex on B , f g FF ,Ž .c r

denote the radius of starlikeness and radius of convexity of FF, respectively.
w x U Ž .Shi 19 showed that the radius of convexity for S B is strictly positive

and also that there exists a positive radius of convexity for the set of
normalized locally uniformly bounded maps on B.

U 1Ž Ž .. w xIn the following we deduce the values of r F S , a g 0, , andn, a 2
Ž Ž ..r F S , when n G 2. We begin with the following observation:c n

Remark 3.1. It is obvious that if f : U ª C is a locally univalent
Ž . XŽ . wfunction on U, normalized by f 0 s f 0 y 1 s 0, and if for some a g 0,

1 x Ž . Ž . Ž . Ž . Ž .and some r g 0, 1 F f g S B , then f g S U . Also if F f gn, a r r n, a2
U Ž . Ž Ž .. U Ž . Ž Ž ..S B resp. K B , then f g S U resp. K U too.r r r r
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Ž .On the other hand, if f g S U , 0 - r F 1, then, using the result ofr
10Ž . Ž . w xTheorem 2.1, we deduce that F f g S B , for all a g 0, .n, a r 2

We can now prove
U p 1Ž Ž .. w xTHEOREM 3.2. r F S s tanh , for all a g 0, .n, a 4 2

Proof. It is well known that if f g S then f is starlike in U , wherer
pr s tanh . In fact this positive number is the radius of starlikeness for the4

Ž w x.class S see for example 16 . Hence

z f X zŽ .1 1
< <Re ) 0, z - r ,1f zŽ .1

< <and this quantity can be negative if z ) r.1
Ž .Now let F s F f . Taking into account the result of Corollary 2.2a n, a

U Ž .and using Remark 3.1, we deduce that F g S B and furthermore thata r
pF may not be starlike in any ball B with r ) r. Therefore r s tanh isa r 1 41

Ž .the biggest radius for which each F g F S becomes starlike in B .a n, a r
This completes the proof.

1 U0 0Ž . Ž . w x Ž Ž ..Since F S : S B for a g 0, , we must have r S B Fn, a 2
U pŽ Ž ..r F S s tanh , for n G 2. Hence Theorem 3.2 leads to the follow-n, a 4

ing
U p0Ž Ž ..Conjecture 3.3. r S B s tanh .4

With similar reasoning to that in the proof of Theorem 3.2, we obtain
Ž .the following result concerning the radius of convexity of F S .n

U 'Ž Ž .. Ž Ž ..THEOREM 3.4. r F S s r F S s 2 y 3 .c n c n

Ž U . Ž Ž .. Ž . UProof. Let F g F S or F g F S . Then F s F f , where f g Sn n n 'Ž . Ž .or f g S . It is well known that f g K U where r s 2 y 3 , and thisr
U Ž . Ž w x.number is the radius of convexity for S or for S see for example 16 .

Hence

Yz f zŽ .1 1
< <Re q 1 ) 0, z - r ,X 1f zŽ .1

< <and this quantity can be negative if z ) r.1
Ž . Ž .Now if g g K U , 0 - r F 1, then it is clear that if we set g zr r

1 Ž . w x Ž ws g rz , z g U then g g K. Hence from 17, Theorem 1 see also 3,rr

x. Ž . Ž . Ž . Ž .Theorem 2.1 , we deduce that F g g K B . This gives F g g K B ,n r n r
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because it is obvious to see that

1
F g z s F g r z , z g B.Ž . Ž . Ž . Ž .n r nr

Ž . Ž .Therefore, using the above argument, we conclude that F f g K B ,n r
'where r s 2 y 3 .

Taking into account Remark 3.1, we deduce that F may not be convex
U 'Ž Ž .. Ž Ž ..in any ball B , with r ) r. Therefore r F S s r F S s 2 y 3 .r 1 c n c n1

This completes the proof.
Ž . 0Ž . Ž U . U Ž .Because F S : S B , F S : S B , we conclude from Theoremn n

3.4 that

U0 'r S B F r S B F 2 y 3 .Ž . Ž .Ž .Ž .c c

We are grateful to Ted Suffridge, who suggested the following example
n U Ž .which shows that in C , n G 2, the radius of convexity of S B is strictly

'less than 2 y 3 . Thus, it remains an open problem to find this radius in
several complex variables.

EXAMPLE 3.5. Let n s 2, and let f : B ª C2 be given by

f z s z q az2 , z , z s z , z g B ,Ž . Ž .Ž .1 2 2 1 2

U'< < Ž . Ž .where a g C, a s 3 3 r2. Then f g S B , and f g K B where r sr'1r3 3 . However, f is not convex in any ball of radius greater than r.

'< < w xProof. Since a s 3 3 r2, we deduce from 18, Example 5 that f is
starlike on B. Next we show that f is convex on B , using a similarr

w xargument to that in the proof of 18, Example 7 .
Taking into account the necessary and sufficient condition of convexity

w xgiven in 21, Theorems 4 and 5 , we have to show that

y1 5 5 5 5Re Df z f z y f u , z G 0, u F z - r .Ž . Ž . Ž .² :Ž .

A straightforward computation yields

y1Re Df z f z y f u , zŽ . Ž . Ž .² :Ž .
22 2< < < <s Re z q z y u z y u z y az z y uŽ .½ 51 2 1 1 2 2 1 2 2

225 5 ² :s z y Re z , u y Re az z y uŽ .� 41 2 2

5 5 2 ² : < < < < < < 2G z y Re z , u y a z z y u1 2 2
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5 5 2 < < < < ² : < < < <s z 1 y a z y Re z , u 1 y 2 a zŽ . Ž .1 1

< < < < 5 5 2 < < 2y a z u y z y uŽ .1 1 1

5 5 2 < < < < ² : < < < <G z 1 y a z y Re z , u 1 y 2 a zŽ . Ž .1 1

< < < < 5 5 2 < < 2y a z z y z y uŽ .1 1 1

5 5 2 ² : < < < < < < < < < < 2s z y Re z , u 1 y 2 a z q a z z y u G 0,Ž .Ž . 1 1 1 1

'Ž . Ž . 5 5 5 5 < <for all z s z , z g B , u s u , u g B , u F z , when a s 3 3 r21 2 r 1 2 r

'and r s 1r3 3 . Therefore f is convex on B .r 'On the other hand, f is not convex in any ball B with r ) 1r3 3 .r 11
Ž . Ž .Indeed, let z s z , z and u s u , u , where z s u , z s yu g1 2 1 2 1 1 2 2

1' '� 4 < < � 4 5 5R_ 0 , z ) 1r3 3 , and Re az ) . Hence z ) 1r3 3 and1 1 2

y1Re Df z f z y f u , zŽ . Ž . Ž .² :Ž .
225 5 ² :s z y Re z , u y Re az z y uŽ .� 41 2 2

2 25 5 � 4s z y Re z z y z z y 4 z Re az� 41 1 2 2 2 1

2s 2 z 1 y 2 Re az - 0.� 4Ž .2 1

'Thus f is not convex in any ball of radius greater than r s 1r3 3 . This
completes the proof.

Ž U Ž .. Ž 0Ž ..Open Problem 3.6. Find r S B and r S B , where B is the unitc c
ball of Cn, n G 2.

Next we make the following observation:

Remark 3.7. There is no radius of convexity for the class of normalized
starlike mappings on the unit polydisk P of Cn, n G 2.

n Ž . Ž .Proof. Let F: P ª C be a locally univalent map, F 0 s 0, DF 0 s I.
Ž wAccording to Suffridge’s characterization of convexity see 20, Theorem

x.3 , F is convex if and only if F has the representation

F z s T f z , . . . , f z , z s z , . . . , z g P ,Ž . Ž . Ž . Ž .Ž .1 1 n n 1 n

where T is a non-singular n = n matrix and f are univalent convexj
Ž .functions of one variable. Since DF 0 s I, T must be a diagonal matrix
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XŽ .and after absorbing constants, we may assume that T s I and f 0 s 1, jj
s 1, . . . , n. Hence F must be of the form

F z s g z , . . . , g z , 3.1Ž . Ž . Ž . Ž .Ž .1 1 n n

where the g are normalized convex functions in the unit disc.j
Now let

z z z1 2 n
F z s , , . . . , ,Ž . 2 2 2ž /1 y z 1 y z 1 y zŽ . Ž . Ž .1 1 1

z s z , . . . , z g P .Ž .1 n

Then F is normalized locally univalent on P, and a short computation
shows that

1 y z 1 y z 1 y z1 1 1y1w z s DF z F z s z , z , . . . , z ,Ž . Ž . Ž . 1 2 nž /1 q z 1 q z 1 q z1 1 1

Ž .for z s z , . . . , z g P.1 n
Hence

w z 1 y zŽ .j 1
5 5 < <Re s Re ) 0, z s z , 1 F j F n.jz 1 q zj 1

w xApplying 20, Theorem 1 , we conclude that F is starlike on P.
On the other hand, it is obvious to see that F does not admit a

Ž . Ž .decomposition as in 3.1 ; hence F is not convex in rP for any r g 0, 1 .
This completes the proof.

4. THE EXTENSION OF UNIVALENT BLOCH
FUNCTIONS TO BLOCH MAPPINGS

1Ž w x.In this section we show that the same set of parameter values a g 0, 2

arises when one considers whether normalized univalent Bloch functions
are extended to Bloch mappings by F .n, a

1w x Ž .THEOREM 4.1. If f g BB and a g 0, , then F s F f is a Bloch0 a n, a2

mapping.

Ž .Proof. We need to show that m F - `. It suffices to give the proofa

when n s 2.
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Since

aay1X X Y XDF z u s u f z , a z u f z f z q u f z ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .ž /a 1 1 2 1 1 1 2 1

Ž . Ž . 2for all z s z , z g B and u s u , u g C , we obtain the relations1 2 1 2

2Yf zŽ .12 2 2 a2 X X< <DF z u s u f z q f z a z u q uŽ . Ž . Ž . Xa 1 1 1 2 1 2f zŽ .1

2Yf zŽ .12 2 a 2X X 2 < <F f z q f z a 1 y zŽ . Ž . Ž . X1 1 1 f zŽ .1

Yf zŽ .1q1 q 2a Xf zŽ .1

2 aXf zŽ .12XF f z qŽ .1 2< <1 y z1

2 < < 2 < < 2= 4a y 1 z q 4a 1 q 4a z q 16a q 8a q 1Ž . Ž .Ž .1 1

2 aXf zŽ .12X 2F f z q 32a q 12a q 1 ,Ž . Ž .1 2< <1 y z1

Ž . 2 5 5for all z s z , z g B and u g C , u s 1. In the above relations we1 2
1w xhave used the fact that a g 0, and f g S; hence f satisfies the well2

known inequality

2 Y< <1 y z f zŽ .1 1
? y z F 2,X 12 f zŽ .1

for all z g U.1
Now, since f g BB , we have0

1
Xf z F , z g U,Ž .1 12< <1 y z1

1w xand since a g 0, , we deduce2

2 225 51 y z DF zŽ .Ž . a

2 2 a2 2 a2 2X X 2< < < <F 1 y z f z q 1 y z f z 32a q 12a q 1Ž . Ž . Ž .Ž . Ž .1 1 1 1

F 16,
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Ž .for all z g B, which means m F F 4. Thus F is a Bloch mapping, asa a

claimed. This completes the proof.
1Ž .We note that for the case of the Roper]Suffridge operator a s , the2

w xabove result was recently obtained in 3 .

Remark 4.2. Liu and Minda showed that if f g BB then f is univalent`
p w xin U where r s , 0.6633 11, Theorem 1 . From Theorem 2.1 and'r 0 4 q p0

Ž . 0Ž .Remark 3.1 it follows that F f g S B . However, we do not known, a r0
Ž . Ž Ž .that F f is a Bloch mapping. Of course if f g BB then F f gn, a 0 n, a

0Ž . .S B .

5. GROWTH AND COVERING THEOREMS FOR
Ž .FAMILIES OF THE FORM F FFn, a

In this section we prove the following growth and covering results for
1Ž . w xfamilies F FF , where a g 0, and FF is a subfamily of S whosen, a 2

members satisfy growth and distortion results.

THEOREM 5.1. Suppose that FF is a subfamily of S such that all f g FF

satisfy

< <w r F f z F c r , z s r 5.1Ž . Ž . Ž . Ž .1 1

X X X < <w r F f z F c r , z s r , 5.2Ž . Ž . Ž . Ž .1 1

where

ww , c are twice differentiable on 0, 1 , 5.3Ž ..
X Y ww 0 s w 0 y 1 s 0, w9 r G 0, w r F 0 on 0, 1 ;Ž . Ž . Ž . Ž . .

5.4Ž .
X X Y wc 0 s c 0 y 1 s 0, c r G 0, c r G 0 on 0, 1 .Ž . Ž . Ž . Ž . .

5.5Ž .

Ž .If F g F FF , thena n, a

5 5w r F F z F c r , z s r . 5.6Ž . Ž . Ž . Ž .a

Ž .Furthermore, if for some f g FF the lower respectï ely upper estimate in
Ž . Ž . Ž .5.1 is sharp at z g U, then the lower respectï ely upper estimate in 5.61

Ž . Ž .is sharp for F f at z , 0, . . . , 0 .n, a 1
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To prove this we need the following lemma

LEMMA 5.2. Suppose that w and c are functions which satisfy the
1Ž . Ž . w x w .conditions 5.3 ] 5.5 of Theorem 5.1 and a g 0, . Then for fixed r g 0, 1 ,2

Ž Ž ..2 Ž 2 2 .Ž XŽ ..2 a w xthe minimum of w t q r y t w t for t g 0, r occurs when
t s r ;

Ž Ž ..2 Ž 2 2 .Ž XŽ ..2 a w xthe maximum of c t q r y t c t for t g 0, r occurs when
t s r.

Ž xProof. We consider the sign of the first derivative on 0, r , taking
1w x Ž . Ž .account of the fact that a g 0, and the relations 5.3 ] 5.5 .2

5 5Proof of Theorem 5.1. Let z s r. Taking into account the result of
Lemma 5.2, it is not difficult to obtain the lower and the upper esti-
mates for

2 2 a 2 2 a2 2X X X25 5 < <f z q z f z s f z q r y z f z .Ž . Ž . Ž . Ž .Ž .1 1 1 1 1

As a direct consequence of Theorem 5.1 we obtain the following growth
Ž w x.result compare with 2, Corollary 2.3; 4, Corollary 2.3 .

COROLLARY 5.3. If f g S, then

r r
5 5F F f z F , z s r . 5.7Ž . Ž . Ž .n , a2 21 q r 1 y rŽ . Ž .

If f g K, then

r r
5 5- F f z F , z s r . 5.8Ž . Ž . Ž .n , a1 q r 1 y r

YŽ . Žk .Ž .If f g K and f 0 s 0, . . . , f 0 s 0, then

r rdt dt
5 5F F f z F , z s r . 5.9Ž . Ž . Ž .H Hn , a2rk 2rkk k0 01 q t 1 y tŽ . Ž .

If f g BB , then0

1 2 r 1 1 q r
5 51 y exp y F F f z F log , z s r .Ž . Ž .n , až /ž /2 1 y r 2 1 y r

5.10Ž .

Ž .All of these estimates are sharp except for the lower estimate in 5.10 .

Ž .Finally we give the following covering theorem for the class F FF .n, a
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1w xTHEOREM 5.4. Suppose that a g 0, and that the family FF ; S and the2

functions w and c satisfy the hypotheses of Theorem 5.1. Then for all f g FF,
Ž . Ž .the image of F f contains the ball B , where r s lim w r .n, a r r p1

Proof. The existence of r follows from the fact that w is a bounded
w . Ž .increasing function on 0, 1 . This can be proved using 5.4 and the fact

Ž . w . Ž .that w r rr is decreasing on 0, 1 . On the other hand, since F f is ann, a

Ž .Ž .open mapping, F f B > B , as claimed. This completes the proof.n, a r

Ž .Ž .COROLLARY 5.5. If f g S, then F f B = B .n, a 1r4
Ž .Ž .If f g K, then F f B = B .n, a 1r2

YŽ . Žk .Ž .If f g K and f 0 s 0, . . . , f 0 s 0, then

dt1
F f B = B , r s .Ž . Ž . Hn , a r k 1rkk k0 1 q tŽ .

Ž .Ž .If f g BB , then F f B = B .0 n, a 1r2
All results are sharp except for the last.
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