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Abstract

We study some properties of generalized binomial coefficients for symmetric cones and we
a generalized binomial expansion formula for Lorentz cones.
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1. Introduction

Let Ω be an irreducible symmetric cone and letJ be the associated Jordan algeb
Denote the rank ofΩ by r and the dimension ofJ byn. Fix a Jordan frame{e1, . . . , er} in J
and define the following subspaces:Vj = {x ∈ J : ej ◦ x = x} andVij = {x ∈ J : ei ◦ x =
(1/2)x and ej ◦ x = (1/2)x}, where◦ is the Jordan product inJ . ThenVj = Rej for
j = 1, . . . , r are 1-dimensional subalgebras ofJ , while the subspacesVij of J for i, j =
1, . . . , r with i �= j all have a common dimensiond . It follows thatn= r + (d/2)r(r − 1)
and

n

r
= 1+ d

2
(r − 1). (1.1)

Forj = 1, . . . , r, letEj = e1 + · · ·+ ej , and setJj = {x ∈ J : Ej ◦ x = x}. ThenJj is a
subalgebra ofJ of rankj . Denote byPj the orthogonal projection ofJ ontoJj and define

∆j(x)= δj (Pjx) (1.2)
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for x ∈ J , whereδj denotes the Koecher norm, or the determinant function forJj . Then
∆j is a polynomial onJ that is homogeneous of degreej . We call∆j(x) thej th principal
minor ofx.

Let λ1, . . . , λr be complex numbers, and define the function∆λ onJ by

∆λ(x)=∆(x)λr
r−1∏
j=1

∆j(x)
λj−λj+1, (1.3)

where∆(x)= ∆r(x) is the Koecher norm function onJ . The function∆λ is the gener-
alized power function onJ . In particular, whenλj =mj are integers for allj = 1, . . . , r
andm1 � · · · � mr � 0, m = (m1, . . . ,mr) is called a partition, and we writem � 0.
The length|m| of m is defined by|m| =m1 + · · · +mr , and∆m becomes a polynomia
function onJ which is homogeneous of degree|m|. LetG(Ω) denote the automorphis
group ofΩ and letG be the connected component of the identity inG(Ω). ThenG acts
transitively onΩ ∼= G/K, whereK is the stability group of identity elemente in Ω . In
fact,K is actually a maximal compact subgroup ofG. For each partitionm, the spherica
polynomial of weightm onΩ may be defined by

Φm(x)=
∫
K

∆m(k · x) dk, (1.4)

wheredk is the Haar measure onK. The algebra of allK-invariant polynomials onJ ,
denoted byP(J )K , decomposes as

P(J )K =
∑

m

⊕
CΦm.

Let ρ = (ρ1, . . . , ρr ) be anr-tuple given byρj = (d/4)(2j − r − 1) for j = 1, . . . , r, and
define the spherical functionφλ onΩ for λ ∈ Cr by

φλ(x)=
∫
K

∆λ+ρ(k · x) dk. (1.5)

It is clear from (1.4) and (1.5) thatΦm andφλ areK-invariant and for any partitionm,
Φm = φm−ρ . Moreover,φλ = φλ′ if and only if there exists a permutationw such that
λ′ =wλ.

For a fixed Jordan frame{e1, . . . , er }, anyx in J can be written as

x = k · a, k ∈K, a =
r∑
j=1

aj ej , (1.6)

wherea1, . . . , ar are called the eigenvalues ofx, and we may assumea1 � · · · � ar for
the uniqueness. Ifx ∈Ω , then alla1, . . . , ar are positive. Since the functionsΦm andφλ
areK-invariant, they depend only on the eigenvaluesa1, . . . , ar of x ∈ Ω , and we may
writeΦm(x)=Φm(a1, . . . , ar). Let JC be the complexification ofJ . Then every elemen
z ∈ JC has a spectral decomposition

z= u · (a1e1 + · · · + arer ), (1.7)
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whereu ∈ U , a compact subgroup ofGL(JC), a1 � · · · � ar � 0. |z| = a1 is called the
spectral norm ofz ∈ JC. The open unit ballD of JC is defined by

D = {
z ∈ JC: |z|< 1

}
. (1.8)

The generalized binomial expansion on the symmetric coneΩ is [4, p. 343]

Φm′(e+ x)=
∑
m�0

(
m′
m

)
Φm(x), (1.9)

wherem′ is a partition. Here, the binomial coefficients
(m′

m

)
on symmetric conesΩ are

generalizations of the usual binomial coefficients(
m

n

)
= m!
n!(m− n)!

which arises in the expansion

(1+ x)m =
m∑
n=0

(
m

n

)
xn (1.10)

on the real line. It is known [5,12] that
(m′

m

) = 0 unlessm � m′; i.e., if m′ = (m′
1, . . . ,m

′
r )

andm = (m1, . . . ,mr), thenmj � m′
j for j = 1, . . . , r. Therefore, the sum in (1.9) ha

only finitely many termsΦm(x) for which m � m′.
Because of importance in analysis and other mathematical areas, generalized b

coefficients have brought attentions to mathematicians; e.g., they are discussed in [5
By the spherical Taylor formula [4, XII.1],

(
m′
m

)
= dm

1

(n/r)m
Φm

(
∂

∂x

)
Φm′(e+ x)

∣∣∣∣
x=0

= dm
1

(n/r)m
Φm

(
∂

∂x

)
Φ ′

m(x)

∣∣∣∣
x=e

, (1.11)

wheredm is the dimension of the spacePm of polynomials onJ generated by∆m. In
[3, Lemma 4.4], we generalized the binomial coefficient

(m′
m

)
for a partitionm′ to

(
λ
m

)
for

λ ∈ C
r . In [3, Proposition 4.5], we gave an integral expression for this binomial co

cient (cf. (2.6) below). However, still very little is known about the explicit form of th
coefficients.

By classification, there are four families of classical irreducible symmetric c
Πr(R), Π(C), Πr(H), the cones of allr × r positive definite matrices overR, C, andH,
the Lorentz conesΛn, and an exceptional coneΠ3(O) [4]. In [1], we found an explicit
binomial expansion formula for symmetric conesΠr(C) and computed the spheric
transform ofφ−λ(Ir +x) forΠr(C), whereIr is ther× r identity matrix. In this paper, we
study some properties of the binomial coefficients for symmetric conesΩ and we obtain
an explicit binomial expansion for Lorentz conesΛn. These results would be interesti
for analysis on symmetric cones, in particular, for analysis on Lorentz cones.
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.3),

(2.1)
2. Properties of the binomial coefficients for symmetric cones

Let λ = (λ1, . . . , λr ) ∈ Cr , ∆λ(x) be the generalized power function defined by (1
d∗x =∆(x)−n/r dx, wheredx is the Lebesgue measure onΩ , and let trx be the trace ofx.
The gamma functionΓΩ for the coneΩ is defined by

ΓΩ(λ)=
∫
Ω

e− trx∆λ(x) d∗x (2.1)

whenever the integral converges absolutely. By [4, Theorem VII.1.1], the integral in
converges absolutely if and only if Reλj > (j − 1)d/2 for j = 1,2, . . . , r. In this range,
ΓΩ(λ) can be calculated by

ΓΩ(λ)= (2π)(n−r)/2
r∏
j=1

Γ

(
λj − (j − 1)

d

2

)
, (2.2)

and (2.2) defines the meromorphic continuationΓΩ to all of Cr . Note that 1/ΓΩ(λ) is an
entire function onCr .

Recall that forα ∈ C and nonnegative integerj , the classical Pochhammer symbol(α)j
is defined by

(α)j = Γ (α+ j)

Γ (α)
= α(α + 1) . . . (α + j − 1). (2.3)

Forλ ∈ Cr andm, any partition the Pochhammer symbol[λ]m forΩ is defined by

[λ]m = ΓΩ(λ+ m)
ΓΩ(λ)

. (2.4)

It follows from (2.2) that

[λ]m =
r∏
j=1

(
λj − (j − 1)

d

2

)
mj

.

For m′ = (m′
1, . . . ,m

′
r ) ∈ C

r , a partitionm = (m1, . . . ,mr), and a positive integerk,
definem′ + k = (m′

1 + k, . . . ,m′
r + k) andm + k = (m1 + k, . . . ,mr + k). Then we have

Theorem 2.1.(
m′ + k

m + k

)
= (−1)kr

(
m′
m

) [−m′ − k + 2ρ]k
[n/r + m]k . (2.5)

Proof. By [3, Proposition 4.5],
(

m′
m

)
= (−1)|m|

|m|!ΓΩ(−m′ + 2ρ)

∫
e− trx dm|m|!

[n/r]m
Φm(x)φm′−ρ(x−1) d∗x (2.6)
Ω
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for Re(m′
j − ρj ) < (d/4)(r − 1), j = 1, . . . , r. Similarly, if Re(m′

j + k − ρj ) < (d/4)×
(r − 1), j = 1, . . . , r, then(

m′ + k

m + k

)
= (−1)|m+k|

ΓΩ(−m′ − k + 2ρ)

×
∫
Ω

e− trx dm+k
[n/r]m+k

Φm+k(x)φm′+k−ρ(x−1) d∗x. (2.7)

It is easy to see that|m + k| = |m| + kr. Since∆m+k(x)= ∆m(x)(∆(x))
k, and∆(x) is

invariant under the subgroupK,

Φm+k(x)=Φm(x)
(
∆(x)

)k
. (2.8)

By the same reason,

φm′+k−ρ(x−1)= φm′−ρ(x−1)
(
∆(x−1)

)k = φm′−ρ(x−1)

(∆(x))k
. (2.9)

By a formula fordm [4, p. 315],dm+k = dm. It follows from (2.6)–(2.9) that(
m′ + k

m + k

)
= (−1)krΓΩ(−m′ + 2ρ)[n/r]m

ΓΩ(−m′ − k + 2ρ)[n/r]m+k

(
m′
m

)
. (2.10)

By (2.10), (2.4), and a calculation, (2.5) holds for Re(m′
j + k − ρj ) < (d/4)(r − 1), j =

1, . . . , r. Since
(m′

m

)
is a polynomial inm′ ∈ Cr [3, Lemma 4.4], (2.5) holds for a

m′ ∈ Cr . ✷
We now fixd , and letm′ = (m′

1, . . . ,m
′
r ) ∈ C

r andm = (m1, . . . ,mr) be a partition.

Theorem 2.2. The binomial coefficients satisfy(
(m′

1, . . . ,m
′
r ,0)

(m1, . . . ,mr ,0)

)
=

(
m′
m

)

and (
(m′

1, . . . ,m
′
r ,0)

(m1, . . . ,mr ,mr+1)

)
= 0

if mr+1 �= 0.

Proof. LetΩ be an irreducible symmetric cone of rankr + 1 and letx1, . . . , xr , xr+1 be
eigenvalues ofx ∈Ω defined by (1.6). By [10, Theorem 5.3],

Φ(m′
1,...,m

′
r ,0)
(x1, . . . , xr , xr+1)

= Γ (d(r + 1)/2)

(Γ (d/2))r+1

∏
i<j

(xi − xj )
1−d

xr∫
xr+1

. . .

x1∫
x2

Φm′(µ1, . . . ,µr)

×
r∏ r+1∏

|µi − xj |d/2−1
∏
(µi −µp)dµ1 . . . dµr (2.11)
i=1 j=1 i<p
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for a partitionm′ = (m′
1, . . . ,m

′
r ). We rewrite ther-tupleρ asρr ; i.e.,ρr = (ρr1, . . . , ρ

r
r ),

whereρrj = (d/4)(2j− r−1) for all j = 1, . . . , r, and we introduce an(r+1)-tupleρr+1;

i.e.,ρr+1 = (ρr+1
1 , . . . , ρr+1

r , ρr+1
r+1), whereρr+1

j = (d/4)(2j − r − 2). SinceΦm = φm−ρ ,
we may rewrite (2.11) as

φ
(m′

1−ρr+1
1 ,...,m′

r−ρr+1
r ,−ρr+1

r+1)
(x1, . . . , xr , xr+1)

= Γ (d(r + 1)/2)

(Γ (d/2))r+1

∏
i<j

(xi − xj )
1−d

xr∫
xr+1

. . .

x1∫
x2

φm′−ρr (µ1, . . . ,µr)

×
r∏
i=1

r+1∏
j=1

|µi − xj |d/2−1
∏
i<p

(µi −µp)dµ1 . . . dµr . (2.12)

By the generalized Carlson’s theorem [3, Corollary 3.11], (2.12) holds for allm′ ∈ Cr .
(The proof of this fact is simple and is almost identical to the proof of [1, Lemma 2
follows that

φ
(m′

1−ρr+1
1 ,...,m′

r−ρr+1
r ,−ρr+1

r+1)
(1+ x1, . . . ,1+ xr,1+ xr+1)

= Γ (d(r + 1)/2)

(Γ (d/2))r+1

∏
i<j

(
1+ xi − (1+ xj )

)1−d
1+xr∫

1+xr+1

. . .

1+x1∫
1+x2

φm′−ρr (µ1, . . . ,µr)

×
r∏
i=1

r+1∏
j=1

∣∣µi − (1+ xj )
∣∣d/2−1 ∏

i<p

(µi −µp)dµ1 . . . dµr

= Γ (d(r + 1)/2)

(Γ (d/2))r+1

∏
i<j

(xi − xj )
1−d

xr∫
xr+1

. . .

x1∫
x2

φm′−ρr (1+ t1, . . . ,1+ tr )

×
r∏
i=1

r+1∏
j=1

|ti − xj |d/2−1
∏
i<p

(ti − tp) dt1 . . . dtr . (2.13)

Theorem 2.2 follows now from (2.13).✷

3. Binomial expansion for Lorentz cones

The only cone of rank 1 isR+ andΦm(x)= xm. If m′ ∈ C, then

(1+ x)m
′ =

∞∑
m=0

(
m′
m

)
xm =

∞∑
m=0

m′(m′ − 1) . . . (m′ −m+ 1)

m! xm (3.1)

holds in the interval−1< x < 1. In particular, ifm′ is a positive integer, then the seri
(3.1) has only finitely many terms and it becomes (1.10).

It is known [4] that the rank of a Lorentz coneΛn is 2, the dimension isn, d = n− 2,
ρ1 = −d/4, andρ2 = d/4. The associated Jordan algebra withΛn is J = Rn, and the
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complexificationJC of J is Cn. As a special case of (1.7), every elementz ∈ JC has a
spectral decomposition

z= u · (a1e1 + a2e2), (3.2)

where {e1, e2} is a fixed Jordan frame,u ∈ U = SO(n) × SO(2), a1 � a2 � 0. By [4,
Theorem XII.1.1],∣∣Φm(z)

∣∣ � a
m1
1 a

m2
2 (3.3)

for z given by (3.2).
By Theorem 2.2, ifm′

1 is a positive integer, then

Φ(m′
1,0)
(1+ x1,1+ x2)=

m′
1∑

m1=0

(
m′

1
m1

)
Φ(m1,0)(x1, x2). (3.4)

More generally,

φ(m′
1+d/4,−d/4)(1+ x1,1+ x2)=

∞∑
m1=0

(
m′

1
m1

)
Φ(m1,0)(x1, x2), (3.5)

wherem′
1 ∈ C, x1 andx2 are eigenvalues ofx ∈D. The expansions (3.4) and (3.5) are

binomial expansions for the special index(m′
1,m

′
2), wherem′

2 = 0. For the general cas
m′

2 �= 0, we have

Theorem 3.1. For (m′
1,m

′
2) ∈ C2 and a nonnegative integerm1, the binomial coefficients

(
(m′

1,m
′
2)

(m1,0)

)
=

m1∑
k=0

(
m′

1 −m′
2

k

)
2m1−k

(
m′

2
m1 − k

)m1−1∏
i=k

d + i

d + 2i
. (3.6)

Proof. By (1.5) and (1.3),

φ(m′
1+d/4,m′

2−d/4)(1+ x1,1+ x2)

= φ(m′
1−m′

2+d/4,−d/4)(1+ x1,1+ x2)
(
∆(e+ x)

)m′
2, (3.7)

wherex1 � x2 � 0 are two eigenvalues ofx ∈Λn. By [4, Proposition XI.5.2],

∆(e+ x)= 1+ 2Φ(1,0)(x)+Φ(1,1)(x).
By (3.3), |2Φ(1,0)(x)+Φ(1,1)(x)|< 1 in a neighborhoodD′ of 0 in JC. By the binomial
formula onR,(

∆(e+ x)
)m′

2 = (
1+ 2Φ(1,0)(x)+Φ(1,1)(x)

)m′
2

=
∞∑
j=0

(
m′

2
j

)
2j

(
Φ(1,0)(x)

)j + terms involvingΦ(1,1)(x) (3.8)

for x ∈D′. By (3.5),

φ(m′
1−m′

2+d/4,−d/4)(1+ x1,1+ x2)=
∑(

m′
1 −m′

2
k

)
Φ(k,0)(x) (3.9)
k�0
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for x ∈ D. We now multiply (3.8) with (3.9) and observe that the product of any t
involvingΦ(1,1)(x) in (3.8) with any term in (3.9) is a linear combination of such spher
polynomialsΦ(m1,m2)(x) for which m2 �= 0. Hence, to study the binomial coefficie((m′

1,m
′
2)

(m1,0)

)
, we need only to multiply

∞∑
j=0

(
m′

2
j

)
2j

(
Φ(1,0)(x)

)j

with (3.9).
By the recurrence formula [11],

Φ(1,0)(x)Φ(k,0)(x)= d + k

d + 2k
Φ(k+1,0)(x)+ k

d + 2k
Φ(k,1)(x)

for a positive integerk. By mathematical induction,

(
Φ(1,0)(x)

)j
Φ(k,0)(x)=Φ(k+j,0)(x)

k+j−1∏
i=k

d + i

d + 2i

+ terms involvingΦ(m1,m2)(x) for whichm2> 0. (3.10)

To compute
((m′

1,m
′
2)

(m1,0)

)
, we multiply

∞∑
j=0

(
m′

2
j

)
2j

(
Φ(1,0)(x)

)j

with (3.9) and apply (3.10). Adding all terms withk+ j =m1 up and noticingj =m1 − k,
we prove (3.6). ✷

We are now ready to compute all binomial coefficients
((m′

1,m
′
2)

(m1,m2)

)
and derive the binomia

formula for the Lorentz conesΛn.
By (2.5),(

(m′
1,m

′
2)

(m1,m2)

)
=

(
(m′

1 −m2,m
′
2 −m2)

(m1 −m2,0)

) [−m′ + 2ρ]m2

[n/2+ (m1 −m2,0)]m2

=
(
(m′

1 −m2,m
′
2 −m2)

(m1 −m2,0)

)
(−m′

1 − d/2)m2(−m′
2)m2

(m1 −m2 + d/2+ 1)m2m2! . (3.11)

By (3.6) and (3.11),(
(m′

1,m
′
2)

(m1,m2)

)
= (−m′

1 − d/2)m2(−m′
2)m2

(m1 −m2 + d/2+ 1)m2m2!

×
m1−m2∑
k=0

(
m′

1 −m′
2

k

)
2m1−m2−k

(
m′

2 −m2
m1 −m2 − k

)

×
m1−m2−1∏

i=k

d + i

d + 2i
. (3.12)
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Theorem 3.2 (Binomial formula for Lorentz cones).

φ(m′
1+d/4,m′

2−d/4)(e+ x)=
∑
m�0

(
(m′

1,m
′
2)

(m1,m2)

)
Φm(x), (3.13)

where the sum is over all partitionsm = (m1,m2) and the coefficients(
m′
m

)
=

(
(m′

1,m
′
2)

(m1,m2)

)

are given by(3.12). Moreover, the series in(3.13)converges inD defined by(3.2), and
defines an extension ofφ(m′

1+d/4,m′
2−d/4)(e+ x) toD. If m′ = (m′

1,m
′
2) is a partition, then

the series is finite.

Proof. If m′ = (m′
1,m

′
2) is a partition, then (3.13) is just (1.9), the coefficients

(m′
m

)
are

given by (3.12), and it is known that the series (3.13) is finite.
It follows from (3.12) that the coefficients(

m′
m

)
=

(
(m′

1,m
′
2)

(m1,m2)

)

have polynomial growth inm. In the spectral decomposition (3.2) ofz ∈D, a2 � a1< 1.
By (3.3), the series (3.13) converges inD. By (1.11), the both sides of (3.13) have the sa
derivatives at 0, therefore, being analytic, they are equal inΛn ∩D. Moreover, the serie
in (3.13) defines an extension ofφ(m′

1+d/4,m′
2−d/4)(e+ x) toD. ✷
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