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Abstract

We study some properties of generalized binomial coefficients for symmetric cones and we obtain
a generalized binomial expansion formula for Lorentz cones.
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1. Introduction

Let 2 be an irreducible symmetric cone and letoe the associated Jordan algebra.
Denote the rank of2 by r and the dimension of by n. Fix a Jordan framée1, ..., e} in J
and define the following subspacé§.={x € J: ejox =x} andV;; ={x e J: ¢jox =
(1/2)x ande; o x = (1/2)x}, whereo is the Jordan product id. ThenV; = Re; for
j=1,...,r are 1-dimensional subalgebras.bfwhile the subspaceg; of J for i, j =
1,...,r withi # j all have a common dimensieh It follows thatn =r + (d/2)r(r — 1)
and

"1+ e, (1.1)
r 2

Forj=1,...,r,letEj=e1+---+¢;,andset/; ={x e J: Ejox =x}. ThenJ;isa

subalgebra of of rank j. Denote byP; the orthogonal projection of ontoJ; and define

A.,' (x) = 8/(ij) (12)
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for x € J, wheres; denotes the Koecher norm, or the determinant functio/foiThen
Aj is a polynomial orv that is homogeneous of degrgeWe call A (x) the jth principal
minor of x.

Leti, ..., A, be complex numbers, and define the functibnon J by

r—1
M) =AM [T AP, (1.3)
Jj=1

where A(x) = A, (x) is the Koecher norm function oi. The functionAa, is the gener-
alized power function oy . In particular, wherk; =m; are integers foralj =1,...,r
andmi > --->m, >0, m= (m1,...,m,) is called a partition, and we writen > 0.
The lengthjm| of m is defined byim| =m1 + - - - + m,, and A, becomes a polynomial
function onJ which is homogeneous of degr@a|. Let G(£2) denote the automorphism
group of§2 and letG be the connected component of the identityGits2). ThenG acts
transitively on2 = G/K, whereK is the stability group of identity elemeatin 2. In
fact, K is actually a maximal compact subgroup®f For each partitiomn, the spherical
polynomial of weightm on £2 may be defined by

Dm(x) = / Am(k - x) dk, (1.4)
K

wheredk is the Haar measure oK. The algebra of alK -invariant polynomials orv,
denoted byP (J)X, decomposes as

PHK = Z@C@m.

m

Letp = (p1, ..., pr) be anr-tuple given byp; = (d/4(2j —r —1D for j=1,...,r, and
define the spherical functiapy, on £2 for » € C" by

$r0x) = / A p(k - ) dk. 15)
K

It is clear from (1.4) and (1.5) tha®,, and ¢, are K-invariant and for any partitiom,
Pm = ¢gm—p. Moreover,¢, = ¢, if and only if there exists a permutatian such that
A = waA.

For a fixed Jordan framg1, ..., e, }, anyx in J can be written as

r
x=k-a, keK,a:Zajej, (1.6)
j=1

whereaz, ..., a, are called the eigenvalues of and we may assume > --- > a, for
the uniqueness. If € £2, then allay, .. ., a, are positive. Since the functiods,, and¢;
are K -invariant, they depend only on the eigenvalugs. .., a, of x € 2, and we may
write ®@m(x) = @m(ay, ..., a,). Let JC be the complexification of . Then every element
z € JC has a spectral decomposition

z=u-(are1+---+arey), (1.7)
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whereu € U, a compact subgroup @ L(J), a1 > --- >a, > 0. |z| = a1 is called the
spectral norm of € JC. The open unit balD of J€ is defined by

D={zeJC |z1<1}. (1.8)

The generalized binomial expansion on the symmetric ¢@n[4, p. 343]

Py (e +x) = Z (rrnn)q?m(X), (1.9)

m>0

wherem'’ is a partition. Here, the binomial coefficier(t'ﬁ’) on symmetric cones2 are
generalizations of the usual binomial coefficients

()=

which arises in the expansion

d+x)" =Z(’Z)x" (1.10)

n=0

on the real line. It is known [5,12] thz@/) =0unlessm<m’;ie, ifm = @mj,...,m.)
andm = (my,...,m,), thenm; <m’. for j =1,...,r. Therefore, the sum in (1.9) has
only finitely many termsb, (x) for le1ich m<m.

Because of importance in analysis and other mathematical areas, generalized binomial
coefficients have brought attentions to mathematicians; e.g., they are discussed in [5-9,12].
By the spherical Taylor formula [4, XI1.1],

mMY_; Y o (e
()t o

ey () 0

wheredn is the dimension of the spad@y of polynomials onJ generated byAm. In
[3, Lemma 4.4], we generalized the binomial coefficigl}) for a partitionm’ to (/}) for
A € C". In [3, Proposition 4.5], we gave an integral expression for this binomial coeffi-
cient (cf. (2.6) below). However, still very little is known about the explicit form of these
coefficients.

By classification, there are four families of classical irreducible symmetric cones
I1.(R), I1(C), I, (H), the cones of alt x r positive definite matrices ové&, C, andH,
the Lorentz conesi,, and an exceptional con@z(0) [4]. In [1], we found an explicit
binomial expansion formula for symmetric conés (C) and computed the spherical
transform ofp_, (I, + x) for IT,(C), wherel, is ther x r identity matrix. In this paper, we
study some properties of the binomial coefficients for symmetric céhasid we obtain
an explicit binomial expansion for Lorentz condg. These results would be interesting
for analysis on symmetric cones, in particular, for analysis on Lorentz cones.

x=0

, (1.11)

xX=e
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2. Propertiesof the binomial coefficientsfor symmetric cones

LetA = (A1,..., ) € C", A, (x) be the generalized power function defined by (1.3),
d.x = A(x)™"" dx, wheredx is the Lebesgue measure an and let tic be the trace of .
The gamma functioty, for the cones2 is defined by

To() = / e U Ay (x) dyx (2.1)
2

whenever the integral converges absolutely. By [4, Theorem VII.1.1], the integral in (2.1)
converges absolutely if and only if Rg > (j — 1)d/2 for j =1,2,...,r. In this range,
I (M) can be calculated by

n—r - . d
To(L) = (2m)¢ VZH F(x, — (- 1)5), (2.2)
j=1
and (2.2) defines the meromorphic continuatign to all of C". Note that ¥I'p (1) is an
entire function orC”.

Recall that forx € C and nonnegative integgr the classical Pochhammer symioo) ;
is defined by

Fﬁx+]) .
(@)i=—=a(@+1D...(a+j]—1. 2.3
J T (@) J (2.3)
For A € C" andm, any patrtition the Pochhammer symibl, for 2 is defined by

_To(A+m)
It follows from (2.2) that

r

d
m=]] (A,, -G - 1)5)

j=1 mj

Form’ = (m),...,m}) € C", a partitionm = (my, ..., m,), and a positive intege,
definem’ +k = (m} +k,...,m, +k) andm +k = (my +k, ..., m, +k). Then we have

Theorem 2.1.
k) ke (M) =M —k+ 20k
(mie)=v (7)o @9

Proof. By [3, Proposition 4.5],

m\_ (pm o dmlm
<m>_ |m|!Fg(—m’+2p)/ n/r 1m¢m(x)¢m’ P dux (26
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for Re(m/j —pj))<d/BH@r—-1),j=1,...,r. Similarly, if Re(m'j +k—pj)<(d/B) x
r—121),5=1,...,r,then '

<m’+k) _ (=pimA

M4k )  To(—m —k+2p)
d,
x/eftrxmiqjm%(x)q&m k(X7 Ydx. (2.7)
[n/rIm+x

It is easy to see than + k| = |m| + kr. Since Amx(x) = Am(x)(A(x))¥, and A(x) is
invariant under the subgroup,

Bk () = P (1) (A(0))". (2.8)
By the same reason,

_ P p(x™h
Sk D = Py, D (AT = 7”; Afx))k : (2.9)
By a formula fordy, [4, p. 315],dm+k = dm. It follows from (2.6)—(2.9) that
<m’+k) (=DYTo(=m'+2p)[n/rlm <m)
= . (2.10)
m+k Fo(—m' —k+2p)[n/rlmx \ M

By (2.10), (2.4), and a calculation, (2.5) holds for(FM; +k—pj))<d/Hr -1, j=
1,....r. Since () is a polynomial inm’ € C" [3, Lemma 4.4], (2.5) holds for all
meC'. O

We now fixd, and letm’ = (m, ..., m,) € C" andm = (mz, ..., m,) be a partition.

Theorem 2.2. The binomial coefficients satisfy
(my,....m,, 00\ _(m’
(mls"'smrso) B m

< (m},...,m;,0) ):O
(ml’n-’mr’mr-i-l)

if my41 ;ﬁ 0.

and

Proof. Let £2 be an irreducible symmetric cone of rank- 1 and letxy, ..., x,, x,+1 be
eigenvalues of € 2 defined by (1.6). By [10, Theorem 5.3],

¢(m ..... m, 0)('xlv°"v-xrsxr+l)
_Trde+1/2 e d/ /
=@yt ]"[(, xj) P (- )
Xr+1 X2
r or+1
XHl_[|:u'i_xj|d/27ll_[(ﬂi_,ufp)dﬂl'“dﬂr (2.11)

i=1j=1 i<p
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for a partitionm’ = (m}, ..., m;). We rewrite the--tuple p asp”; i.e., p" = (o1, ..., p}),
where,or =(d/42j—r—1forall j=1,...,r, and we introduce a@r + 1)-tuple o’ +1;

ie., pr+1 (e e, Wherep’+1 (d/4)(2j —r — 2). Since®m = dpm—,,
we may rewrite (2.11) as
¢(ml pr+1 ..... m! 7prr+l’7prriit) (X1, ..., Xp, Xp41)
Xr X1
F(d(r+1)/2) 1—d
= rd2y ]_[(z—x]) /.../qﬁmupr(m,...,ur)
Xr+1 X2
r r+1
< [TTT 1w =12 [T = pydua...dper. (2.12)
i=1j=1 i<p

By the generalized Carlson’s theorem [3, Corollary 3.11], (2.12) holds fana# C".
(The proof of this fact is simple and is almost identical to the proof of [1, Lemma 2].) It
follows that

¢(m’17p£+1 ..... m;iprwrl’fprriil)(l‘i‘xlv B R T B S A )
r (d ( 1) / 2) 1+x, 1+x1
r+ 1-d
=Wn(l+x,—(l+x1)) / / ¢m/_pr([,L1,...,[/Lr)
=/ Thxrpr I4xg
L dj2—1
< [TTTImi = @+xp* [T = wpydpa...dp,
i=1j=1 i<p
I +1/2) (7
r+ \1-d
= (F(d/2))’+l l_[( Xi —Xj) / .../¢m/,pr(l+tl,...,1+tr)
Xr+1 X2
r r+1
x ]_[]_[ It; —x.,'|d/2—1]_[(t,~ —tp)dry. .. dty. (2.13)
i=1j=1 i<p

Theorem 2.2 follows now from (2.13).0

3. Binomial expansion for L orentz cones

The only cone of rank 1 iR+ and®,, (x) = x™. If m’ € C, then

(1+x)m, _ Z (m/>xm _ Z m'(m’ — 1)(m’_m+1)xm (3.1)

m m!
m=0 m=0

holds in the interval-1 < x < 1. In particular, ifm’ is a positive integer, then the series
(3.1) has only finitely many terms and it becomes (1.10).

It is known [4] that the rank of a Lorentz cong, is 2, the dimensionig,d =n — 2,
p1 = —d/4, andpp = d/4. The associated Jordan algebra with is J = R", and the
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complexificationJ€ of J is C”. As a special case of (1.7), every elemernt JC has a
spectral decomposition

z=u- (ate1+ azen), (3.2)

where{e1, e2} is a fixed Jordan framey € U = SOn) x SO2), a1 > a2 > 0. By [4,
Theorem XII.1.1],

|Pm(2)| < aytay”? (3.3)

for z given by (3.2).
By Theorem 2.2, ifn] is a positive integer, then

/
m 1

m/
Bl 0(L+x1,14x2)= ) <mi> D(ny.0) (X1, X2). (3.4)
m1=0
More generally,
(e.¢] m/
¢(mél+d/4,—d/4)(l+-xls 1+ XZ) = Z <mi> ¢(m1,0) (.x]_, X2)7 (35)

m1=0

wherem € C, x1 andx; are eigenvalues of € D. The expansions (3.4) and (3.5) are the
binomial expansions for the special index, m5), wherem’, = 0. For the general case
m’, # 0, we have

Theorem 3.1. For (m’, m}) € C2 and a nonnegative integer;, the binomial coefficients
my mp—1 .
(ma_: m/z) ma_ - m/z my—k m’ d+i
= 2m 2 _— 3.6
<(m1,0> 2 ("t m-i) 1l 753 (3.6)
k=0 i=k
Proof. By (1.5) and (1.3),
o +a/amy—d 4L+ x1, 1+ x2)
= ¢(m/1*m/2+d/4’*d/4)(1 +x1,14+x2) (A(e + X))mZ, (3.7)
wherex1 > x2 > 0 are two eigenvalues afe A,,. By [4, Proposition X1.5.2],

Ale+x) =14 2P1,0)(x) + P(1,1)(x).

By (3.3),12®(1,0)(x) + ®(1,1)(x)| < 1 in a neighborhood’ of 0 in JC. By the binomial
formula onRR,

(Ae+x))"2 = (14 2010 (x) + Pa.1)(x))"™

& / . .
= Z <m2> 2/ (q)(]_’o) (x))j + terms involvingqb(l,l) (x) (3.8)
=0
forx € D'. By (3.5),
mh —m’
Pinty-myrasa—amA+xnl+x) =) ( Tk 2) P(.0)(x) (3.9

k=0
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for x € D. We now multiply (3.8) with (3.9) and observe that the product of any term
involving @1, 1)(x) in (3.8) with any term in (3.9) is a linear combination of such spherical
polynomials @, m,) (x) for which ma # 0. Hence, to study the binomial coefficient

(('z,l,}ff)ﬁ)), we need only to multiply

o0 m! . .
> ( '2) 2/ (@0 W)’
; J
j=0
with (3.9).
By the recurrence formula [11],
d+k k
D(1,00(X)Pk,0)(x) = d—i-—Zk(p(kH’o)(x) + H—qu)(k,l)(x)
for a positive integek. By mathematical induction,
k+j—1

i d+i
(@1,0(0)) Pr,0)(x) = Pt .0 (%) l_[
i=k

d+2i

+ terms involving® ¢, m,) (x) for whichmo > 0. (3.10)

To compute((’(“:};'_”z)%)), we multiply

9]

> (n;z) 2/ (P.0/))’

j=0

with (3.9) and apply (3.10). Adding all terms wikht+ j = m1 up and noticingi = m1 —k,
we prove (3.6). O

We are now ready to compute all binomial coeﬁicie(rﬁ%’:;g) and derive the binomial
formula for the Lorentz cone4,,.
By (2.5),

<(m’l, m/z)) _ ((m/l—mz,m’z—mz)> [—m" + 201,

(m1, m2) (m1 —m2,0) [n/2+ (m1—m2,0)]m,
_ ((m/1 —mp, mly — m2)> (—my —d[2)py(—m)m, . (3.11)
(m1—m2,0) (m1—m2+d/2+ 1),,m2!
By (3.6) and (3.11),
(ma_a m/z) _ (_mél_ - d/z)mz(_m/z)mz
(my,m2) | (my—m2+d/2+ 1),m2!
"R (ml —m! mhy —my
17 "2 ) omi—ma—k 2~
< () ()
k=0
mi—mo—1 .
d+i
. 3.12
l_[ d+2i ( )

i=k
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Theorem 3.2 (Binomial formula for Lorentz cones).

(m, m5)
P/ amy—d 4y (€ +X) =) (m1. my) ) T (3.13)
m>0 ’

where the sum is over all partitioma = (m1, m2) and the coefficients

()= (ind)
m ) \ (m1,m2)
are given by(3.12) Moreover, the series i{3.13) converges inD defined by(3.2), and

defines_ an_exjte.nsion O +a/amy—aya (e +x) 1o D. If m' = (m7, m)) is a partition, then
the series is finite.

Proof. If m" = (m,m}) is a partition, then (3.13) is just (1.9), the coefficie(iﬂé) are
given by (3.12), and it is known that the series (3.13) is finite.
It follows from (3.12) that the coefficients

(m)=(0n2)
m (m1, m2)

have polynomial growth im. In the spectral decomposition (3.2) &€ D, a2 < a1 < 1.

By (3.3), the series (3.13) convergedin By (1.11), the both sides of (3.13) have the same
derivatives at 0, therefore, being analytic, they are equal,im D. Moreover, the series
in (3.13) defines an extension ¢g‘m/l+d/4,m/2_d/4) (e+x)toD. O
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