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Abstract

For the tensor product ofk copies of the same one-dimensional Bernstein-type operatorL, we
consider the problem of finding the best constant in preservation of the usual modulus of con
for thelp-norm onR

k . Two main results are obtained: the first one gives both necessary and suf
conditions in order that 1+ k1−1/p is the best uniform constant for a single operator; the sec
one gives sufficient conditions in order that 1+ k1−1/p is the best uniform constant for a family o
operators. The general results are applied to several classical families of operators usually co
in approximation theory. Throughout the paper, probabilistic concepts and methods play an import
role.
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1. Introduction and main results

Let ∆k be a (nonempty) convex subset ofR
k , and letL〈k〉 be a positive linear operato

acting on a setL〈k〉 of real functions on∆k , which assigns a real functionL〈k〉f on ∆k

to eachf ∈ L〈k〉. The problem of global smoothness preservation can be described
problem of obtaining estimates of the form

ωp(L〈k〉f ; δ) � C(δ)ωp(f ; δ), δ > 0, f ∈L〈k〉, (1)

whereC(δ) is a positive constant not depending uponf , and

ωp(f ; δ) := sup
{∣∣f (x) − f (y)

∣∣: x,y ∈ ∆k, ‖x − y‖p � δ
}

is the usual modulus of continuity for thelp-norm onR
k (p ∈ [1,∞]). In particular, it is

interesting to determine the value of the best possible constant on the right-hand side
Provided thatL〈k〉f is constant wheneverf is, such a best constant is obviously given

C〈k〉
p (δ) := sup

f∈L〈k〉∗

ωp(L〈k〉f ; δ)

ωp(f ; δ)
, δ > 0, (2)

where

L〈k〉∗ := {
f ∈ L〈k〉: 0< ωp(f ;1) < ∞}

.

Problems of this kind have been discussed in several works by using differe
proaches (see, for instance, [1–10,12] and references therein). Theprobabilistic approach
developed in [1,2,6–9,12] has proved to be suitable and fruitful when dealing with o
tors of probabilistic type (also called Bernstein-type operators), that is, operators all
for a representation of the form

L〈k〉f (x) = Ef
(
ξ 〈k〉(x)

)
, x ∈ ∆k, f ∈L〈k〉, (3)

whereE denotes mathematical expectation,{ξ 〈k〉(x): x ∈ ∆k} is a stochastic process taking
values in∆k, andL〈k〉 is the set of all real functions on∆k for which the right-hand side
in (3) makes sense.

In the present paper, we considerk-dimensional operators which are tensor product
k copies of the same one-dimensional Bernstein-type operator. More precisely, the
is the following.

Let I be the interval[0,1] or [0,∞), and letL be the Bernstein-type operator overI

given by

Lf (x) := Ef
(
ξ(x)

)
, x ∈ I, f ∈ L,

where theI -valued stochastic process{ξ(x): x ∈ I } is assumed to be integrable (this
ways holds whenI = [0,1]). It is easy to see that the domainL contains all the rea
(measurable, when needed) functions onI such thatω(f ;1) < ∞.

The tensor productL〈k〉 := L ⊗ · · · ⊗ L of k copies ofL is thek-dimensional operato
over∆k := Ik given by (3), where

ξ 〈k〉(x) := (
ξ1(x1), . . . , ξk(xk)

)
, x := (x1, . . . , xk) ∈ Ik, (4)
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and{ξi(x): x ∈ I } (i = 1, . . . , k) arek stochastically independent copies of{ξ(x): x ∈ I }
defined on the same probability space. Note that, iff1, . . . , fk ∈ L andf is the function
on Ik given by

f (x) :=
k∏

i=1

fi(xi), x := (x1, . . . , xk) ∈ Ik,

then we have, by (3), (4), and the independence assumption,

L〈k〉f (x) =
k∏

i=1

Lfi(xi), x := (x1, . . . , xk) ∈ Ik,

which is actually the distinctive feature of a tensor product operator.
The following theorem gives exact formulae and upper bounds for the best con

corresponding to these tensor products. It is aconsequence of [8, Theorems 14.2 and 14
and generalizes some one-dimensional results early obtained in [2]. The symbol�·	 denotes
the ceiling function, i.e.,

�x	 := the smallest integer not less thanx.

Theorem A. Assume that the following two conditions are fulfilled:

(a) L is centered, i.e.,Eξ(x) = x, for all x ∈ I .
(b) The process{ξ(x): x ∈ I } has stationary increments, i.e., for all0 � x < y ∈ I , the

random variableξ(y)− ξ(x) has the same probability distribution asξ(y −x)− ξ(0).

Then, for allk � 1 andp ∈ [1,∞], we have

C〈k〉
p (δ) = sup

x∈I k

‖x‖p=δ

E

⌈‖ξ 〈k〉(x)‖p

δ

⌉
� 1+ k1−1/p, (5)

whereδ ∈ (0, k1/p] or δ > 0, according toI = [0,1] or I = [0,∞).

Remark 1. Assumptions (a) and (b) obviously imply thatξ(0) = 0 a.s. andξ(x) � ξ(y)

a.s., whenever 0� x � y ∈ I . As a consequence, forp = ∞, the preceding formula be
comes

C
〈k〉∞ (δ) = E

⌈‖ξ 〈k〉(d)‖∞
δ

⌉
, 0< δ ∈ I, k � 1,

whered := (δ, . . . , δ).

Theorem A applies to many classical operators usually considered in approxim
theory (see [8]). However,C〈k〉

p (·) is a quite irregular function, and the theoretical compu

tion of the best uniform constant, i.e., supδ>0 C
〈k〉
p (δ), typically requires specific technique

adapted to the particular case under consideration. Moreover, the results in [6,9] sho
different values can be found, even in the casep = ∞.
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In the present paper, we find a class of operators for which the best uniform cons
just the upper bound in (5). More precisely, we show the following result.

Theorem 1. LetL be a Bernstein-type operator satisfying the requirements in TheoreA.
In order that we have

sup
0<δ∈k1/pI

C〈k〉
p (δ) = lim

δ↓0
C〈k〉

p (δ) = 1+ k1−1/p, k � 1, p ∈ [1,∞],

it is both necessary and sufficient that the following two conditions be fulfilled:

(c) ξ(x)/x converges in probability to0 asx ↓ 0.
(d) P(ξ(x) = 0) = 0 for all 0 < x ∈ I .

Remark 2. In terms of the operatorL, conditions (c) and (d) mean that

L1[0,ax](x) = P
(
ξ(x) � ax

) → 1 (x ↓ 0), a > 0,

and

L1{0}(x) = 0 for all 0< x ∈ I,

respectively, where (here and hereafter) 1A stands for the indicator function of the set
eventA. Condition (d) is obviously fulfilled if, for each 0< x ∈ I , the distribution ofξ(x)

is absolutely continuous. Recalling Remark 1, it is clear that, in the setting of Theorem
condition (d) is equivalent to

P
(
ξ(x) = 0

) → 0 (x ↓ 0).

Our second main result concerns a family{Lt : t > 0} of operators instead of a single ope
ator, and gives sufficient conditions in order that 1+ k1−1/p be the best uniform consta
for thecompletefamily. We denote byC〈k〉

t,p(δ) the best constant defined by (2) whenL〈k〉

is replaced byL〈k〉
t := Lt ⊗ · · · ⊗ Lt .

Theorem 2. Let {Lt : t > 0} be a family of Bernstein-type operators over the inter
[0,∞) allowing for a representation of the form

Ltf (x) = Ef
(
ξt (x)

)
,

where{ξt (x): x � 0, t > 0} is a double-indexed stochastic process taking values in[0,∞).
Assume that

(I) For eacht > 0, Lt fulfills the requirements in TheoremA.
(II) We have

lim
x↑∞

ξt (x)

x
= ξt a.s., t > 0, (6)

where{ξt : t > 0} is a process fulfilling the following conditions:
(a′) Eξt = 1 for all t > 0.
(c′) ξt converges in probability to0 ast ↓ 0.
(d′) P(ξt = 0) → 0 as t ↓ 0.
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Then, for allk � 1 andp ∈ [1,∞], we have

sup
t,δ>0

C
〈k〉
t,p(δ) = lim

t↓0
sup
δ>0

C
〈k〉
t,p(δ) = 1+ k1−1/p.

Theorems 1 and 2 are shown in the next section. Sections 3 and 4 contain appli
of these results to several classical families of Bernstein-type operators.

2. Proofs of Theorems 1 and 2

Both proofs are based upon (Theorem A and) the following lemma. We denote byϕ the
function given by

ϕ(u) := 1(0,1](u) + u1(1,∞)(u), u � 0, (7)

and we observe that

ϕ(u) � �u	 � (1+ u)1(0,∞)(u), u � 0.

Lemma 1. Let {ξ(u): 0 < u ∈ I } be anI -valued stochastic process, and, for0 < u ∈ I and
k � 1, let ξ 〈k〉(u) := (ξ1(u), . . . , ξk(u)) be ak-dimensional random vector whose comp
nents are independent and have the same distribution asξ(u). If the process fulfills the
assumptions

(i) Eξ(u) = c (a positive constant) for all 0 < u ∈ I ,
(ii) ξ(u) converges in probability to0 asu ↓ 0,
(iii) P(ξ(u) = 0) → 0 asu ↓ 0,

then, we have

lim
u↓0

Eϕ
(∥∥ξ 〈k〉(u)

∥∥∞
) = lim

u↓0
E

⌈∥∥ξ 〈k〉(u)
∥∥∞

⌉ = 1+ kc, k � 1.

Conversely, under assumption(i), conditions(ii) and (iii) are necessary in order that

lim
u↓0

E
⌈∥∥ξ 〈2〉(u)

∥∥∞
⌉ = 1+ 2c.

Proof of Lemma 1. To show the first assertion, letk � 1 be fixed. Since we have, for a
0 < u ∈ I ,

Eϕ
(∥∥ξ 〈k〉(u)

∥∥∞
)
� E

⌈∥∥ξ 〈k〉(u)
∥∥∞

⌉
� 1+ E

∥∥ξ 〈k〉(u)
∥∥∞

� 1+
k∑

i=1

Eξi(u) = 1+ kc,

we only need to show that

lim inf Eϕ
(∥∥ξ 〈k〉(u)

∥∥∞
)
� 1+ kc. (8)
u↓0
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∥∥ξ 〈k〉(u)
∥∥∞1(‖ξ 〈k〉(u)‖∞>1) �

k∑
i=1

ξi(u)1(ξi(u)>1)

∏
j �=i

1(ξj (u)�1), 0 < u ∈ I,

and the fact thatξ1(u), . . . , ξk(u) are independent and have the same distribution asξ(u),
we obtain, for all 0< u ∈ I ,

Eϕ
(∥∥ξ 〈k〉(u)

∥∥∞
)
� P

(
0 <

∥∥ξ 〈k〉(u)
∥∥∞ � 1

)

+
k∑

i=1

E
[
ξi(u)1(ξi (u)>1)

]∏
j �=i

P
(
ξj (u) � 1

)

= [
P

(
ξ(u) � 1

)]k − [
P

(
ξ(u) = 0

)]k
+ k

[
P

(
ξ(u) � 1

)]k−1
E

[
ξ(u)1(ξ(u)>1)

]
.

By assumption (ii), we have

P
(
ξ(u) � 1

) → 1 (u ↓ 0).

Assumption (ii) also implies by the bounded convergence theorem

E
[
ξ(u)1(ξ(u)�1)

] → 0 (u ↓ 0),

which, under assumption (i), is equivalent to

E
[
ξ(u)1(ξ(u)>1)

] → c (u ↓ 0).

From this and assumption (iii), we conclude that inequality (8) holds true, and this fin
the proof of the first assertion. To show the second one, we start from the fact that we
for all 0 < u ∈ I ,

E
⌈∥∥ξ 〈2〉(u)

∥∥∞
⌉

� P
(∥∥ξ 〈2〉(u)

∥∥∞ > 0
) + E

∥∥ξ 〈2〉(u)
∥∥∞

= 1− [
P

(
ξ(u) = 0

)]2 + 2c − Eη(u) � 1+ 2c,

whereη(u) := min(ξ1(u), ξ2(u)), and we have used assumption (i) together with the eq
ity ∥∥ξ 〈2〉(u)

∥∥∞ = ξ1(u) + ξ2(u) − η(u).

Therefore, the hypothesis limu↓0 E�‖ξ 〈2〉(u)‖∞	 = 1+ 2c implies that

lim
u↓0

P
(
ξ(u) = 0

) = 0 and lim
u↓0

Eη(u) = 0,

and, by Markov’s inequality, we also have

lim
u↓0

[
P

(
ξ(u) > z

)]2 = lim
u↓0

P
(
η(u) > z

)
� lim

u↓0

Eη(u)

z
= 0, 0 < z ∈ I.

Thus, the process fulfills conditions (ii) and (iii), and the proof of the lemma is c
plete. �
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Proof of Theorem 1. The necessity part directly follows from Lemma 1 and Remar
To show the sufficiency, letk � 1 and 1� p � ∞ be fixed. From Theorem A, we have

C〈k〉
p (k1/pδ) � E

⌈‖ξ 〈k〉(d)‖p

k1/pδ

⌉
� E

⌈‖ξ 〈k〉(d)‖∞
k1/pδ

⌉
, 0 < δ � 1,

whered := (δ, . . . , δ) and we have used the fact that‖ · ‖p � ‖ · ‖∞. By the preceding
lemma, we therefore obtain that

lim inf
δ↓0

C〈k〉
p (δ) � lim

δ↓0
E

⌈‖ξ 〈k〉(d)‖∞
k1/pδ

⌉
= 1+ k1−1/p,

which together with (5) yields the conclusion.�
Proof of Theorem 2. Let k � 1 and 1� p � ∞ be fixed. We only need to show that

lim inf
t↓0

sup
δ>0

C
〈k〉
t,p(δ) � 1+ k1−1/p.

By Theorem A, we can write, for allt, δ > 0,

C
〈k〉
t,p(k1/pδ) � E

⌈‖ξ 〈k〉
t (d)‖p

k1/pδ

⌉
� E

⌈‖ξ 〈k〉
t (d)‖∞
k1/pδ

⌉
� Eϕ

(‖ξ 〈k〉
t (d)‖∞
k1/pδ

)
, (9)

whereξ
〈k〉
t (d) := (ξt,1(δ), . . . , ξt,k(δ)), and{ξt,j (x): x � 0, t > 0} (j = 1, . . . , k) arek in-

dependent copies of{ξt (x): x � 0, t > 0} defined on the same probability space. From
we have, for allt > 0,

lim
δ↑∞

ξt,j (δ)

δ
= ξt,j a.s., j = 1, . . . , k,

implying that

lim
δ↑∞

‖ξ 〈k〉
t (d)‖∞
k1/pδ

= ‖ξ 〈k〉
t ‖∞
k1/p

a.s.,

whereξ
〈k〉
t := (ξt,1, . . . , ξt,k), and the components are independent and have the sam

tribution asξt . Sinceϕ is continuous on(0,∞), andϕ(0) = 0, we therefore have

lim inf
δ↑∞ ϕ

(‖ξ 〈k〉
t (d)‖∞
k1/pδ

)
� ϕ

(‖ξ 〈k〉
t ‖∞
k1/p

)
a.s., t > 0,

and, from (9) and Fatou’s lemma, we conclude that

sup
δ>0

C
〈k〉
t,p(δ) � lim inf

δ↑∞ Eϕ

(‖ξ 〈k〉
t (d)‖∞
k1/pδ

)
� Eϕ

(‖ξ 〈k〉
t ‖∞
k1/p

)
, t > 0.

By the assumptions on{ξt : t > 0} and Lemma 1, we obtain

lim inf
t↓0

sup
δ>0

C
〈k〉
t,p(δ) � lim

t↓0
Eϕ

(‖ξ 〈k〉
t ‖∞
k1/p

)
= 1+ k1−1/p,

and the proof of the theorem is complete.�
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3. Applications of Theorem 1

(A) Beta operators. For t > 0, the beta operatorBt over the interval[0,1] is defined by

Btf (x) :=
{∫ 1

0 f (θ)βt,x(θ) dθ, 0 < x < 1,
f (x), x = 0,1,

wheref is any real measurable bounded function on[0,1], andβt,x is the beta probability
density with parameterstx, t (1− x), i.e.,

βt,x(θ) := θ tx−1(1− θ)t (1−x)−1

B(tx, t (1 − x))
1(0,1)(θ),

B(·, ·) being the Euler beta function. This operator allows for the representation

Btf (x) = Ef

(
γtx

γt

)
, x ∈ [0,1],

where{γt : t � 0} is a standard gamma process, i.e., a stochastic process startin
having independent stationary increments, and such that, for eacht > 0, γt has the gamm
distribution with density

gt (θ) := θ t−1e−θ

Γ (t)
1(0,∞)(θ). (10)

It is well known that, for eacht > 0, the process{γtx/γt : 0 � x � 1} fulfils conditions (a)
and (b) in Theorem A. As a consequence, it was established in [8] that

sup
0<δ�k1/p

C
〈k〉
t,p(δ) � 1+ k1−1/p, t > 0, p ∈ [1,∞], k � 1,

and

sup
0<δ�k

C
〈k〉
t,1(δ) = 2, t > 0, k � 1

(the one-dimensional result sup0<δ�1 C
〈1〉
t,1(δ) = 2 (t > 0) was early obtained in [2]). More

over, the process{γtx/γt : 0 � x � 1} trivially fulfils condition (d) in Theorem 1, and w
have, for alla > 0,

P(γtx/γt � ax) =
ax∫

0

βt,x(θ) dθ � α(t, x)(ax)tx

txB(tx, t (1 − x))
→ 1 (x ↓ 0)

(whereα(t, x) := min(1, (1 − ax)t(1−x)−1)), showing that the process also fulfills con
tion (c). According to Theorem 1, we conclude that

sup
0<δ�k1/p

C
〈k〉
t,p(δ) = lim

δ↓0
C

〈k〉
t,p(δ) = 1+ k1−1/p, t > 0, p ∈ [1,∞], k � 1.

(B) Beta-type operators over the nonnegative semi-axis. Fort > 0, letB∗
t be the integra

operator over the interval[0,∞) defined by
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that
B∗
t f (x) : =

{∫ ∞
0 f (θ)β∗

t,x(θ) dθ, x > 0,
f (0), x = 0,

= Ef

(
γtx

γ ′
t+1

)
, (11)

where{γt : t � 0} and{γ ′
t : t � 0} are two independent standard gamma processes de

on the same probability space, andβ∗
t,x is the beta-type probability density

β∗
t,x(θ) := 1

B(tx, t + 1)

θ tx−1

(1+ θ)tx+t+11(0,∞)(θ).

This operator is a slight modification of the “inverse beta operator” introduced in [1
is readily checked that, for eacht > 0, the process{γtx/γ

′
t+1: x � 0} fulfils conditions (a),

(b), and (d). Since we have, for alla > 0,

P(γtx/γ
′
t+1 � ax) =

ax∫
0

β∗
t,x(θ) dθ � (ax)tx(1+ ax)−(tx+t+1)

txB(tx, t + 1)
→ 1 (x ↓ 0),

it also fulfils condition (c). From Theorem 1, we therefore have

sup
δ>0

C
〈k〉
t,p(δ) = lim

δ↓0
C

〈k〉
t,p(δ) = 1+ k1−1/p, t > 0, p ∈ [1,∞], k � 1.

4. Applications of Theorem 2

(A) Gamma operators. For t > 0, the gamma operatorGt over the interval[0,∞) is
given by

Gtf (x) :=
∞∫

0

f (xθ/t)gt (θ) dθ = Ef

(
xγt

t

)
,

where{γt : t � 0} is a standard gamma process, andgt is the gamma probability densit
given in (10). It should be observed that, for each fixedt > 0, the process{xγt/t: x � 0}
fulfills conditions (a), (b), and (d), butnotcondition (c). Thus, Theorem 1 is not applicab
to Gt . We actually have

sup
δ>0

C
〈1〉
t,1(δ) = E�γt/t	 < 2 = E(1+ γt/t)

(the first equality by Theorem A, and the strict inequality because of the fact
P(�γt /t	 < 1 + γt/t) = 1). However, the process{γt/t: t > 0} obviously fulfils condi-
tions (a′) and (d′) (in Theorem 2), and it also fulfils (c′), since we have, for alla > 0,

P(γt � at) =
at∫

0

θ t−1e−θ

Γ (t)
dθ � e−at (at)t

Γ (t + 1)
→ 1 (t ↓ 0).

From Theorem 2, we therefore have

sup C
〈k〉
t,p(δ) = lim

t↓0
supC〈k〉

t,p(δ) = 1+ k1−1/p, p ∈ [1,∞], k � 1.

t,δ>0 δ>0
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(B) Lupaş and Müller gamma operators. Fort > 0, letMt be the integral operator give
by

Mtf (x) :=
∞∫

0

f (xt/θ)gt+1(θ) dθ = Ef

(
xt

γt+1

)
,

whereγt andgt are the same as in the preceding example. The approximation proper
this operator have been considered in [11] (seealso [13,14]). It is readily checked that th
double-indexed process{xt/γt+1: x � 0, t > 0} fulfils the same conditions as the proce
involved in the preceding example. Therefore, we also have

sup
t,δ>0

C
〈k〉
t,p(δ) = lim

t↓0
sup
δ>0

C
〈k〉
t,p(δ) = 1+ k1−1/p, p ∈ [1,∞], k � 1.

(C) Baskakov operators. For t > 0, the Baskakov operatorHt over the interval[0,∞)

is given by

Htf (x) :=
∞∑

k=0

f (k/t)

(
t + k − 1

k

)
xk

(1+ x)t+k
= Ef

(
N(xγt )

t

)
, (12)

where {γt : t � 0} is a standard gamma process,{N(u): u � 0} is a standard Poisso
process, and these two processes are assumed to be independent and defined on the s
probability space. (We recall that{N(u): u � 0} is a stochastic process starting at 0, h
ing independent stationary increments, and such that, for eachu > 0,N(u) has the Poisso
distribution with parameteru.) For eacht > 0, the process{N(xγt )/t: x � 0} fulfills con-
ditions (a), (b), and (c), butnotcondition (d), since we have

P
(
N(xγt )/t = 0

) = (1+ x)−t .

It was shown in [8] that

sup
t,δ>0

C
〈k〉
t,p(δ) � 1+ k1−1/p, p ∈ [1,∞], k � 1,

and

sup
t,δ>0

C
〈k〉
t,1(δ) = 2, k � 1

(the one-dimensional version of this equality was early obtained in [2]). On the other
the casep = ∞ was specifically considered in [9], and it was established that

k � sup
δ>0

C
〈k〉
t,∞(δ) � 1+ k − min

{
1,

(
k

2

)
t

tk + 1

}
, t > 0, k � 2,

which entails

sup
δ>0

C
〈k〉
t,∞(δ) = k, k � 4, t � 2/k(k − 3).

We claim that the double indexed process{N(xγt )/t: x � 0, t > 0} satisfies the require
ments in Theorem 2. We actually have, by the strong law of large numbers for Po
processes,

lim
N(xγt ) = γt a.s., t > 0,
x↑∞ xt t
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e

mutually

v
n

r both

.

and
and, as said above, the process{γt/t: t > 0} fulfils conditions (a′), (c′), and (d′). We can
therefore assert that

sup
t,δ>0

C
〈k〉
t,p(δ) = lim

t↓0
sup
δ>0

C
〈k〉
t,p(δ) = 1+ k1−1/p, p ∈ [1,∞], k � 1.

(D) A two-parameter family of operators. For t, r > 0, letPt,r be the operator over th
interval[0,∞) given by

Pt,rf (x) :=
∞∑

k=0

f (k/r)

(
t + k − 1

k

)
B(tx + k, t + r + 1)

B(tx, t + 1)
= Ef

(
ξt,r (x)

)
,

with

ξt,r (x) := N(γtxγ
′
r/γ

′′
t+1)

r
,

where{N(u): u � 0} is a standard Poisson process,{γt : t � 0}, {γ ′
t : t � 0}, and {γ ′′

t :
t � 0} are standard gamma processes, and these four processes are supposed to be
independent and defined on the same probability space. Itshould be observed thatPt,r is
the compositionB∗

t ◦ Hr of the beta-type operatorB∗
t given in (11) with the Baskako

operatorHr given in (12). Whenr is a positive integer,Pt,r becomes a modified versio
of an operator introduced by Stancu [16]. It is readily seen thatPt,r fulfils conditions (a),
(b), and (c), but not (d). On the other hand, from the strong laws of large numbers fo
Poisson processes and gamma processes, we have

lim
x↑∞

ξt,r (x)

x
= ξt,r := t

γ ′′
t+1

γ ′
r

r
a.s., t, r > 0.

Moreover, for eachr > 0 (respectively,t > 0), the process{ξt,r : t > 0} (respectively,
{ξt,r : r > 0}) fulfills conditions (a′), (c′), and (d′). From Theorem 2, we conclude that

sup
t,δ>0

C
〈k〉
t,r,p(δ) = lim

t↓0
sup
δ>0

C
〈k〉
t,r,p(δ) = 1+ k1−1/p, r > 0, p ∈ [1,∞], k � 1,

and

sup
r,δ>0

C
〈k〉
t,r,p(δ) = lim

r↓0
sup
δ>0

C
〈k〉
t,r,p(δ) = 1+ k1−1/p, t > 0, p ∈ [1,∞], k � 1.
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