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Abstract

For the tensor product df copies of the same one-dimensional Bernstein-type opefatere
consider the problem of finding the best constant in preservation of the usual modulus of continuity
for thel,-norm onR¥. Two main results are obtained: the first one gives both necessary and sufficient
conditions in order that # k1~1/7 is the best uniform constant for a single operator; the second
one gives sufficient conditions in order that-k1~1/7 is the best uniform constant for a family of
operators. The general results are applied to several classical families of operators usually considered
in approximation theory. Throughout the papeglmbilistic concepts and methods play an important
role.
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1. Introduction and main results

Let A; be a (nonempty) convex subset®f, and letZ %) be a positive linear operator
acting on a set*) of real functions onA;, which assigns a real functiah®) f on A
to eachf e £%). The problem of global smoothness preservation can be described as the
problem of obtaining estimates of the form

wp(LW f:8) <COwp(f38), §>0, feLlb), (1)
whereC (3) is a positive constant not depending uptrand
wp(f38) :=supl|f () — FY]: X,y € Ak, X —=Yllp <8}

is the usual modulus of continuity for thig-norm onR¥ (p e [1, 00]). In particular, it is
interesting to determine the value of the best possible constant on the right-hand side in (1).
Provided that ! f is constant whenevet is, such a best constant is obviously given by

0 e w, (LY f:5)
i) = sup L———

, 6>0, (2
Fer® wp(f;98)

where
k.= {feLh: 0<wy(f;1) <ol

Problems of this kind have been discussed in several works by using different ap-
proaches (see, for instance, [1-10,12] anéne&fces therein). Tharobabilistic approach
developed in [1,2,6-9,12] has proved to be suitable and fruitful when dealing with opera-
tors of probabilistic type (also called Bernstein-type operators), that is, operators allowing
for a representation of the form

LY ) =Ef(EW ), xeAr, feLlh, 3)

whereE denotes mathematical expectatifgi®) (x): x € Ay} is a stochastic prcess taking
values inAg, and£%) is the set of all real functions ony for which the right-hand side
in (3) makes sense.

In the present paper, we considedimensional operators which are tensor products of
k copies of the same one-dimensional Bernstein-type operator. More precisely, the setting
is the following.

Let I be the interval0, 1] or [0, c0), and letL be the Bernstein-type operator over
given by

Lf(x):=Ef(¢x)), xel, feL,

where thel-valued stochastic proce$s(x): x € I} is assumed to be integrable (this al-
ways holds wher? = [0, 1]). It is easy to see that the domaih contains all the real
(measurable, when needed) functions/@such thatw ( f; 1) < co.

The tensor produdt*) := L ® - -- ® L of k copies ofL is thek-dimensional operator
over A, := I* given by (3), where

Q) = (B1(x1), ., & (xp)),  Xi=(x1, ..., xp) € 15, (4)
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and{&(x): x eI} (i =1,...,k) arek stochastically independent copies{6fx): x € I}
defined on the same probability space. Note thaf;if .., fi € £ and f is the function
on I* given by

k
fOO=[]r0D, xi=@1,...,x) el

i=1
then we have, by (3), (4), and the independence assumption,

k
L® rx) = ]_[ Lfi(xj), X:=(x1,...,xx) € I¥,
i=1
which is actually the distinctive feature of a tensor product operator.

The following theorem gives exact formulae and upper bounds for the best constants
corresponding to these tensor products. Itéeasequence of [8, Theorems 14.2 and 14.3],
and generalizes some one-dimensioasalits early obtained in [2]. The symbje] denotes
the ceiling function, i.e.,

[x] := the smallest integer not less than
Theorem A. Assume that the following two conditions are fulfitled
(@) Liscentered,i.e.E&(x)=x,forallx e .
(b) The procesgé(x): x € I} has stationary increments, i.e., for &llI< x < y € I, the

random variable (v) — &(x) has the same probability distribution §¢y — x) — £(0).

Then, for allk > 1and p € [1, o], we have

*) (x

ch @)= sup E’VM—‘ <1+ kYr, (5)
Xerk 8
X, =3

wheres € (0, k1/P] or § > 0, according tol = [0, 1] or I = [0, c0).

Remark 1. Assumptions (a) and (b) obviously imply that0) = 0 a.s. and(x) < &(y)
a.s., whenever & x < y € I. As a consequence, fgr = oo, the preceding formula be-
comes

1€ %) (d) | o

(k) oy _
Cx' (8) = E’V 5

—‘, O<éel, k=1,
whered := (4, ..., d).

Theorem A applies to many classical operators usually considered in approximation
theory (see [8]). Howevecf,k) () is a quite irregular function, and the theoretical computa-
tion of the best uniform constant, i.e., §gQC,<,k> (8), typically requires specific techniques
adapted to the particular case under consideration. Moreover, the results in [6,9] show how
different values can be found, even in the case oco.
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In the present paper, we find a class of operators for which the best uniform constant is
just the upper bound in (5). More precisely, we show the following result.

Theorem 1. Let L be a Bernstein-type operator satisfying the requirements in TheArem
In order that we have

sup CP@)=limCH @) =1+k""7, k>1, pell ool
O<dekl/r] 810

it is both necessary and sufficient that the following two conditions be fulfilled

(c) &(x)/x converges in probability t@ asx | O.
(d) PE(x)=0)=0forall0<xel.

Remark 2. In terms of the operatak, conditions (c) and (d) mean that
L1jgaxj(x) = P(é(x) < ax) -1 x]10),a=>0,

and
Llg(x)=0 forallO<xel,

respectively, where (here and hereafter)stands for the indicator function of the set or
eventA. Condition (d) is obviously fulfilled if, for each @ x € I, the distribution of (x)

is absolutely continuous. Recalling Remarktlisiclear that, in the setting of Theorem 1
condition (d) is equivalent to

P(Ex)=0)—>0 (x0).

Our second main result concerns a fanjily: ¢ > 0} of operators instead of a single oper-
ator, and gives sufficient conditions in order that x1~1/7 be the best uniform constant

for the completefamily. We denote b)Cff‘lZ (8) the best constant defined by (2) wheff!
is replaced b)L,W =L ® --QL;.

Theorem 2. Let {L;: ¢t > 0} be a family of Bernstein-type operators over the interval
[0, o0) allowing for a representation of the form

L f(x) = Ef (&),
where{&; (x): x > 0, ¢ > 0} is a double-indexed stochastic process taking valugs ito).
Assume that

(I) Foreachr > 0, L, fulfills the requirements in Theorefm

(I We have
im 2% ¢, as >0, (6)
xtoo X

where{¢;: ¢ > 0} is a process fulfilling the following conditions
(@) E& =1forallr > 0.

(c') & converges in probability t6 as: | 0.

(d) P, =0)—0asr 0.
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Then, for allk > 1and p € [1, o], we have

sup Cf,k,z(é) =lim supcff‘;(g) — 1 kp
1,650 110 520

Theorems 1 and 2 are shown in the next section. Sections 3 and 4 contain applications
of these results to several classical families of Bernstein-type operators.

2. Proofsof Theorems1and 2

Both proofs are based upon (Theorem A and) the following lemma. We denegtéhay
function given by

o) ==101@) +ul1,e)@), u>=0, (7)
and we observe that

) < [u] < A+ u)loo0)(w), u=0.

Lemmal. Let{¢(u): 0 <u € I} be an/-valued stochastic process, and, fbx u € I and
k>1, lete® () := (&1(u), ..., &(u)) be ak-dimensional random vector whose compo-
nents are independent and have the same distribution(@s If the process fulfills the
assumptions

(i) E&(u) = c (apositive constanforall 0<u eI,
(i) &(u) converges in probability t@ asu | O,
(i) P(E(u)=0)—0asu |0,

then, we have
im Eg(6% (0]) =lim ETJe¥ @) ]=1+ke. k>1.

Conversely, under assumpti¢ih, conditiong(ii) and (iii) are necessary in order that

|i%E[Hg<2> W] =1+ 2c.

Proof of Lemma 1. To show the first assertion, I&t> 1 be fixed. Since we have, for all
O<uel,

Eg(|s“w] ) <E[|s“ ] <1+ E[§9w]
k
<1+ ) E&@w) =1+ke,
i=1

we only need to show that

lim inf Eo(|le®w)],) =1+ ke. (8)
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Using the inequality

k
[69 a0 W Lgewwinsn = D& lewsn [ [1gw<y. O<uel,
i=1 jAi
and the fact tha1(u), ..., & (u) are independent and have the same distributiof(@ag
we obtain, forallO<u € 1,

Ep([e¥ )] )= PO<]¥w], <)

k
+ ) E[aWlew-v] [ [ PE @ <)

i=1 i
= [PEw <)]" - [PEw =0)]"
+k[P(ea) < D] T E[E@L¢w-1]-

By assumption (ii), we have

PEW) <L) =1 (ul0).
Assumption (ii) also implies by the bounded convergence theorem

E[§Wlew<n] >0 @0,
which, under assumption (i), is equivalent to

E[)lews>1]—c (@ ]0).

From this and assumption (iii), we conclude that inequality (8) holds true, and this finishes
the proof of the first assertion. To show the second one, we start from the fact that we have,
forallO<uel,

Ef|e®w] ] < P(lEP @] >0+ E[e® @]
=1—[P(&)=0)]*+2c — En(u) < 1+2c,
wheren(u) := min(&1(u), £2(1)), and we have used assumption (i) together with the equal-
ity
€@ )], = E1() + E2(u) — nw).
Therefore, the hypothesis liio ET[1E? (1) o] = 1+ 2c implies that
E% P(§(w)=0)=0 and L,I%'E”(”) =0,

and, by Markov’s inequality, we also have

En(u)
-

0, O<zel.

Li?(])[P(é(u) >7)f = im P(nu) > z) < im

Thus, the process fulfills conditions (i) and (iii), and the proof of the lemma is com-
plete. O
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Proof of Theorem 1. The necessity part directly follows from Lemma 1 and Remark 1.
To show the sufficiency, ldt > 1 and 1< p < oo be fixed. From Theorem A, we have

IE® ()]l 1€%®) (d) | oo
k/ps —‘>E{ k/ps

whered := (8, ...,8) and we have used the fact that ||, > || - l. By the preceding
lemma, we therefore obtain that

C;)k)(kl/”é))E’V —‘ 0<s8<1,

o : I1EX (@)l 1-1
liminf C® ) > limE| =22 | =1+ k1P,
sio P @) 510 kY/prs +

which together with (5) yields the conclusion

Proof of Theorem 2. Letk > 1 and 1< p < oo be fixed. We only need to show that
liminf supC,) (8) > 1+ k*~%/7.
30 550
By Theorem A, we can write, for all § > 0,

(k) (k) (k)
k) 1/ 1§ (D)l p & (oo 15" (D)oo
Cok p5)>E[7kl/p5 >E| =g | 2 Ee S ) (9)

whereg™ (d) := (&.1(8), ..., &4(8)), and{& j(x): x >0, t >0} (j =1,...,k) arek in-
dependent copies ¢§; (x): x > 0, ¢t > 0} defined on the same probability space. From (6),
we have, for alk > 0,

. &.j(0) .
lim —=~—~ =& ; as, j=1,...,k,
Stoo & S1.j J
implying that
k k
im 187 @Dleo _ 15 100
stoo k1P kY/p -

Wheresfk) = (&.1, ..., &), and the components are independent and have the same dis-
tribution asg;. Sinceg is continuous or(0, oo), andg(0) = 0, we therefore have

o 1ER @) s 15 1o
Imégf(p( rg X0 A/ a.s, t >0,

and, from (9) and Fatou’s lemma, we conclude that

(k) (k)
) o 1€ (d)loo 5" lloo
?Egc””(a) > Ilmégf E‘p<7k1/p5 >Egp ) t>0.

By the assumptions of§;: r > 0} and Lemma 1, we obtain

(k)

o . 16" lloo 1-1

liminf supc® (8) > lim E ! =1+kYp,
110 5>(E) t’p() 110 ¢ k1/p

and the proof of the theorem is completea
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3. Applicationsof Theorem 1

(A) Beta operatorsFort > 0, the beta operatd®,; over the interval0, 1] is defined by

B, f(x) = {folf(e)ﬁ,,x(e)de, O<x<1,
f ), x=0,1,

wheref is any real measurable bounded functiorfoy], andg; . is the beta probability
density with parameters, ¢ (1 — x), i.e.,

etx—l(l _ e)t(l—x)—l

x 9 = 1 9 3
Br.x(0) Blx - ©0.1(0)
B(-, -) being the Euler beta function. This operator allows for the representation
Vix
B f(x)= Ef(—) x €10,1],
Vi

where{y;: t > 0} is a standard gamma process, i.e., a stochastic process starting at 0O,
having independentationary increments, and such that, for each0, y; has the gamma
distribution with density

t—1,-6
()

It is well known that, for each > 0, the process$y:./y:: 0 < x < 1} fulfils conditions (a)
and (b) in Theorem A. As a consequence, it was established in [8] that

81 (0) = 10,00 (®). (10)

sup CM@O <1+kYYP, 150, pell ool k=1,
0<8kY/P

and

sup C(®)=2. 1>0k>1

0<8<k

(the one-dimensional result I3 <1 Cfll) (8) = 2 (t > 0) was early obtained in [2]). More-
over, the proces§y;/y;: 0 < x < 1} trivially fulfils condition (d) in Theorem 1, and we
have, for alla > 0,

alt, x)(ax)™

P(er/)’t<ax)=/,3t,x(9)d9>m—>1 (x| 0
0

(wherea(r, x) := min(1, (1 — ax)'19~1)), showing that the process also fulfills condi-
tion (c). According to Theorem 1, we conclude that

sup CU@® =lmcM @) =1+4¥YP, 150, pell,col, k=1
0<5<kY/P 510

(B) Beta-type operators over the nonnegative semi-&ist > 0, let B be the integral
operator over the intervg0, co) defined by
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B/ f(x):= { {Co(o)f(@)ﬁ?‘,x(@ do, ) 18:

:Ef( Vix ) (11)
YViv1

where{y;: t > 0} and{y,: ¢ > O} are two independent standard gamma processes defined
on the same probability space, afitl, is the beta-type probability density

1 Gtx—l
* o—
brx(0):= B(tx,t +1) (14 0)x+i+1 10,00 ()

This operator is a slight modification of the “inverse beta operator” introduced in [15]. It
is readily checked that, for each- 0, the proces$y:./y,,,: x > 0} fulfils conditions (a),
(b), and (d). Since we have, for all> 0,

ax

. (ax)tx(l_,’_ax)f(tx+t+l)
P(yix/v{y1 < ax) =/ﬁ;,x(9)d9 > -1 (x]0),
0

txB(tx,t +1)

it also fulfils condition (c). From Theorem 1, we therefore have

supC @) =lim @) =1+ kYP, 150, pe[l o], k>1.
50 510 "

4. Applicationsof Theorem 2

(A) Gamma operatorsFor ¢ > 0, the gamma operatd@¥, over the interval0, co) is
given by
(e.¢]
XVt
Gif(x):= / f(x8/1)g:(0)d6 = Ef(T)
0
where{y;: t > 0} is a standard gamma process, apds the gamma probability density
given in (10). It should be observed that, for each fixedO, the proceséxy;/t: x > 0}

fulfills conditions (a), (b), and (d), butotcondition (c). Thus, Theorem 1 is not applicable
to G,. We actually have

sugcf}{ () =E[y/t] <2=EQ+y/1)
5>
(the first equality by Theorem A, and the strict inequality because of the fact that

P([y:/t] <1+ y:/t) = 1). However, the proceds,/t: t > 0} obviously fulfils condi-
tions (d) and (d) (in Theorem 2), and it also fulfils (i since we have, for all > 0,

t
P( - t) / 91—16—9 e—at(at)t .
xat) = =

Vi IR0 r+1

0

(t 0.

From Theorem 2, we therefore have

sup ¢ (8) = im supC)®) =1+ k*YP, pell ool k=1
' HUs>0

t,6>0



J. de la Cal, J. Carcamo / J. Math. Anal. Appl. 301 (2005) 158-169 167

(B) Lupas and Muller gamma operatargort > 0, let M, be the integral operator given
by

YVe+1

M, f(x):= / f(xt/0)gi+1(0)dO = Ef(x_t)’
0

wherey, andg; are the same as in the preceding example. The approximation properties of
this operator have been considered in [11] @kse [13,14]). It is eadily checked that the
double-indexed procegst/y:+1: x > 0, t > 0} fulfils the same conditions as the process
involved in the preceding exar® Therefore, we also have

supC ) = im sugcff},(a) =1+k¥YP, pellool k21
5>

t,6>0

(C) Baskakov operatorg-or r > 0, the Baskakov operatdf; over the interval0, co)
is given by

> k—1 k N(xy;
Hff(x):Zf(k/r)(t+ )xi Ef( (”)>, (12)
k=0

k (1+x)+k ‘

where{y;: t > 0} is a standard gamma proce$d/(u): u > 0} is a standard Poisson
process, and these two processes arenasguo be independent and defined on the same
probability space. (We recall thé (1): u > 0} is a stochastic process starting at 0, hav-
ing independent stationary increments, and such that, forieacd, N (z) has the Poisson
distribution with parameter.) For each > 0, the proces§N (xy;)/t: x > 0} fulfills con-
ditions (a), (b), and (c), butot condition (d), since we have

P(N(x)/,)/t = 0) =1+x)"".
It was shown in [8] that

sup @) <1+&PYP, pell ool k> 1,
t,8>0
and
supc@®y=2, k>1
1,60

(the one-dimensional version of this equality was early obtained in [2]). On the other hand,
the casep = oo was specifically considered in]Jj9nd it was established that

(k) . k t
k < supC ) <1+k—minil, — 1, t>0 k=2,
8>(FJJ I’OO( ) * { <2> tk+1} ”
which entails
supC () =k, k=4, t>2/k(k—3).
§>0

We claim that the double indexed procga&(xy;)/t: x > 0, t > 0} satisfies the require-
ments in Theorem 2. We actually have, by the strong law of large numbers for Poisson

processes,
Nxy)  n

lim —~ as, t>0,
xtoo Xt t
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and, as said above, the procé¢gs/t: ¢ > 0} fulfils conditions (8), (¢'), and (d). We can
therefore assert that

sup Y (8) =limsupC) () = 1+ 4k¥Y7,  pe[l oo], k> 1.
t,6>0 ’ 110550

(D) A two-parameter family of operatarBorz, r > 0, let P, . be the operator over the
interval[0, co) given by

[e'e) t+k—1 B(tx+k,t+r+1)
Py f(x):= Zf(k/r)< ) = Ef(«‘?z,r(x)),
k=0 k B(t-x,t+1)
with
NGyl /y!
£ (x) = M

where{N («): u > 0} is a standard Poisson proce$g. ¢ > 0}, {y,: ¢+ > 0}, and{y,":

t > 0} are standard gamma processes, and these four processes are supposed to be mutually
independent and defined dmetsame probability space.dhould be observed tha , is

the compositionB;” o H, of the beta-type operat®; given in (11) with the Baskakov
operatorH, given in (12). Wherr is a positive integerp; . becomes a modified version

of an operator introduced by Stancu [16]. It is readily seen thatfulfils conditions (a),

(b), and (c), but not (d). On the other hand, from the strong laws of large numbers for both
Poisson processes and gamma processes, we have

. X t oy
fim 5r&) = ——2 as 1.r>0.

Moreover, for eachr > 0 (respectivelyy > 0), the procesgé; : ¢+ > 0} (respectively,
{&.r: r > 0}) fulfills conditions (&), (), and (d). From Theorem 2, we conclude that

supCt & =limsupct) (&) =1+k*YP, r>0, pell ool k=1,
t,6>0 t10 s=0

and

sup c}f‘,{p(a) =lim supCt(f‘,{p(a) =1+k¥Y?P, >0, pell, o0], k>1.
r,8>0 r{05-0
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