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Abstract

Coexistence states for a class of systems of mutualist species are obtained via bifurcation
and monotone techniques.
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1. Introduction

We investigate the coexistence states for the systems of mutualist species

−∆u = λu + af (u) + buv, x ∈ Ω,

−∆v = µv + dg(v) + cuv, x ∈ Ω,

u = v = 0, x ∈ ∂Ω, (1.1)

whereλ,µ ∈ R are bifurcation parameters,a > 0,b > 0, c > 0,d > 0 are constants,f,g ∈
C1([0,∞)) satisfy the following conditions:

E-mail address:guozm@public.xxptt.ha.cn.
1 Present address: Department ofMathematics, Henan Normal University, Xinxiang, 453002, PR China.
0022-247X/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2004.06.055



62 Z. Guo / J. Math. Anal. Appl. 303 (2005) 61–80

let
e,
istence

f non-
t
e

(G1) f (s), g(s) > 0 for s > 0, f (0) = g(0) = 0, f ′(0) > 0, g′(0) > 0,

lim
s→∞

f (s)

s
= lim

s→∞
g(s)

s
= 0;

(G2) (f (s)/s)′ < 0, (g(s)/s)′ < 0 for s ∈ (0,∞).

In the rest of this paper we always assume thatf andg satisfy(G1) and(G2).
A typical example off andg is

f (s) = se−s , g(s) = se−2s .

We say(u, v) a positive solution of (1.1) if(u, v) ∈ C1
0(Ω̄) × C1

0(Ω̄) satisfies (1.1) in
the weak sense withu > 0, v > 0 in Ω .

(1.1) models the stationary case of the situation of two species co-existing inΩ , where
Ω is the inhabiting region,u(x) andv(x) are the densities of each of the species,a and
d describe the limiting effects of crowding in each population,b andc are the supporting
rates between the species. In this model we are assuming thatΩ is fully surrounded by
inhospitable areas, because both population densities are subject to homogeneous Dirich
boundary conditions. Such kind of systems was studied extensively by many authors, se
for example, [2,3,5–14,17]and the references therein. They were interested in the ex
and multiplicity of positive solutions, i.e.,(u, v) ∈ C1

0(Ω̄) × C1
0(Ω̄) with u > 0 andv > 0

in Ω .
Without loss of generality we assume

a = d = 1

and then (1.1) changes to the form

−∆u = λu + f (u) + buv, x ∈ Ω,

−∆v = µv + g(v) + cuv, x ∈ Ω,

u = v = 0, x ∈ ∂Ω. (1.2)

We will study the existence, stability, and multiplicity of non-negative solutions(u, v)

of (1.2). Thanks to the strong maximum principle, if(u, v) ∈ C1
0(Ω̄) × C1

0(Ω̄) is a non-
negative solution of (1.2) withu �= 0 (respectivelyv �= 0), thenu (respectivelyv) is
strongly positive in the sense of Section 2. Therefore, (1.2) admits three types o
negative component-wise solutions: thetrivial one, (0,0); those with one componen
positive and the other zero,(u,0) or (0, v), thesemi-trivial positive solutions; and thos
with both components positive, thecoexistence states.

2. Preliminaries

In this section we obtain some results which will be useful in the following.
Let E = L∞(Ω) andF = C1

0(Ω̄). We consider the spacesE andF as being ordered
by the usual cones of non-negative functionsPE andPF . Clearlyu ∈ intPF if u > 0 in Ω

and∂u/∂n < 0 on∂Ω , wheren is the outward normal vector of∂Ω ; we will write u � 0
in this case and callu strongly positive.
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Let q ∈ L∞(Ω). The linear eigenvalue problem

−∆u + qu = λu in Ω, u = 0 on∂Ω (2.1)

has an infinite sequence of eigenvalues, which are bounded below. We denote the
eigenvalue of (2.1) byλΩ

1 (q). It is well known thatλΩ
1 (q) is a simple eigenvalue and th

the corresponding eigenfunctionφ(q) does not change sign onΩ . In the following, we
assumeφ(q) > 0 in Ω and‖φ(q)‖∞ = 1. The following lemma is well-known.

Lemma 2.1.

(i) Monotonicity with respect to the potential: let q1, q2 ∈ L∞(Ω) such thatq1 � q2 and
q1 < q2 on a set of positive measure. Then

λΩ
1 (q1) < λΩ

1 (q2). (2.2)

(ii) Continuity with respect to the potential: if qn ∈ L∞(Ω), n � 1, is a sequence of po
tentials such that

lim
n→∞ ‖qn − q‖∞ = 0,

then

lim
n→∞ λΩ

1 (qn) = λΩ
1 (q).

(iii) If Ω1 is a proper subdomain ofΩ with ∂Ω1 of classC2, then

λ
Ω1
1 (q) > λΩ

1 (q). (2.3)

Consider now the nonlinear eigenvalue problem

−∆w + qw = γw + f (w) in Ω, w = 0 on∂Ω. (2.4)γ

Theorem 2.2. Problem(2.4)γ has a positive solution inC1
0(Ω̄) if and only ifΓ[q,f ] < γ <

λΩ
1 (q), where

Γ[q,f ] = λΩ
1 (q) − f ′(0). (2.5)

Moreover, for eachΓ[q,f ] < γ < λΩ
1 (q), (2.4)γ has a unique positive solutionθ[γ,q,f ], the

mapγ �→ θ[γ,q,f ] from (Γ[q,f ], λΩ
1 (q)) to C1

0(Ω̄) is strongly increasing(i.e., θ[γ1,q,f ] �
θ[γ2,q,f ] if γ1 > γ2) and continuous. Furthermore, we have

lim
γ↓Γ[q,f ]

θ[γ,q,f ] = 0 uniformly inΩ. (2.6)

Proof. Writing f (u) in the formuf (u)/u and using the condition(G2), we obtain the
proof of the first part of this theorem from [16, Theorem 1.1] or [15, Lemma 2].

The fact that

lim
γ↓Γ

θ[γ,q,f ] = 0 uniformly in Ω̄

[q,f ]
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can be easily seen from the non-existence of positive solution of(2.4)γ with γ = Γ[q,f ].
The fact thatγ �→ θ[γ,q,f ] is strongly increasing and continuous follows from the sub-
supersolution argument together with the strong maximum principle.�

The following result provides us with the behavior ofθ[γ,q,f ] asγ ↑ λΩ
1 (q).

Theorem 2.3. LetF(s) = f (s)/s. The following inequality holds:

θ[γ,q,f ] � F−1(λΩ
1 (q) − γ

)
φ(q) in Ω, (2.7)

for Γ[q,f ] < γ < λΩ
1 (q).

Proof. We know from(G2) thatF is a strictly decreasing function on(0,∞). For γ ∈
(Γ[q,f ], λΩ

1 (q)), we show thatF−1(λΩ
1 (q) − γ )φ(q) is a subsolution of(2.4)γ . Indeed,

for anyα > 0, if

λΩ
1 (q) − γ �F

(
αφ(q)

)
, (2.8)

thenαφ(q) is a subsolution of(2.4)γ . Now we choose

α =F−1(λΩ
1 (q) − γ

)
.

It follows from the monotonicity of the functionF that (2.8) holds. Thus, the uniquene
of θ[γ,q,f ] implies

θ[γ,q,f ] � F−1(λΩ
1 (q) − γ

)
φ(q) in Ω.

Since lims→0+ F−1(s) = ∞, we have

lim
γ↑λΩ

1 (q)

F−1(λΩ
1 (q) − γ

) = ∞. �

Lemma 2.4.

(i) If γ � Γ[q,f ], then(2.4)γ does not admit a positive subsolution and, ifγ � λΩ
1 (q),

then(2.4)γ does not admit a positive supersolution.
(ii) If γ ∈ (Γ[q,f ], λΩ

1 (q)) and w̄ ∈ C1(Ω) is a positive strict supersolution of(2.4)γ ,
thenw̄ � θ[γ,q,f ].

(iii) Similarly, if γ ∈ (Γ[q,f ], λΩ
1 (q)) and w ∈ C1(Ω) is a positive strict subsolution o

(2.4)γ , thenθ[γ,q,f ] � w.

Proof. (i) Suppose thatγ � Γ[q,f ] and that(2.4)γ possesses a positive subsolutionζ 0.
Then,θ[γ 0,q,f ] with Γ[q,f ] < γ 0 < λΩ

1 (q) and nearλΩ
1 (q) is a positive supersolution o

(2.4)γ . By (2.7), we seeζ 0 < θ[γ 0,q,f ] in Ω . Therefore,(2.4)γ has a positive solution. Thi
contradicts Theorem 2.2. Suppose thatγ � λΩ

1 (q) and that(2.4)γ possesses a positiv
supersolutionζ 1. Thenθ[γ 1,q,f ] with Γ[q,f ] < γ 1 < λΩ

1 (q) and nearΓ[q,f ] is a positive

subsolution of(2.4)γ andθ[γ 1,q,f ] < ζ 1 in Ω . Therefore,(2.4)γ has a positive solution
This contradicts Theorem 2.2.
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(ii) AssumeΓ[q,f ] < γ < λΩ
1 (q). Then there existsεγ > 0 such that for 0< ε < εγ ,

f ′(0) � f (εφ(q))

εφ(q)
+ 1

2
(γ − Γ[q,f ]).

Thus,

−∆
(
εφ(q)

) + q
(
εφ(q)

) = (
Γ[q,f ] + f ′(0)

)(
εφ(q)

)

� 1

2
(γ + Γ[q,f ])

(
εφ(q)

) + f
(
εφ(q)

)
< γ

(
εφ(q)

) + f
(
εφ(q)

)
.

This implies thatεφ(q) with 0 < ε < εγ is a subsolution to(2.4)γ . Thus(2.4)γ has a posi-
tive solutionw betweenεφ(q) andw̄. The uniqueness ofθ[γ,q,f ] implies thatw ≡ θ[γ,q,f ]
in Ω . The fact thatw̄ � θ[γ,q,f ] can be obtained from the strong maximum principle.

(iii) We first construct a supersolution of(2.4)γ . Since lims→∞ f (s)/s = 0, for a fixed
0 < δ < 1

2(λΩ
1 (q) − γ ) there existsS = S(δ) > 0 such thatf (s) � δs for s � S. Setting

M = max0�s�S f (s) (note thatM depends onδ) and considering the problem

−∆y + qy = γy + M in Ω, y = 0 on∂Ω, (2.9)

we easily know that (2.9) has a unique solutionyM which is the global minimizer of the
functional

J (y) = 1

2

∫
Ω

|∇y|2dx + 1

2

∫
Ω

(q − γ )y2dx −
∫
Ω

My dx

in H 1
0 (Ω). Since|yM | is also a global minimizer, thenyM � 0. The regularity of−∆

impliesyM ∈ C2(Ω) and thus the maximum principle implies thatyM > 0 in Ω . We claim
thatW := Cφ(q)+yM with C > 2S sufficiently large is a supersolution of(2.4)γ . Indeed,
for C > 2S, there is a subsetΩC ⊂⊂ Ω such thatW(x) � S for x ∈ ΩC . Therefore, for
x ∈ ΩC ,

−∆W + qW = λΩ
1 (q)

(
Cφ(q)

) + γyM + M

= γW + (
λΩ

1 (q) − γ
)(

Cφ(q)
) + M

> γW + f (W),

where we are using the fact that we can chooseC sufficiently large such that(λΩ
1 (q) −

γ − δ)(Cφ(q)) > δyM in ΩC . Forx ∈ Ω\ΩC , we have

−∆W + qW = λΩ
1 (q)

(
Cφ(q)

) + γyM + M > γW + f (W).

ThereforeW is a supersolution of(2.4)γ . ChoosingC in W sufficiently large, we se
w < W in Ω . Therefore, there is a positive solutionw of (2.4)γ in (w,W). The uniquenes
of θ[γ,q,f ] impliesθ[γ,q,f ] � w. The fact thatθ[γ,q,f ] � w can be obtained from the stron
maximum principle. �
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3. Change of stability of semi-trivial positive solutions

By Theorem 2.2, (1.2) possesses a semi-trivial positive solution of the form(u,0) if,
and only if,Γ[0,f ] < λ < λΩ

1 (0). Moreover, in this case the semi-trivial state is(θ[λ,0,f ],0).
Similarly, (1.2) possesses a semi-trivial positive solution of the form(0, v) if, and only if,
Γ[0,g] < µ < λΩ

1 (0) and if this is the case, then it is given by(0, θ[µ,0,g]). The following
result characterizes the linearized stability of each of these semi-trivial states.

Proposition 3.1. AssumeΓ[0,f ] < λ < λΩ
1 (0). Then,(θ[λ,0,f ],0) is linearly asymptotically

stable if, and only if,

µ < λΩ
1 (−cθ[λ,0,f ]) − g′(0); (3.1)

linearly unstable if, and only if,

µ > λΩ
1 (−cθ[λ,0,f ]) − g′(0); (3.2)

and linearly neutrally stable if

µ = λΩ
1 (−cθ[λ,0,f ]) − g′(0). (3.3)

Similarly, if we assumeΓ[0,g] < µ < λΩ
1 (0), then (0, θ[µ,0,g]) is linearly asymptotically

stable if, and only if,λ < λΩ
1 (−bθ[µ,0,g]) − f ′(0); linearly unstable if, and only if,λ >

λΩ
1 (−bθ[µ,0,g]) − f ′(0) and linearly neutrally stable if

λ = λΩ
1 (−bθ[µ,0,g]) − f ′(0). (3.4)

Proof. The linearized stability of(θ[λ,0,f ],0) is given by the sign of the real parts
the eigenvalues of the linearization of (1.2) at(θ[λ,0,f ],0), i.e., by the real parts o

the τ ’s for which the following linear problem admits a solution(h, k) ∈ (W
1,2
0 (Ω) ∩

W2,2(Ω))2\{(0,0)}:
−∆h = λh + f ′(θ[λ,0,f ])h + bθ[λ,0,f ]k + τh,

−∆k = µk + g′(0)k + cθ[λ,0,f ]k + τk. (3.5)

If k = 0, then (3.5) becomes

−∆h = (
λ + f ′(θ[λ,0,f ])

)
h + τh. (3.6)

On the other hand, from the definition ofθ[λ,0,f ] we find from Theorem 2.2 that

λΩ
1

(
−f (θ[λ,0,f ])

θ[λ,0,f ]

)
− λ = λΩ

1

(
−f (θ[λ,0,f ])

θ[λ,0,f ]
− λ

)
= 0.

The condition(G2) onf implies

f ′(θ[λ,0,f ]) <
f (θ[λ,0,f ])

θ[λ,0,f ]
.

Thus, Lemma 2.1 implies

λΩ
1

(−f ′(θ[λ,0,f ])
) − λ > 0, (3.7)
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and hence, any eigenvalueτ of (3.5) satisfies

Reτ � λΩ
1

(−f ′(θ[λ,0,f ]) − λ
) = λΩ

1

(−f ′(θ[λ,0,f ])
) − λ > 0.

Thus, the eigenvalue with associated eigenfunctions of the form(u,0) has a positive rea
part. Ifk �= 0, thenτ is an eigenvalue of−∆−g′(0)− cθ[λ,0,f ] −µ. Assuming (3.1) holds
we see that

λΩ
1

(−g′(0) − cθ[λ,0,f ] − µ
)
> 0

and the real part of any eigenvalue of−∆− g′(0)− cθ[λ,0,f ] −µ must be positive. Hence
under condition (3.1) the real part of any eigenvalueτ of (3.5) is positive and therefore, th
state(θ[λ,0,f ],0) is linearly asymptotically stable. Assuming (3.2) holds, we see that

τ1 := λΩ
1

(−g′(0) − cθ[λ,0,f ] − µ
) = λΩ

1 (−cθ[λ,0,f ]) − g′(0) − µ < 0

is an eigenvalue corresponding to a positive eigenfunction, sayξ , of the second equatio
of (3.5). Sinceτ1 < 0, (3.7) implies

λΩ
1

(−f ′(θ[λ,0,f ]) − λ − τ1
) = λΩ

1

(−f ′(θ[λ,0,f ])
) − λ − τ1 > 0,

and therefore, thanks to the strong maximum principle, the first equation of (3.5) wit
τ = τ1 possesses a unique solution:

h = (−∆ − f ′(θ[λ,0,f ]) − λ − τ1
)−1

(bθ[λ,0,f ]ξ).

Therefore, under the condition (3.2),τ1 < 0 is an eigenvalue of (3.5) and hence the s
(θ[λ,0,f ],0) is linearly unstable. Finally, if we assume (3.3) holds, it is easily seen
τ1 = 0 is an eigenvalue of (3.5) and that any other eigenvalue has positive real part.
fore, under the condition (3.3) the state(θ[λ,0,f ],0) is linearly neutrally stable.

The results concerning with the semi-trivial state(0, θ[µ,0,g]) can be obtained similarly
(Note thatλ, b, andf are changed byµ, c, andg, respectively.) �

Proposition 3.1 implies that the curve (3.3) in the(λ,µ)-plane is the curve of change
stability of the semi-trivial positive solution(θ[λ,0,f ],0). Similarly, the curve (3.4) is th
curve of change of stability of(0, θ[µ,0,g]). The following result provides us with the glob
behavior of these curves.

Proposition 3.2. The mappingF(λ) defined by

F(λ) := λΩ
1 (−cθ[λ,0,f ]) − g′(0), Γ[0,f ] < λ < λΩ

1 (0), (3.8)

is continuous strictly decreasing and satisfies

lim
λ↓Γ[0,f ]

F(λ) = Γ[0,g], lim
λ↑λΩ

1 (0)
F (λ) = −∞. (3.9)

Similarly, the mappingG(µ) defined by

G(µ) := λΩ
1 (−bθ[µ,0,g]) − f ′(0), Γ[0,g] < µ < λΩ

1 (0), (3.10)

is continuous strictly decreasing and satisfies

lim
µ↓Γ[0,g]

G(µ) = Γ[0,f ], lim
µ↑λΩ

1 (0)

G(µ) = −∞. (3.11)
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Proof. The continuity and monotonicity ofF(λ) can be obtained from Theorem 2.2. T
first relation of (3.9) follows from (2.6). Now we prove the second relation of (3.9). S
φ(0) > 0 in Ω , there exists a ballB with B̄ ⊂ Ω such that

φL := min
B̄

φ(0) > 0.

On the other hand, by Theorem 2.3, for eachΓ[0,f ] < λ < λΩ
1 (0),

θ[λ,0,f ] � φLF−1(λΩ
1 (0) − λ

)
uniformly in B̄,

and hence, Lemma 2.1 implies

F(λ) = λΩ
1 (−cθ[λ,0,f ]) − g′(0) < λB

1 (0) − g′(0) − cφLF−1(λΩ
1 (0) − λ

)
.

Our conclusion follows from the fact

lim
λ↑λΩ

1 (0)
F−1(λΩ

1 (0) − λ
) = ∞.

The same argument shows the corresponding properties ofG(µ). �
By Proposition 3.2, the curves of change of stability of the semi-trivial positive solutions

meet at(Γ[f,0],Γ[g,0]).

4. The existence of unbounded continua of coexistence states

In this section we provide a bifurcation result for the coexistence.

Theorem 4.1. Fix Γ[0,f ] < λ < λΩ
1 (0) and treatµ as the bifurcation parameter. Then, th

point

(µ,u, v) = (
λΩ

1

(−g′(0) − cθ[λ,0,f ]
)
, θ[λ,0,f ],0

)
is the only bifurcation point to coexistence states from the semi-trivial state(θ[λ,0,f ],0).
Moreover, the maximal component(closed and connected) of coexistence states emanati
from (θ[λ,0,f ],0) at µ = F(λ), sayE+

(µ,u,0) ⊂ R × (C1
0(Ω̄))2, is unbounded.

Now, fixµ < Γ[0,g] and treatλ ∈ R as the bifurcation parameter. By Proposition3.2,
there exists a uniqueΓ[0,f ] < λµ < λΩ

1 (0) such thatµ = F(λµ). Then, the point

(λ,u, v) = (λµ, θ[λµ,0,f ],0)

is the only bifurcation point to coexistence states from the curve(θ[λ,0,f ],0). Moreover,
the maximal component(closed and connected) of coexistence states emanating fro
(θ[λ,0,f ],0) at λ = λµ, sayE(λ,u,0) ⊂ R × C1

0(Ω̄) × C1
0(Ω̄), is unbounded.

Similarly, if we fixΓ[0,g] < µ < λΩ
1 (0) and treatλ ∈ R as the bifurcation paramete

then the point

(λ,u, v) = (
λΩ

1

(−f ′(0) − bθ[µ,0,g]
)
,0, θ[µ,0,g]

)
is the only bifurcation point to coexistence states from the semitrivial state(0, θ[µ,0,g])
and the maximal component(closed and connected) of coexistence states emanating fro
(0, θ[µ,0,g]) at λ = G(µ), sayE+ ⊂ R × C1(Ω̄) × C1(Ω̄), is unbounded.
(λ,0,v) 0 0
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Finally, fix λ < Γ[0,f ] and treatµ ∈ R as the bifurcation parameter. By Proposition3.2,
there exists a uniqueΓ[0,g] < µλ < λΩ

1 (0) such thatλ = G(µλ). In this case, the point

(µ,u, v) = (µλ,0, θ[µλ,0,g])
is the only bifurcation point to coexistence states from the curve(0, θ[µ,0,g]) and the max-
imal component(closed and connected) of coexistence states emanating from(0, θ[µ,0,g])
at µ = µλ, sayE+

(µ,0,v) ⊂ R × C1
0(Ω̄) × C1

0(Ω̄), is unbounded.

Proof. Similar to the proof of [5, Theorem 5.1 ].�

5. Coexistence regions of (1.2)

We first show the following lemma.

Lemma 5.1. Assume that(1.2)possesses a coexistence state, say(u, v). Then

uM <
λΩ

1 (0) − µ

c
, vM <

λΩ
1 − λ

b
, (5.1)

whereuM = maxΩ u andvM = maxΩ v.

Proof. From (1.2) it is easily seen that

u = θ[λ,−bv,f ], v = θ[µ,−cu,g].
It follows from Lemma 2.1 that

θ[λ,−bv,f ] � θ[λ,−bvM,f ] = θ[λ+bvM,0,f ].
Similarly,

θ[µ,−cu,g] � θ[µ,−cuM,g] = θ[µ+cuM ,0,g].
Moreover, sinceθ[λ+bvM,0,f ] � u > 0, we find from Theorem 2.2 that

Γ[0,f ] < λ + bvM < λΩ
1 (0).

Therefore,

vM <
λΩ

1 (0) − λ

b
.

Similarly,

uM <
λΩ

1 − µ

c
.

This completes the proof.�
Remark 5.2. It follows from Lemma 5.1 that if (1.2) possesses a coexistence state
λ < λΩ

1 (0) andµ < λΩ
1 (0).

Now we provide the following non-existence result.
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Theorem 5.3. The following assertions are true:

(i) If Γ[0,g] < µ < λΩ
1 (0), then there exist−∞ < λ∗ < λΩ

1 (0) such that(1.2) does not
admit a coexistence state providedλ > λ∗.

(ii) If Γ[0,f ] < λ < λΩ
1 (0), then there exist−∞ < µ∗ < λΩ

1 (0) such that(1.2) does not
admit a coexistence state providedµ > µ∗.

(iii) For each λ < Γ[0,f ], there existsΓ[0,g] < µ = µ(λ) < λΩ
1 (0) such that λ >

λΩ
1 (−bθ[µ(λ),0,g]) − f ′(0) and (1.2) does not admit a coexistence state ifµ(λ) <

µ < λΩ
1 (0). Moreover,µ(λ) can be chosen continuous inλ.

(iv) For each µ < Γ[0,g], there existsΓ[0,f ] < λ = λ(µ) < λΩ
1 (Ω) such thatµ >

λΩ
1 (−cθ[λ(µ),0,f ]) − g′(0) and (1.2)does not admit a coexistence state ifλ(µ) < λ <

λΩ
1 (0). Moreover,λ(µ) can be chosen to be continuous inµ.

Proof. (i) Assume (1.2) possesses a coexistence state(u, v), then

−∆u = λu + f (u) + buv > λu + f (u).

Thanks to Lemma 2.4,

u � θ[λ,0,f ].
We also know from Lemma 5.1 that

uM <
λΩ

1 (0) − µ

c
.

Thus

max
Ω

θ[λ,0,f ] <
λΩ

1 (0) − µ

c
.

Theorem 2.3 implies thatλ∗ as required in this theorem do exist. This completes the pr
Part (ii) follows by symmetry.
(iii) Pick up λ < Γ[0,f ]. It follows from Proposition 3.2 that there existsΓ[0,g] <

µ0(λ) < λΩ
1 (0) such that

λ > λΩ
1

(−f ′(0) − bθ[µ,0,g]
)

for eachµ0(λ) < µ < λΩ
1 (0). (5.2)

We argue by contradiction assuming that there exists a sequence of coexistence s
(1.2), say(µn,un, vn), n � 1, such thatµn > µ0(λ), n � 1, and limn↑∞ µn = λΩ

1 (0). Then
the second equation of (1.2) gives

−∆vn = µnvn + g(vn) + cunvn > µnvn + g(vn)

and hencevn is a strict positive supersolution of

−∆w = µnw + g(w) in Ω, w = 0 on∂Ω.

Thus, thanks to Lemma 2.4 and Theorem 2.3,

vn � θ[µn,0,g] �F−1(λΩ
1 (0) − µn

)
φ(0). (5.3)

Let Ω1 ⊂⊂ Ω andφL = minx∈Ω1 φ(0)(x). ThenφL > 0 and

vn � F−1(λΩ
1 (0) − µn

)
φL in Ω1.
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On the other hand, we find from the first equation of (1.2) that

λ = λΩ
1

(
−f (un)

un

− bvn

)
� λΩ

1 (−bvn) � λ
Ω1
1 (−bvn)

� λ
Ω1
1 (0) − bF−1(λΩ

1 (0) − µn

)
φL ↓ −∞ asn → ∞.

This contradiction shows that (1.2) does not admit a coexistence state forµ large and
completes the proof.

Part (iv) follows by symmetry. �
Now we provide the following existence result.

Theorem 5.4. Assume

Γ[0,f ] < λ < λΩ
1 (0), µ < λΩ

1 (−cθ[λ,0,f ]) − g′(0) (5.4)

or

Γ[0,g] < µ < λΩ
1 (0), λ < λΩ

1 (−bθ[µ,0,g]) − f ′(0). (5.5)

Then(1.2)possesses a coexistence state.

Proof. We only show the first part of this theorem. The second part can be obt
similarly. Fix λ ∈ (Γ[0,f ], λΩ

1 (0)) and considerµ as the main bifurcation parameter. B
Theorem 5.3, problem (1.2) does not admit a coexistence state ifµ � µ∗. Moreover, by
Theorem 4.1 the continuumE+

(µ,u,0) of coexistence states emanating from(θ[λ,0,f ],0)

at the value of the parameterµ = λΩ
1 (−g′(0) − cθ[λ,0,f ]) is unbounded and thank

to Lemma 5.1 these coexistence states are bounded inC1
0(Ω̄) × C1

0(Ω̄) uniformly on
compact subintervals ofµ. Therefore, (1.2) possesses a coexistence state for eachµ <

λΩ
1 (−g′(0) − cθ[λ,0,f ]) = λΩ

1 (−cθ[λ,0,f ]) − g′(0). This completes the proof.�
Theorem 5.5.

(i) Assumeλ < Γ[0,f ] and µ < µλ, whereµλ is the unique value ofµ satisfyingλ =
λΩ

1 (−bθ[µ,0,g]) − f ′(0). Then(1.2)possesses a coexistence state.
(ii) Assumeµ < Γ[0,g] and λ < λµ, whereλµ is the unique value ofλ satisfyingµ =

λΩ
1 (−cθ[λ,0,f ]) − g′(0). Then(1.2)possesses a coexistence state.

Proof. We only show the first case. The second case follows by symmetry. Fixλ < Γ[0,f ]
and considerµ as the main bifurcation parameter. By Theorem 5.3(iii), there existsµ =
µ(λ) ∈ (Γ[0,g], λΩ

1 (0)) such thatλ > λΩ
1 (−f ′(0) − bθ[µ(λ),0,g]) = λΩ

1 (−bθ[µ(λ),0,g]) −
f ′(0) and (1.2) does not admit a coexistence state forµ(λ) < µ < λΩ

1 (0).
Moreover, by Theorem 4.1 the continuumE+

(µ,0,v) of coexistence states emanating fro
(0, θ[µ,0,g]) at µλ is unbounded, whereµλ is the unique value ofµ > Γ[0,g] for which
λ = λΩ

1 (−f ′(0) − bθ[µ,0,g]). Hence, we conclude from Lemma 5.1 that (1.2) possess
coexistence state for eachµ < µλ. This completes the proof of part (i) and completes
proof of this theorem. �
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6. Structure of the coexistence states

In this section we analyze the structure of the set ofλ’s (respectivelyµ’s) for which
(1.2) possesses a coexistence state, denoted byΛ (respectivelyM).

Theorem 6.1. The following assertions are true:

(i) AssumeΓ[0,g] < µ < λΩ
1 (0). Then, eitherΛ = (−∞, λΩ

1 (−bθ[µ,0,g]) − f ′(0)), or
there existsλΩ

1 (−bθ[µ,0,g]) − f ′(0) � λ∗ < λΩ
1 (Ω) such thatΛ = (−∞, λ∗].

(ii) AssumeΓ[0,f ] < λ < λΩ
1 (0). Then, eitherM = (−∞, λΩ

1 (−cθ[λ,0,f ]) − g′(0)), or
there existsλΩ

1 (−cθ[λ,0,f ]) − g′(0) � µ∗ < λΩ
1 (0) such thatM = (−∞,µ∗].

Proof. We will only prove the first case. The second case follows by symmetry. Ass
Γ[0,g] < µ < λΩ

1 (0). Then, thanks to Theorem 5.4,
(−∞, λΩ

1 (−bθ[µ,0,g]) − f ′(0)
) ⊂ Λ. (6.1)

Now, suppose that (1.2) possesses a coexistence state(u0, v0) for some

λ0 > λΩ
1 (−bθ[µ,0,g]) − f ′(0).

Then it follows from Theorem 5.3 thatλ0 � λ∗. Moreover,(u0, v0) is a supersolution o
(1.2) for each

λ ∈ (
λΩ

1 (−bθ[µ,0,g]) − f ′(0), λ0
]
. (6.2)

On the other hand, if we defineζ(x) > 0 with ‖ζ‖∞ = 1 is the eigenfunction correspondin
to λΩ

1 (−f ′(0) − bθ[µ,0,g]), by the condition onf , we can choose anε0 > 0 such that for
0 < ε < ε0,

0 < f ′(0) − f (εζ )

εζ
<

1

2

(
λ − λΩ

1

(−f ′(0) − bθ[µ,0,g]
))

. (6.3)

(Note thatλΩ
1 (−f ′(0) − bθ[µ,0,g]) = λΩ

1 (−bθ[µ,0,g]) − f ′(0).) Thus,

−∆(εζ ) = λΩ
1

(−f ′(0) − bθ[µ,0,g]
)
(εζ ) + f ′(0)(εζ ) + bθ[µ,0,g](εζ )

< λ(εζ ) + f (εζ ) + bθ[µ,0,g](εζ ).

If we chooseµ nearΓ[0,g] andε sufficiently small, we easily know that

εζ < u0, θ[µ,0,g] < v0 in Ω.

Such couple provides us with a subsolution of (1.2). Thanks to [5, Theorem 8.7], for ea
λ satisfying (6.3) problem (1.2) possesses a coexistence state. Therefore, we see th
possesses a coexistence state forλ satisfying (6.2).

Now we show that (1.2) possesses a coexistence state forλ = λΩ
1 (−f ′(0) − bθ[µ,0,g]).

We fix µ and treatλ as the main bifurcation parameter. By Theorem 4.1,

(λ,u, v) = (
λΩ

1

(−f ′(0) − bθ[µ,0,g]
)
,0, θ[µ,0,g]

)
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is the only bifurcation point to coexistence states from the semi-trivial curve(u, v) =
(0, θ[µ,0,g]) and the maximal component (closed and connected) of coexistence state
nating from(0, θ[µ,0,g]) atλ = λΩ

1 (−f ′(0) − bθ[µ,0,g]), denoted byE+
(λ,0,v), is unbounded

in R× (C1
0(Ω̄))2. Moreover, by the local bifurcation theorem of [4], there exist a neigh

hoodN :=N (λΩ
1 (−f ′(0) − bθ[µ,0,g]),0, θ[µ,0,g]) of (λΩ

1 (−f ′(0) − bθ[µ,0,g]),0, θ[µ,0,g])
in R × (C1

0(Ω̄))2, a real numbers0 > 0, and an analytic mapping

(λ,u, v) : (−s0, s0) → R × C1
0(Ω̄) × C1

0(Ω̄)

such that(
λ(0), u(0), v(0)

) = (
λΩ

1

(−f ′(0) − bθ[µ,0,g]
)
,0, θ[µ,0,g]

)
and

N ∩ E+
(λ,0,v) = {(

λ(s), u(s), v(s)
)
: s > 0

}
.

Indeed, the unique coexistence states of (1.2) close to the bifurcation point are thos
on the curve(λ(s), u(s), v(s)). Sinceλ(s) is analytic,s0 can be reduced, if necessary,
that eitherλ(s) < λΩ

1 (−f ′(0) − bθ[µ,0,g]) for eachs ∈ (0, s0), or λ(s) = λΩ
1 (−f ′(0) −

bθ[µ,0,g]) for eachs ∈ (0, s0), or λ(s) > λΩ
1 (−f ′(0) − bθ[µ,0,g]) for eachs ∈ (0, s0). If

λ(s) = λΩ
1 (−f ′(0) − bθ[µ,0,g]) for eachs ∈ (0, s0) the proof is completed.

Assume thatλ(s) < λΩ
1 (−f ′(0) − bθ[µ,0,g]) for eachs ∈ (0, s0). Since (1.2) possesse

a coexistence state for eachλ ∈ (λΩ
1 (−f ′(0) − bθ[µ,0,g]), λ0] and thanks to Lemma 5.

uniform a priori bounds for the coexistence states of (1.2) are available in the
λ ∈ (λΩ

1 (−f ′(0) − bθ[µ,0,g]), λ0], for any sequence of coexistence states of (1.2),
(λn,un, vn), with λn > λΩ

1 (−f ′(0) − bθ[µ,0,g]) andλn ↓ λΩ
1 (−f ′(0) − bθ[µ,0,g]), we can

choose a convergent subsequence, relabeled byn, such that

lim
n→∞(un, vn) = (u∗, v∗)

for some non-negative solution couple(u∗, v∗) of (1.2) withλ = λΩ
1 (−f ′(0) − bθ[µ,0,g]).

By the uniqueness obtained from the application of [4],

(λn,un, vn) /∈N
for n sufficiently large. Hence,

(u∗, v∗) �= (0, θ[µ,0,g]).
Now we show that(u∗, v∗) �= (0,0). To show this we argue by contradiction. Indeed
u∗ = v∗ = 0, then the new sequencesũn = un/‖un‖∞ andṽn = vn/‖vn‖∞ satisfy

−∆ũn = λnũn + f (un)

un
ũn + bũnvn, x ∈ Ω,

−∆ṽn = µṽn + g(vn)

vn

ṽn + cunṽn, x ∈ Ω,

ũn = ṽn = 0, x ∈ ∂Ω (6.4)

and, since(ũn, ṽn) is uniformly bounded inL∞(Ω) × L∞(Ω), the regularity of−∆ im-
plies that there exists a subsequence (still denoted by(ũn, ṽn)), such thatũn → w and
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ṽn → z, asn → ∞, for somew,z ∈ C1
0(Ω̄). Necessarilyw > 0, z > 0 and passing to th

limit in (6.4), we find that

−∆w = λΩ
1

(−f ′(0) − bθ[µ,0,g]
)
w + f ′(0)w, x ∈ Ω

−∆z = µz + g′(0)z, x ∈ Ω,

w = z = 0, x ∈ ∂Ω. (6.5)

By the uniqueness of the principal eigenvalue,

µ = Γ[0,g]
and this is impossible, since we are assumingµ > Γ[0,g].

If u∗ > 0 andv∗ ≡ 0, then we take the sequence(un, ṽn) and the same compactne
argument as above shows that

µ = λΩ
1

(−g′(0) − cu∗) < Γ[0,g],

which is impossible either. Therefore,(u∗, v∗) must be a coexistence state.
Finally, assume thatλ(s) > λΩ

1 (−f ′(0) − bθ[µ,0,g]) for eachs ∈ (0, s0) and letE+
1 de-

note the maximal subcontinuum ofE+
(λ,0,v)

outsideN . It is clear thatE+
1 is unbounded

Thanks to Lemma 5.1 uniform a priori bounds on compact intervals ofλ are avail-
able. Moreover, thanks to Theorem 5.3(i), (1.2) does not admit a coexistence s
λ > λ∗. Therefore,E+

1 must go backwards and (1.2) possesses a coexistence sta
λ = λΩ

1 (−f ′(0) − bθ[µ,0,g]) as well.
The analysis above implies that

(−∞, λ0] ⊂ Λ.

Let

λ∗ = sup
{
λ0 > λΩ

1

(−f ′(0) − bθ[µ,0,g]
)

for which (1.2) has a coexistence state
}
.

We have that(−∞, λ∗) ⊂ Λ and that

λΩ
1

(−f ′(0) − bθ[µ,0,g]
)
< λ∗ � λ∗. (6.6)

Due to the existence of a priori bounds, there exists a sequence of positive solut
(1.2), say(λn,un, vn), n � 1, such that

lim
n→∞(λn,un, vn) = (λ∗, û, v̂),

for some non-negative solution(û, v̂) of (1.2) with λ = λ∗. Necessarilŷu > 0 andv̂ > 0.
To show this we argue by contradiction. Indeed, ifû = v̂ = 0, then the new sequenc
ûn = un/‖un‖∞ andv̂n = vn/‖vn‖∞ satisfy

−∆ûn = λnûn + f (un)

un

ûn + bûnvn, x ∈ Ω,

−∆v̂n = µv̂n + g(vn)

vn

v̂n + cunv̂n, x ∈ Ω,

ûn = v̂n = 0, x ∈ ∂Ω (6.7)
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and, since(ûn, v̂n) is uniformly bounded inL∞(Ω) × L∞(Ω), the regularity of−∆ im-
plies that there exists a subsequence (still denoted by(ûn, v̂n)), such thatûn → ŵ and
v̂n → ẑ, asn → ∞, for someŵ, ẑ ∈ C1

0(Ω̄). Necessarilyŵ > 0, ẑ > 0 and passing to th
limit in (6.7), we find that

−∆ŵ = λ∗ŵ + f ′(0)ŵ, x ∈ Ω,

−∆ẑ = µẑ + g′(0)ẑ, x ∈ Ω,

ŵ = ẑ = 0, x ∈ ∂Ω. (6.8)

By the uniqueness of the principal eigenvalue,

λ∗ = Γ[0,f ], µ = Γ[0,g],
and this is impossible, since we are assuming thatµ > Γ[0,g].

If û > 0 and v̂ ≡ 0, then we take the sequence(un, v̂n) and the same compactne
argument as above shows thatû = θ[λ∗,0,f ] and that

µ = λΩ
1

(−g′(0) − cθ[λ∗,0,f ]
)
� Γ[0,g],

which is impossible either. Finally, if̂u ≡ 0 andv̂ > 0, thenv̂ = θ[µ,0,g] and

λ∗ = λΩ
1

(−f ′(0) − bθ[µ,0,g]
)
,

which contradicts (6.6). Therefore,û > 0, v̂ > 0 and

Λ = (−∞, λ∗].
This completes the proof.�
Theorem 6.2. The following assertions are true:

(i) Assumeλ < Γ[0,f ]. Then, eitherM = (−∞,µλ) or M = (−∞,µ∗] for some
µ∗ � µλ, where Γ[0,g] < µλ < λΩ

1 (0) is the unique value ofµ satisfying λ =
λΩ

1 (−bθ[µ,0,g]) − f ′(0).
(ii) Assumeµ < Γ[0,g]. Then, eitherΛ = (−∞, λµ) or Λ = (−∞, λ∗] for someλ∗ � λµ,

whereΓ[0,f ] < λµ < λΩ
1 (0) is the unique value ofλ satisfyingµ = λΩ

1 (−cθ[λ,0,f ]) −
g′(0).

Proof. We only prove the first case. The second case follows by symmetry. Assumλ <

Γ[0,f ]. By Theorem 5.5,

(−∞,µλ) ⊂ M. (6.9)

Now, suppose that (1.2) possesses a coexistence state(u0, v0) for someµ0 > µλ. Then,
we easily know from Remark 5.2 thatµ0 < λΩ

1 (0). We now show that (1.2) possesse
coexistence state for eachµ ∈ (µλ,µ0]. Assume that

µλ < µ � µ0.

Then,

λΩ
1 (0) > λ > λΩ

1

(−f ′(0) − bθ[µ,0,g]
)
,
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and hence,

θ[λ,−bθ[µ,0,g],f ] > 0.

(Note thatλΩ
1 (−f ′(0) − bθ[µ,0,g]) = Γ[−bθ[µ,0,g],f ].) Moreover, sinceλ < Γ[0,f ], we have

µλ > Γ[0,g] and hence, for eachµ ∈ (µλ,µ0] we find θ[µ,0,g] > 0. Now, observe that th
couple(θ[λ,−bθ[µ,0,g],f ], θ[µ,0,g]) provides us with a subsolution of (1.2), and that, thank
Lemma 2.4, for any coexistence state(u, v) of (1.2) we have(

θ[λ,−bθ[µ,0,g],f ], θ[µ,0,g]
)
< (u,v).

In particular,(
θ[λ,−bθ[µ0,0,g],f ], θ[µ0,0,g]

)
< (u0, v0).

Thus, thanks again to Lemma 2.4, for eachµ ∈ (µλ,µ0) we find that(
θ[λ,−bθ[µ,0,g],f ], θ[µ,0,g]

)
<

(
θ[λ,−bθ[µ0,0,g],f ], θ[µ0,0,g]

)
< (u0, v0)

and therefore, it follows from [5, Theorem 8.7] that (1.2) possesses a coexistence s
eachµ ∈ (µλ,µ0].

To complete the proof it suffices to show that (1.2) possesses a coexistence s
µ = µλ. We can show this fact by arguments similar to those in the proof of the fac
(1.2) possesses a coexistence state forλ = λΩ

1 (−f ′(0) − bθ[µ,0,g]) in Theorem 6.1. We
omit the details here. Thus

(−∞,µ0] ⊂ M. (6.10)

Let µ∗ denote the supremum of the set ofµ0 > µλ for which (1.2) possesses a coexisten
state for eachµ ∈ (−∞,µ0]. By Remark 5.2,µ∗ < λΩ

1 (0). Moreover,µ∗ > µλ and due to
the existence of a priori bounds, there exists a sequence of positive solutions of (1.
(µn,un, vn), n � 1, such that

lim
n→∞(µn,un, vn) = (µ∗, u∗, v∗),

for some non-negative solution(u∗, v∗) of (1.2) withµ = µ∗. The same argument as in t
proof of Theorem 6.1 shows thatu∗ > 0 andv∗ > 0. Therefore,

M = (−∞,µ∗].
This completes the proof.�

Now we obtain the following multiplicity result.

Theorem 6.3. The following assertions are true:

(i) Assumeλ < Γ[0,f ] andM = (−∞,µ∗] with µ∗ > µλ. Then(1.2) possesses at lea
two coexistence states for eachµ ∈ (µλ,µ

∗).
(ii) Assumeµ < Γ[0,g] andΛ = (−∞, λ∗] with λ∗ > λµ. Then(1.2)possesses at least tw

coexistence states for eachλ ∈ (λµ,λ∗).
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Proof. To prove this result we use the fixed point index in cones. It suffices to p
Theorem 6.3(i), since (ii) follows by symmetry. The proof of Theorem 6.2, unde
assumptions of Theorem 6.3, [5, Theorem 8.7] guarantees the existence of a minim
existence state, which will be denoted by(uµ, vµ). Suppose not, there are a sequenc
coexistence states which bifurcate from (0,0) or some of the semitrivial positive solu
This is impossible by the proof of Theorem 6.2. We now show that (1.2) fits into th
stract setting of [1]. Fixα < µλ, β > 0 and considerI := [α,µ∗ + β]. Since we have
uniform a priori bounds for the non-negative solutions of (1.2), there existsK > 0 such
that

−f (u)

u
− bv < λ + K, −g(v)

v
− cu < µ + K,

for eachµ ∈ I and any non-negative solution(u, v) of (1.2). Let e denote the uniqu
solution of

−∆e + Ke = 1 in Ω, e = 0 on∂Ω.

We havee(x) > 0 for eachx ∈ Ω and∂ne(x) < 0 for eachx ∈ ∂Ω , wheren stands for the
outward unit normal vector on∂Ω . LetCe(Ω̄) denote the ordered Banach space consis
of all functionsu ∈ C(Ω̄) for which there exists a positive constantκ > 0 such that−κe �
u � κe, endowed with the norm

‖u‖e := inf{κ > 0: −κe � u � κe}
and ordered by its cone of positive functions,P . Then, the operators

Kµ : Ce(Ω̄) × Ce(Ω̄) → Ce(Ω̄) × Ce(Ω̄)

defined by

Kµ(u, v) =
(

(−∆ + K)−1[(λ + K)u + f (u) + buv]
(−∆ + K)−1[(µ + K)v + g(v) + cuv]

)

for eachµ ∈ I , are compact and strongly order preserving. Moreover, the solutions of
are the fixed points ofKµ. Let Be denote the unit ball ofCe(Ω̄) × Ce(Ω̄) and, for each
ρ > 0, Pρ the positive part ofρBe . Since by Lemma 5.1 we have uniform a priori boun
for the non-negative solutions of (1.2), the fixed point index ofKµ in Pρ makes sense fo
sufficiently largeρ. Moreover, we have the following result.

Lemma 6.4. Assumeµ ∈ (µλ,µ
∗ + β]. Then(0,0) and (0, θ[µ,0,g]) are isolated fixed

points ofKµ in P 2 and

i
(
Kµ, (0,0)

) = i
(
Kµ, (0, θ[µ,0,g])

) = 0. (6.11)

Moreover,

i(Kµ,Pρ) = 0, (6.12)

provided thatρ is sufficiently large.

Proof. Sinceµ > µλ, (0, θ[µ,0,g]) is linearly unstable by Proposition 3.1 in Section 3, a
soi(Kµ, (0, θ[µ,0,g])) = 0 (see [7]). On the other hand, it follows from [1, Lemma 13.1(
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that i(Kµ, (0,0)) = 0 and therefore (6.11) holds. Relation (6.12) follows by homotopy
variance, taking into account that (0,0) and(0, θ[µ,0,g]) are the only non-negative solutio
of (1.2) forµ ∈ (µ∗,µ∗ + β]. This completes the proof.�

To complete the proof of Theorem 6.3, we need to compute the fixed point index
minimal solution(uµ, vµ) of (1.2). The proof is similar to that of [5, Theorem 8.10]. W
are only to sketch it. Thanks to [1, Proposition 20.4],(uµ, vµ) is weakly stable and so

λΩ
1 (Lµ) � 0,

where

Lµ :=
(−∆ 0

0 −∆

)
− Aµ (6.13)

and

Aµ =
(

λ + f ′(uµ) + bvµ buµ

cvµ µ + g′(vµ) + cuµ

)
. (6.14)

If λΩ
1 (Lµ) > 0, the same argument as in the proof of [5, Theorem 8.10] complete

proof of Theorem 6.3.
If λΩ

1 (Lµ) = 0, it follows from of [5, Lemma 8.13] that there existsε > 0 and a differ-
entiable mapping(µ,u, v) : (−ε, ε) → R × P 2 which is strictly increasing ins such that
(µ(0), u(0), v(0)) = (µ,uµ, vµ) and for eachs ∈ (−ε, ε), (µ(s), u(s), v(s)) is a coexis-
tence state of (1.2). Moreover,

sgnµ′(s) = sgnλΩ
1 (Ls ),

where

Ls =
(−∆ 0

0 −∆

)
− As,

where

As =
(

λ + f ′(u(s)) + bv(s) bu(s)

cv(s) µ(s) + g′(v(s)) + cu(s)

)
.

Arguing as in the proof of [5, Theorem 8.10], we find that

µ(s) < µ ∀s ∈ (−ε,0).

Thus, two different situations may occur fors ∈ (0, ε):

Case (a). If µ(s) < µ for all s ∈ (0, ε), then the same argument as in the proof
[5, Theorem 8.10] applies to complete the proof of this case.

Case (b). If µ(s) > µ for all s ∈ (0, ε), then there existss1 > 0 such thatµ′(s1) > 0 and
hence,

i
(
Kµ(s1),

(
u(s1), v(s1)

)) = 1.

Now, setting

ρ1 := ∥∥(
u(s1), v(s1)

)∥∥ − δ, ρ2 := ∥∥(uµ, vµ)
∥∥ − δ,
e e
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2)
y

ii)]

oof of

.
m 6.5

an
n
s-
we know that (1.2) does not admit a coexistence state in[
µ(s1),µ(s1) + δ

] × ∂
(
Pρ1\Pρ2

)
.

Moreover, by the uniqueness of [5, Lemma 8.13(ii)],δ > 0 can be chosen so that (1.
does not have a coexistence state inPρ1\Pρ2 for µ = µ(s1) + δ either. Thus, the homotop
invariance implies

i
(
Kµ(s1),Pρ1\Pρ2

) = 0.

Now, for δ > 0 sufficiently small, setting

ρ := ∥∥(
u(s1), v(s1)

)∥∥
e
+ δ

we also know that

i
(
Kµ(s1),Pρ\Pρ2

) = 1.

Since the monotonicity of(u(s), v(s)) and the uniqueness given by [5, Lemma 8.13(
imply that (1.2) does not admit a coexistence state on[

µ,µ(s1)
] × ∂

(
Pρ\Pρ2

)
,

then

i
(
Kµ, (uµ, vµ)

) = 1.

Therefore, our conclusion is obtained by using Lemma 6.4. This completes the pr
Theorem 6.3. �
Theorem 6.5. The following assertions are true:

(i) AssumeΓ[0,g] < µ < λΩ
1 (0) and Λ = (−∞, λ∗] with λΩ

1 (−bθ[µ,0,g]) − f ′(0) <

λ∗ < Γ[0,f ]. Then (1.2) possesses at least two coexistence states for eachλ ∈
(λΩ

1 (−bθ[µ,0,g]) − f ′(0), λ∗).
(ii) AssumeΓ[0,f ] < λ < λΩ

1 (0) and M = (−∞,µ∗] with λΩ
1 (−cθ[λ,0,f ]) − g′(0) <

µ∗ < Γ[0,g]. Then (1.2) possesses at least two coexistence states for eachµ ∈
(λΩ

1 (−cθ[λ,0,f ]),µ∗) − g′(0).

Proof. The proof of this theorem is similar to that of Theorem 6.3. DefineKλ similar
to Kµ as above. For case (i), we need the conditionλ∗ < Γ[0,f ] to guarantee that(0,0)

and(0, θ[µ,0,g]) are the only non-negative solutions of (1.2) forλ ∈ (λ∗,Γ[0,f ]). Moreover,
(0, θ[µ,0,g]) is linearly unstable forλΩ

1 (−bθ[µ,0,f ]) − f ′(0) < λ < λ∗ by Proposition 3.1
Thus, a similar lemma to Lemma 6.4 can be obtained. The rest of the proof of Theore
is a little variant of the proof of [5, Theorem 8.14].�
Remark 6.6. The assumptionλ∗ < Γ[0,f ] in Theorem 6.5 is reasonable since we c
see that there exists̃µ < λΩ

1 (0), which depends uponΓ[0,f ], such that this assumptio
holds forµ > µ̃. Indeed, it follows from the proof of Theorem 5.3(i) that if (1.2) po
sesses a coexistence state, then maxΩ θ[µ,0,g] < (λΩ(0) − λ)/c. Choosingµ̃ such that
1
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1982)

ive
maxΩ θ[µ̃,0,g] = (λΩ
1 (0) − Γ[0,f ])/c (the existence of such̃µ can be known from Theo

rem 2.3), we can show thatλ∗ < Γ[0,f ] providedµ > µ̃. On the contrary, there is(λ,µ)

with λ � Γ[0,f ], µ > µ̃ such that (1.2) has a coexistence state(u, v). Then

max
Ω

v > max
Ω

θ[µ̃,0,g] = (
λΩ

1 (0) − Γ[0,f ]
)
/c.

On the other hand,

max
Ω

v <
(
λΩ

1 (0) − λ
)
/c �

(
λΩ

1 (0) − Γ[0,f ]
)
/c.

This is impossible. Similarly, the assumptionµ∗ < Γ[0,g] in Theorem 6.5 is also reaso
able.
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