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Abstract

Coexistence states for a class of systems of mutualist species are obtained via bifurcation theory
and monotone techniques.
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1. Introduction
We investigate the coexistence states for the systems of mutualist species

—Au =X u—+af ) +buv, xe€Ss2,
—Av=pv+dg)+cuv, xe€S$2,
u=v=0, xe€ds2, (1.2)

wherei, u € R are bifurcation parameters> 0,5 > 0,c > 0,d > 0 are constants, g €
C1([0, 0)) satisfy the following conditions:
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(G1) f(s),8(s)>0fors >0, f(0)=g(0) =0, f'(0) >0, g'(0) >0,

lim &z lim &):o;

s—>00 § §s—>00 §

(G2) (f(s)/s) <0,(g(s)/s) <0fors e (0, 00).

In the rest of this paper we always assume thanhdg satisfy(G1) and(G>).
A typical example off andg is
f(s)=se”", g(s) =se™%.
We say(u, v) a positive solution of (1.1) ifu, v) € C3(2) x C}(2) satisfies (1.1) in
the weak sense witlhh > 0, v > 0in £2.
(1.1) models the stationary case of the situation of two species co-existipgwiere
£2 is the inhabiting regiong(x) andv(x) are the densities of each of the speciesnd
d describe the limiting effects of crowding in each populatibandc are the supporting
rates between the species. In this model we are assumingtiefully surrounded by
inhospitable areas, because both populatiosities are subject to homogeneous Dirichlet
boundary conditions. Such kind of systems wagl®d extensively by many authors, see,
for example, [2,3,5-14,17]and the references therein. They were interested in the existence
and multiplicity of positive solutions, i.e(u, v) € C3(£2) x C3(£2) with u > 0 andv > 0
in £2.
Without loss of generality we assume

a=d=1
and then (1.1) changes to the form

—Au = u+ f(u)+buv, xe€Ss2,
—Av=pv+g)+cuv, xe€S2,
u=v=0, xedf2. (1.2)

We will study the existence, stabilitynd multiplicity of non-negative solution@:, v)
of (1.2). Thanks to the strong maximum principle(if v) € C3(2) x C3(£2) is a non-
negative solution of (1.2) withk # 0 (respectivelyv # 0), thenu (respectivelyv) is
strongly positive in the sense of Section 2. Therefore, (1.2) admits three types of non-
negative component-wise solutions: ttrevial one, (0, 0); those with one component
positive and the other zergy, 0) or (0, v), the semi-trivial positive solutions; and those
with both components positive, tlteexistence states

2. Preliminaries

In this section we obtain some results which will be useful in the following.

Let E=L°(2) andF = Cé(.@). We consider the spacésand F as being ordered
by the usual cones of non-negative functidghsand Pg. Clearlyu € int Pg if u > 0 in 2
anddu/dn < 0 ona$2, wheren is the outward normal vector @f2; we will write u > 0
in this case and call strongly positive.
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Letg € L°°(£2). The linear eigenvalue problem
—Au+qu=2>ru in$2, u=0 onods (2.1)

has an infinite sequence of eigenvalues, which are bounded below. We denote the lowest
eigenvalue of (2.1) by (¢). It is well known thatr{ (¢) is a simple eigenvalue and that

the corresponding eigenfuncti@nqg) does not change sign af. In the following, we
assumeb(g) > 0in 2 and||¢(¢)|lcoc = 1. The following lemma is well-known.

Lemma2.1.

(i) Monotonicity with respect to the potentiddt g1, g2 € L°°(£2) such thaly; < g2 and
g1 < g2 on a set of positive measure. Then

2 (qD) <28 (g2). (2.2)

(i) Continuity with respect to the potentia ¢, € L*°(£2), n > 1, is a sequence of po-
tentials such that

lim llgn — glloo =0,
n—o0
then
lim Aiz (qn) = )‘iz (4)-
n—o0
(iii) If £21 is a proper subdomain a® with 3521 of classC?, then

a7 q) > AL (). (2.3)
Consider now the nonlinear eigenvalue problem
—Aw+qw=yw+ f(w) Iin§2, w=0 o0nois. (2.9,

Theorem 2.2. Problem(2.4),, has a positive solution iﬁ‘é(f?) ifandonly if I, ;1 <y <
A5 (q), where

Ny 11 =) — f(0). (2.5)

Moreover, for eacl,, s < ¥ < 2(¢), (2.4), has a unique positive solutidh, . 71, the
mapy > 0yy.q. 11 from (Ig. s1. A2 (¢)) to C3($2) is strongly increasingi.e., 8y, 4. 1 >
O1ya.q, 71 I v1 > y2) and continuous. Furthermore, we have

lim 6.4, 71 =0 uniformlying2. (2.6)
vig.n

Proof. Writing f(u) in the formu f(«)/u and using the conditiodG,), we obtain the
proof of the first part of this theorem from [16, Theorem 1.1] or [15, Lemma 2].
The fact that

lim 6.4 1=0 uniformlyin
v¥Tig. '
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can be easily seen from the non-existence of positive soluti@@.4f, with y = I, 7).
The fact thaty — 6y, 4, 7] is strongly increasing and continuous follows from the sub- and
supersolution argument together with the strong maximum principte.

The following result provides us with the behaviorgpf , 7 asy + Af (q).

Theorem 2.3. Let F(s) = f(s)/s. The following inequality holds
Oy = F L@ —v)@) ing, 2.7)

forIg. <y < Af (q)-

Proof. We know from(G») that F is a strictly decreasing function ai®, co). Fory €
(Ng.11. M2 (¢)), we show thatF~1(A{ (¢) — )¢ (q) is a subsolution of2.4),,. Indeed,
foranya > 0, if

2 (@) —y <F(agp(@). (2.8)
thena¢ (¢) is a subsolution 0§2.4),,. Now we choose

a=F (1 @) —v).

It follows from the monotonicity of the functioff that (2.8) holds. Thus, the uniqueness
of 6.4, 1 iIMmplies

Oyg.r1=>F A7 (@) —v)¢(g) in .
Since lim_, g+ F~1(s) = oo, we have

lim F(0f@) —y)=c0. O
YA (@)

Lemma2.4.

(i) If y < Ig, ), then(2.4), does not admit a positive subsolution andy i 2§ (¢),
then(2.4),, does not admit a positive supersolution.
(i) If y e (F[q,f],)»{? (¢)) and w € C1(£2) is a positive strict supersolution @k.4),,
thenw > Oy.q,1-
(iii) Similarly, if y € (ITg, 11, 42 (¢)) andw € C1(2) is a positive strict subsolution of
(2.4),, thend, 4, r1 > w.

Proof. (i) Suppose thay < I, s and that(2.4), possesses a positive subsolutigh
Then, 6,0, s With Iy, 1) < ¥° < 4§ (¢) and nean{ (¢) is a positive supersolution of
(2.4),.By (2.7), we see? < 0,04, 11N £2. Therefore(2.4), has a positive solution. This
contradicts Theorem 2.2. Suppose that Af (¢) and that(2.4), possesses a positive
supersolutiort*. Then6,1 , ¢ With I, 5] < ¥* < 17 (¢) and nearly, s is a positive
subsolution of(2.4),, ande[yl,q,f] <ctin Q. Therefore(2.4), has a positive solution.
This contradicts Theorem 2.2.
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(i) AssumeTl,, s < ¥ <A (). Then there exists, > 0 such that for 6< & < ¢,,

fep@) |, 1

0) <
FOSs=5@w T2

(v — Iig, -
Thus,
—A(ed(@) +4(e0(@) = (Ng.11+ 1'(0) (e (9))
< %(V + g, ) (e0(@) + f(e¢(@))

<v(e0@) + f(e¢(9)).

This implies that¢ (¢) with 0 < ¢ < ¢,, is a subsolution t¢2.4), . Thus(2.4), has a posi-
tive solutionw betweere¢ (¢) andw. The uniqueness @, ,. s implies thatw =6}, 4, 7]
in §2. The fact thatv > 6}, 4, r can be obtained from the strong maximum principle.

(iif) We first construct a supersolution ¢2.4),,. Since lim_., f(s)/s = 0, for a fixed
0<é< %(Af(q) — y) there existsS = S(§) > 0 such thatf (s) < és for s > S. Setting
M = maxygs<s f(s) (note thatM depends o@) and considering the problem

—Ay4+qy=yy+M inQ2, y=0 ondge, (2.9)

we easily know that (2.9) has a unique solutigi which is the global minimizer of the
functional

1 2 1 2

s =3 [193dx+ 5 [@ -y [myas
2 2 2

in Hol(.Q). Since|yu| is also a global minimizer, themy > 0. The regularity of—A

impliesyy € C?(£2) and thus the maximum principle implies thag > 0 in £2. We claim

thatW := C¢(g) + yu with C > 25 sufficiently large is a supersolution (.4), . Indeed,

for C > 28, there is a subse®c CcC £2 such thatW(x) > S for x € £2¢. Therefore, for
X € .Qc,

—AW +qW =1¥(@)(Co @) + yyu + M
=yW+ (7@ —7)(Co@) +M
>y W+ f(W),

where we are using the fact that we can cho@ssufficiently large such tha(tkf(q) -
y —8)(Co(q)) > Syy in 2¢. Forx € 2\2¢, we have

—AW +qW =A£(@)(Co@) +yym + M >y W + f(W).

ThereforeW is a supersolution 0§2.4),,. ChoosingC in W sufficiently large, we see
w < Win 2. Therefore, there is a positive solutionof (2.4),, in (w, W). The uniqueness
of 6y, 4, 11 impliesoy, 4, ;1 > w. The fact thab;, 4, r; > w can be obtained from the strong
maximum principle. O
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3. Change of stability of semi-trivial positive solutions

By Theorem 2.2, (1.2) possesses a semi-trivial positive solution of the (orf) if,
and only if, ITo, < A < A% (0). Moreover, in this case the semi-trivial statédg. o, /1, 0).
Similarly, (1.2) possesses a semi-trivial positive solution of the f@m) if, and only if,
No,e1 < 1 < A$2(0) and if this is the case, then it is given b9, 6;,.,0,¢)). The following
result characterizes the linearized sligbof each of these semi-trivial states.

Proposition 3.1. Assumeo, 7] < A < A (0). Then,@5.0, 71, 0) is linearly asymptotically
stable if, and only if,

<27 (=cbp.o, ) — £'(0); (3.1)
linearly unstable if, and only if,

> 27 (—cbp.o, ) — £'(0); (3.2)
and linearly neutrally stable if

=27 (=cbp0.1) — ¢'(0). (3.3)

Similarly, if we assumédio g < u < Af(O), then (0, 6,047 is linearly asymptotically
stable if, and only if) < Af(—be[ﬂ,o,g]) — f7(0); linearly unstable if, and only ifp >
A (—bBy,,0,47) — f/(0) and linearly neutrally stable if

=27 (=bbju,0) — (0. (3.4)

Proof. The linearized stability of6}; 0, 71, 0) is given by the sign of the real parts of
the eigenvalues of the linearization of (1.2) @;.0,7],0), i.e., by the real parts of

the t’s for which the following linear problem admits a solutigh, k) < (W&’Z(Q) N
W22(2))2\{(0,0)}:

—Ah=xh+ f'Op.0, f)h + bO o, 1k + Th,

—Ak:/Lk+g/(0)k+c‘9[x,0,.f]k+fk. (3.5)
If k=0, then (3.5) becomes
—Ah = ()»+f/(9[x,0,.f]))h+rh. (3.6)

On the other hand, from the definition @, o, s/} we find from Theorem 2.2 that

6 6
A2 (_ f( [A,O,f])) _a=a? <_ SO0 )L) _o.

010,11 012011

The condition(G2) on f implies

f 0.1

0011
Thus, Lemma 2.1 implies

AL (= f @o.m) —2 >0, (3.7)

' Op0, ) <
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and hence, any eigenvalaef (3.5) satisfies
Rer > )\f (—f/(e[x’o,lf]) — )\) = )\f (—f,(e[A,O,f])) —x>0.

Thus, the eigenvalue with associated eigenfunctions of the ori®) has a positive real
part. Ifk # 0, thenr is an eigenvalue of A — g’(0) — 6y, 0, /] — n. Assuming (3.1) holds,
we see that

2 (—8' 0 =05 — 1) >0
and the real part of any eigenvalue-efA — g’(0) — ¢, 0, ;] — # Must be positive. Hence,

under condition (3.1) the real part of any eigenvalu# (3.5) is positive and therefore, the
state(d),.,0, 71, 0) is linearly asymptotically stable. Assuming (3.2) holds, we see that

11:= 2§ (—=¢'(0) — 0,51 — 1) =27 (—cOp0.) — €' (0) = <0
is an eigenvalue corresponding to a positive eigenfunctioné safthe second equation
of (3.5). Sincer; < 0, (3.7) implies

A7 (—=f 0. —r—11) = A (=f 6p.0.5)) —2—11>0,

and therefore, thanks to the strong maximuringple, the first equation of (3.5) with
T = 71 pOSSeEsses a unique solution:

h = (—A — f’(@[}h)o’f]) —A— tl)il(bg[k,o,f]é).

Therefore, under the condition (3.2), < 0 is an eigenvalue of (3.5) and hence the state
(0,0, 11, 0) is linearly unstable. Finally, if we assume (3.3) holds, it is easily seen that
71 = 0 is an eigenvalue of (3.5) and that any other eigenvalue has positive real part. There-
fore, under the condition (3.3) the std#g, o, 71, 0) is linearly neutrally stable.

The results concerning with the semi-trivial stédedy, o.,1) can be obtained similarly.
(Note thatr, b, and f are changed by, ¢, andg, respectively.) O

Proposition 3.1 implies that the curve (3.3) in the n)-plane is the curve of change of
stability of the semi-trivial positive solutio;,o, 7}, 0). Similarly, the curve (3.4) is the
curve of change of stability a0, 6;,.0,,1). The following result provides us with the global
behavior of these curves.

Proposition 3.2. The mapping- (1) defined by

F(L) =23 (—clpo.p) — &0), To. s <r<2r2(0), (3.8)
is continuous strictly decreasing and satisfies
lim FQ) = T70.,1 lim F(X)=—o0. (3.9
Mo, £ (041 PEVEL(0)

Similarly, the mappings (1) defined by

G(1) = A¥ (—bOlu.0g) — £ (0),  Togl <1 <A (0), (3.10)
is continuous strictly decreasing and satisfies
im G(u)= F[o_’f], lim G(u)=—oo0. (3.12)

wd To,g1 wtr(0)
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Proof. The continuity and monotonicity af (A) can be obtained from Theorem 2.2. The
first relation of (3.9) follows from (2.6). Now we prove the second relation of (3.9). Since
¢(0) > 0in £2, there exists a balB with B C £2 such that

¢r :=ming(0) > 0.
B

On the other hand, by Theorem 2.3, for edgh 1 < A < A$(0),

000,71 = ¢ F H(A{(0) —2) uniformly in B,
and hence, Lemma 2.1 implies

F() = 2§ (=cbp.0.1) — 8'(0) < A7 (0) = ¢'(0) — e F (A (0) — ).
Our conclusion follows from the fact

lim F 1AL - 1) = .
e (A1 )

The same argument shows the corresponding properti@g;,of. O

By Proposition 3.2, the curves of change of dtabof the semi-trivial positive solutions
meetat/jy.o), I1g,0)-

4. Theexistence of unbounded continua of coexistence states
In this section we provide a bifurcation result for the coexistence.

Theorem 4.1. Fix I7o, s} < » < A (0) and treatu as the bifurcation parameter. Then, the
point

(1, u,v) = (15 (=¢'(0) — cbpp.0.51), 620,51, O)

is the only bifurcation point to coexistence states from the semi-trivial $égte, 7}, 0).
Moreover, the maximal compongotosed and connectgdf coexistence states emanating
from (65,0, 71, 0) at . = F(), saycf:;,u,o) C R x (C§(£2))?, is unbounded.

Now, fixu < I'o,g) and treati € R as the bifurcation parameter. By PropositiGi,

there exists a uniquejo, s < A, < A3? (0) such thatu = F(,,). Then, the point
(A u,v) = (A, 0,071, 0)

is the only bifurcation point to coexistence states from the c@ygp, 71, 0). Moreover,
the maximal componer{tliosed and connecte¢df coexistence states emanating from
O.,0,71.0) @t A = Ay, sayEu u,00 C R x C3(82) x C3(£2), is unbounded.

Similarly, if we fixIjo ¢ < u < Af(O) and treati € R as the bifurcation parameter,
then the point

(e u,v) = (AL (= £/(0) — bByi,0,61). 0. O112,0.¢1)

is the only bifurcation point to coexistence states from the semitrivial $€a#,, o 41)
and the maximal componefdiosed and connectgdf coexistence states emanating from
(0,6},04) AtA =G (n), saYES o, C R x C5(£2) x C((£2), is unbounded.
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Finally, fix A < I7o, rj and treatu € R as the bifurcation parameter. By Propositi8i,
there exists a uniquéjo, 41 < ux < Af(O) such thats = G(u,). In this case, the point

(i, u,v) = (ua, 0,614,061

is the only bifurcation point to coexistence states from the c(0v&,, 0.¢)) and the max-
imal componen(closed and connectgdf coexistence states emanating frand;,, o0,,1)
atu = uy, Sayé‘(t’o o CR X C3(82) x C}(52), is unbounded.

Proof. Similar to the proof of [5, Theorem 5.1 ].0

5. Coexistenceregionsof (1.2)
We first show the following lemma.

Lemma 5.1. Assume thafl.2) possesses a coexistence state,(say). Then
220 — A=
M<— vy <

)

c b
whereu ; = maxg 1 andvy, = maxg v.

(5.1)

Proof. From (1.2) it is easily seen that
U=0p-bv.f1, V=0 —cugl
It follows from Lemma 2.1 that
Opr,—bv., £1 < O —bua, £1 = O[a+boyr 0, £1-
Similarly,
O, —cu,) < O, —cur, ) = Olptcun 0,g1-
Moreover, sinC&;.4pv,,,0, r1 = 4 > 0, we find from Theorem 2.2 that
To,f1 < »+ by < 2£(0).
Therefore,
A£(0) — 2

wm <
b

Similarly,
A2 — "
o
This completes the proof.O

upy <

Remark 5.2. It follows from Lemma 5.1 that if (1.2) possesses a coexistence state, then
A <A$(0) andp < A% (0).

Now we provide the following non-existence result.
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Theorem 5.3. The following assertions are true

(i) If Mo, < 1 < A§2(0), then there exist-oo < A, < A (0) such that(1.2) does not
admit a coexistence state provided- A..

(i) If No,s) < » < A§2(0), then there exist-oo < w, < A{?(0) such that(1.2) does not
admit a coexistence state provided> (4.

(iii)y For each A < Io ), there existsIog < u = (1) < A$(0) such thati >
Af(—bemm,o,g]) — f/(0) and (1.2) does not admit a coexistence stateuifA) <
uw < Af(O). Moreover,u(2) can be chosen continuousin

(iv) For each u < Ioy, there existsIfo s} < A = A(w) < A$(2) such thatu >
)\.f(—(,'e[)\(lu))o’f]) — ¢'(0) and(1.2)does not admit a coexistence state(ft) < A <
Af(O). Moreover () can be chosen to be continuousun

Proof. (i) Assume (1.2) possesses a coexistence giate, then
—Au=Au+ f(u)+ buv > ru+ f(u).
Thanks to Lemma 2.4,

u > 00, 11-
We also know from Lemma 5.1 that
MO —p
< —.
C
Thus

A$2(0) —
mé';\xe[k,o,f] < M

Theorem 2.3 implies that, as required in this theorem do exist. This completes the proof.
Part (ii) follows by symmetry.
(iii) Pick up A < I7o, ). It follows from Proposition 3.2 that there exisf$o ) <
ro(x) < A% (0) such that

A> A7 (= f/(0) — BB, 0,) foreachuo(h) < p < A§(0). (5.2)

We argue by contradiction assuming that there exists a sequence of coexistence states of
(1.2), say(ftn, tn, va), n > 1, such thap, > wo(r), n > 1, and limyyeo wn = 152 (0). Then
the second equation of (1.2) gives

—Avy = Uy + g(Un) + CltnVy > vy + g(Un)
and hence, is a strict positive supersolution of

—Aw = p,w+g(w) in £2, w=0 o0nds2.
Thus, thanks to Lemma 2.4 and Theorem 2.3,

Vn 2 Opp1.0.9) = F (AL (0) — 120) 9 (0). (5.3)
Let 21 CC £2 and¢; = minceg, $(0)(x). Theng, > 0 and

v > F 0L 0) = pn)pr in 21,
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On the other hand, we find from the first equation of (1.2) that

A= )‘f <_ f;”n) - bvn) < )‘iz (=bvy) < )‘fl(_bvn)
n

S )‘fl(o) —bF 080 — )L | —0o  asn — oo.

This contradiction shows that (1.2) does not admit a coexistence staie lfoge and
completes the proof.
Part (iv) follows by symmetry. O

Now we provide the following existence result.

Theorem 5.4. Assume

Moj1 <A <Af(0), p<Af(—chp.o. ) — &' (0) (5.4)
or

Mo < <AF0), A <if (=bbj.04) — f(0). (5.5)

Then(1.2) possesses a coexistence state.

Proof. We only show the first part of this theorem. The second part can be obtained
similarly. Fix A € (7o, 11 Af(O)) and considep as the main bifurcation parameter. By
Theorem 5.3, problem (1.2) does not admit a coexistence statexifr,. Moreover, by

Theorem 4.1 the continuurﬁ&u)o) of coexistence states emanating fr@é o, 71, 0)

at the value of the parameter = Af(—g’(O) — ¢Bn0,7) is unbounded and thanks
to Lemma 5.1 these coexistence states are boundelgar_?) X Cé(f)) uniformly on
compact subintervals gi. Therefore, (1.2) possesses a coexistence state forieach
A2 (=g (0) — ¢ 0, /1) = A (=0, 1) — &' (0). This completes the proof.0

Theorem 5.5.

(i) Assumer < Io ¢} and u < p;, whereu, is the unique value of. satisfyinga =
Af (—bOpu,0,¢) — f'(0). Then(1.2) possesses a coexistence state.

(i) Assumeu < Io,) and A < A,, wherea,, is the unique value of satisfyingu =
Af (—chp.0, /1) — &'(0). Then(1.2) possesses a coexistence state.

Proof. We only show the first case. The second case follows by symmetry. EiXjo, 7|
and considep as the main bifurcation parameter. By Theorem 5.3(iii), there exists
(M) € (Io,g1, A(0)) such thath > A (= f/(0) — bO.).0.61) = M2 (=bOlu).0.1) —
f/(0) and (1.2) does not admit a coexistence stated@n < u < Af (0).

Moreover, by Theorem 4.1 the continumﬁm!o_’v) of coexistence states emanating from
(0, 6.,0,¢7) at uy is unbounded, wherg, is the unique value oft > 7o g for which
A= Af(—f/(O) — bOju,0,¢1)- Hence, we conclude from Lemma 5.1 that (1.2) possesses a
coexistence state for eagh< u,. This completes the proof of part (i) and completes the
proof of this theorem. O
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6. Structure of the coexistence states

In this section we analyze the structure of the set’sf(respectivelyu’s) for which
(1.2) possesses a coexistence state, denoted(bgspectivelyM).

Theorem 6.1. The following assertions are true

(i) Assumeljoq < p < A{(0). Then, eitherA = (—oco, A2 (=b6y,.0.4) — £'(0)), Or
there exists\? (—b0j,.,0,¢1) — f/(0) < A* < A (£2) such thatA = (—oo, 1*].

(i) Assumelfo s} < A < A (0). Then, eitherM = (—oo, A (—cOp.0, /1) — £'(0)), or
there exists\? (—cfs.0, /1) — &'(0) < u* < A§2(0) such thatM = (—oo0, u*].

Proof. We will only prove the first case. The second case follows by symmetry. Assume
To,e1 < 1 < A§2(0). Then, thanks to Theorem 5.4,

(=00, A (—=bOl.0.01) — f/(0) C A. (6.1)
Now, suppose that (1.2) possesses a coexistencqstaig) for some

Ao > A5 (—bBi0,4) — f(0).
Then it follows from Theorem 5.3 thafy < A.. Moreover,(ug, vo) is a supersolution of
(1.2) for each

A e (A (=04 — £/(0), ho]- (6.2)

On the other hand, if we defirggx) > O with ||¢ || = 1 is the eigenfunction corresponding
to Af(—f/(O) — bbj,.,0,41), by the condition onf, we can choose arP > 0 such that for
O<e<éY,

1
! ff) <5(- 22 (= F'(0) = bOu0.01)). (6.3)

(Note thath$? (= f(0) — béy,..0,e) = A2 (—=bOl..0.) — f'(0).) Thus,

0< f'(0)—

—A(e0) =25 (= f(0) = biy.0.1) (€0) + f'(O)(£€) + DByy.0.41(£7)
< AEg) + f(&8) +bO.0.4(e8).
If we chooseu nearrjo ¢ ande sufficiently small, we easily know that
e¢ <uo, 0111,0,¢1 < Vo N £2.

Such couple provides us with a subsolutidr{ln2). Thanks to [5, Theorem 8.7], for each
A satisfying (6.3) problem (1.2) possesses a coexistence state. Therefore, we see that (1.2)
possesses a coexistence staterfeatisfying (6.2).
Now we show that (1.2) possesses a coexistence sta;i&oﬁfdrlQ (—f"(0) — bO,,0,6))-
We fix u and treat. as the main bifurcation parameter. By Theorem 4.1,

(e u,v) = (AL (= £/(0) — bByi,0,61). 0. O112,0.¢1)
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is the only bifurcation point to coexistence states from the semi-trivial carye) =

(0, 6,.,0,¢1) and the maximal component (closed and connected) of coexistence states ema-
nating from(0, 6,.,0,¢)) atA = A (— £/ (0) — bbj,.0,¢1), denoted bf&’o’v), is unbounded

inR x (Cé([?))z. Moreover, by the local bifurcation theorem of [4], there exist a neighbor-
hood\/ :=A[(Af(—f/(0) — bO1..0,61): 0, 0,0,¢1) OF (W52 (= £/(0) — bO1,0,61). O, O111,0,1)

in R x (C3(£2))?, areal numbeso > 0, and an analytic mapping

(A, u,v): (—s0,50) = R x Cé(f)) X C(l)(S_Z)
such that

(2(0), u(0), v(0)) = (AF (= f(0) — b6}.0.1): O, H1.0.1)
and

NN Sa,oﬁv) ={(r(s), u(s), v(s)): s > 0}.
Indeed, the unique coexistence states of (1.2) close to the bifurcation point are those lying
on the curve(A(s), u(s), v(s)). SinceA(s) is analytic,so can be reduced, if necessary, so
that eitheri(s) < A (— £/(0) — bBj,,0,4)) for eachs € (0, s0), or A(s) = A% (— f(0) —
bOj,.,0,¢7) for eachs e (0, s0), or A(s) > A2 (—f/(0) — bj,.0,¢)) for eachs € (0, so). If
A(s) = Af(—f/(O) — bBu,0,¢)) for eachs € (0, so) the proof is completed.

Assume thak(s) < Af(—f’(O) — bOju,0,¢)) for eachs € (0, so). Since (1.2) possesses

a coexistence state for eaghe (A{Z(—f’(O) — b,.,0,41), A0] and thanks to Lemma 5.1
uniform a priori bounds for the coexistence states of (1.2) are available in the range
AE (Af(—f’(O) — bBu,0,1), ol, for any sequence of coexistence states of (1.2), say
(o iy V), With Xy > A2 (= £7(0) — BBy 0,¢1) @andi, | AL (— f/(0) — bBju,0,41), We can
choose a convergent subsequence, relabeled fiych that

lim (up, vy) = @*, v")
n—o0
for some non-negative solution cougle’, v*) of (1.2) with A = Af(—f’(O) — bO0,61)-
By the uniqueness obtained from the application of [4],
(Ans U, Vn) ¢N
for n sufficiently large. Hence,
(I/l*, U*) ?é (Oa G[M,O,g])-

Now we show thatu*, v*) # (0, 0). To show this we argue by contradiction. Indeed, if
u* =v* =0, then the new sequenc@gs=u, /||u,|lcc @aNAT,;, = v, /||vy|lco Satisfy

— Aty = Aglly + f(un)ﬁn—i-bﬁnvn, x €S2,
n
— AV, = uv, + g(vn)ﬁn—i—cunﬁn, x €8,
n
U, =0,=0, xe€082 (6.4)

and, sincqii,, v,) is uniformly bounded in.>°(£2) x L°(£2), the regularity of— A im-
plies that there exists a subsequence (still denotedihyv,)), such thati, — w and
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U, — z, asn — oo, for somew, z € Cé(f)). Necessarilyw > 0, z > 0 and passing to the
limit in (6.4), we find that

—Aw =AF (= f'(0) = b 00w + fOw, xe8

—Az=pz+¢0)z, x€£,

w=z=0, xedf2. (6.5)
By the uniqueness of the principal eigenvalue,

w=1T70,4]

and this is impossible, since we are assuming o ,].
If u* > 0 andv* =0, then we take the sequengs,, v,) and the same compactness
argument as above shows that

p=17(-£'0 —cu*) < Iog),

which is impossible either. Thereforg,*, v*) must be a coexistence state.

Finally, assume that(s) > A{2(— £'(0) — b6y,.,0,¢)) for eachs € (0, so) and let€;" de-
note the maximal subcontinuum 6{&_0!”) outside. It is clear thatf;" is unbounded.
Thanks to Lemma 5.1 uniform a priori bounds on compact intervald efe avail-
able. Moreover, thanks to Theorem 5.3(i), (1.2) does not admit a coexistence state if
A > Ay Therefore,é‘jr must go backwards and (1.2) possesses a coexistence state for
A=A (= £(0) — bOju 0,41 as well.

The analysis above implies that

(—oo, A0l C A.
Let

A* =sup{io > AL (= f'(0) — bbj,.0,¢1) for which (1.2) has a coexistence state
We have that—oo, A*) C A and that

AL (= (0) — BBy 0,1) < A* < e (6.6)

Due to the existence of a priori bounds, there exists a sequence of positive solutions of
(1.2), say(Apn, uy, vy), n > 1, such that

A A

lim (A, up, vp) = (A*, i, ),
n—00

for some non-negative solutiqi, v) of (1.2) with A = A*. Necessarily: > 0 andv > 0.
To show this we argue by contradiction. Indeedg i v = 0, then the new sequences
Un =un/|unllco aNAD, = v, /]|Vn |0 SaLiSTY

~ ~ Un) ~
—Ally, = Ayt + At n)un+bunvn, x € $2,
Un
~ g(vy) ,

_Aﬁnzﬂviz+ Oy + cutnly, X €82,

Un

fiy=0,=0, xe€df (6.7)
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and, sincq(ii,, v,) is uniformly bounded in.>°(£2) x L°°(£2), the regularity of— A im-
plies that there exists a subsequence (still denotedipy,)), such thati, — w and
U, — Z, asn — oo, for somew, 7 € C&(.Q). Necessarilyw > 0, z > 0 and passing to the
limit in (6.7), we find that

—AD =10+ O, xes,

—Az=pz+¢ 03z, xe£,

w=2z=0, x€df. (6.8)
By the uniqueness of the principal eigenvalue,

M=Toys,  w=Tog:

and this is impossible, since we are assuming ghat o .
If # >0 ando =0, then we take the sequenge,, v,) and the same compactness
argument as above shows thiat 6y, o, r] and that

n=27 (=& 0 — cs0.11) < Nogs

which is impossible either. Finally, if = 0 andd > 0, thend =6, 0, and
A= )‘iz (—f’(O) - be[M,O,g])’

which contradicts (6.6). Thereforg,> 0,9 > 0 and
A= (—o00,A™].

This completes the proof.O
Theorem 6.2. The following assertions are true

(i) Assumexr < Ijg, 7). Then, eitherM = (—oo, u;) or M = (—oo, u*] for some
w* = py, where Ig g < pa < Af(O) is the unique value oft satisfying A =
2 (=bByy0.6) — f(0).

(i) Assumeu < I7o,¢. Then, eitherd = (—oo, 1) or A = (—o0, A*] for somer*™ > 1,
wherelo /) < Ay < A (0) is the unique value of satisfyingu = A% (—cfj5.0, 1)) —
g'(0).

Proof. We only prove the first case. The second case follows by symmetry. Assume
Io, 7). By Theorem 5.5,
(=00, ua) C M. (6.9)

Now, suppose that (1.2) possesses a coexistence(stat®) for someug > ;. Then,
we easily know from Remark 5.2 thalp < Af(O). We now show that (1.2) possesses a
coexistence state for eaghe (u;, uol. Assume that

M < 1 < HO-
Then,
A2(0) >4 > AP (= /(0 — bOy041),
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and hence,
O ~b6y,.0,41./1 > O-

(Note thauf(—f/(O) — bOu0e) = F[fbe[uto’g])f].) Moreover, since. < Ig, r], we have

wx > Io,g1 and hence, for each € (uy, ol we find 6y, o,¢] > 0. Now, observe that the
couple(@p.,—po;,, 4. £1- O11,0,¢1) Provides us with a subsolution of (1.2), and that, thanks to
Lemma 2.4, for any coexistence stéte v) of (1.2) we have

(Ot —b01y0.61. 11 O110.0.61) < (1, V).

In particular,

(010, =b610 0,01, £15 Ol10,0.61) < (w0, v0).

Thus, thanks again to Lemma 2.4, for each (u«;, no) we find that

(B0, ~b61,.0.01. 11+ 0112.0.81) < (012,561 0,01, 11+ Ol110,0,1) < (0. vO)

and therefore, it follows from [5, Theorem 8.7] that (1.2) possesses a coexistence state for
eachu € (ua, pol.

To complete the proof it suffices to show that (1.2) possesses a coexistence state for
u = ;. We can show this fact by arguments similar to those in the proof of the fact that
(1.2) possesses a coexistence statekfesrkf(—f’(O) — bOu,0,¢7) in Theorem 6.1. We
omit the details here. Thus

(—00, ol C M. (6.10)

Let u* denote the supremum of the setuaf > w; for which (1.2) possesses a coexistence
state for eaclu € (—oo, uo]. By Remark 5.2u* < Af(O). Moreoveru™ > u; and due to

the existence of a priori bounds, there exists a sequence of positive solutions of (1.2), say
(fn, Un, vy), n > 1, such that

lim (MUn, Un, Vp) = (I’L*a ”*a U*),
n—00

for some non-negative solutign*, v*) of (1.2) withu = u*. The same argument as in the
proof of Theorem 6.1 shows that > 0 andv* > 0. Therefore,

M = (—o0, u*].
This completes the proof.O
Now we obtain the following multiplicity result.
Theorem 6.3. The following assertions are true
(i) Assumer < Ifo, s; and M = (—oo, u*] with u* > u;. Then(1.2) possesses at least
two coexistence states for eaghe (u;, 1*).

i) Assumeu < I7g¢1 and A = (—oo, A*]with A* > A ,. Then(1.2)possesses at least two
[0,g] © p
coexistence states for eakle (A, A*).
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Proof. To prove this result we use the fixed point index in cones. It suffices to prove
Theorem 6.3(i), since (ii) follows by symmetry. The proof of Theorem 6.2, under the
assumptions of Theorem 6.3, [5, Theorem 8.7] guarantees the existence of a minimal co-
existence state, which will be denoted by, , v,). Suppose not, there are a sequence of
coexistence states which bifurcate from (0,0) or some of the semitrivial positive solutions.
This is impossible by the proof of Theorem 6.2. We now show that (1.2) fits into the ab-
stract setting of [1]. Fixx < u,, 8 > 0 and consider := [«, u* + B]. Since we have
uniform a priori bounds for the non-negative solutions of (1.2), there eXists0 such

that

f(u)—bv<A+K, —@—cu<,u,+l(,
u v

for eachu € I and any non-negative solutiam, v) of (1.2). Lete denote the unique
solution of

—Ae+Ke=1 in$2, e=0 o0nods.

We havee(x) > 0 for eachx € £2 andd,e(x) < 0 for eachx € 052, wheren stands for the
outward unit normal vector od\2. Let C, (£2) denote the ordered Banach space consisting
of all functionsu € C(£2) for which there exists a positive constant 0 such that-xe <

u < ke, endowed with the norm

lulle :=inf{x > 0: —ke <u < ke}

and ordered by its cone of positive functios, Then, the operators
K Ce(82) X Co(2) — Co(82) x Co(£2)

defined by

Ko vy = (AT KO Kt [ @) +buv)
T\ (A+ K7 (e + K)v + g(v) + cuv]

for eachu € I, are compact and strongly order preserving. Moreover, the solutions of (1.2)
are the fixed points ok,,. Let B, denote the unit ball o€, (£22) x C.(£2) and, for each

p >0, P, the positive part op B.. Since by Lemma 5.1 we have uniform a priori bounds
for the non-negative solutions of (1.2), the fixed point indeXigfin P, makes sense for
sufficiently largep. Moreover, we have the following result.

Lemma 6.4. Assumeu € (ux, u* + B1. Then(0,0) and (0, 6,01 are isolated fixed
points ofK,, in P? and

i(Ku,(0,0) =i(Kp. (0,6,047)) =0. (6.11)
Moreover,
i(Kyu, Py) =0, (6.12)

provided thatp is sufficiently large.

Proof. Sincep > uy, (0, 6j.,0,¢)) is linearly unstable by Proposition 3.1 in Section 3, and
S0i(ICu, (0, 014,0,01)) = 0 (see [7]). On the other hand, it follows from [1, Lemma 13.1(ii)]
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thati (K., (0, 0)) = 0 and therefore (6.11) holds. Relation (6.12) follows by homotopy in-
variance, taking into account that (0,0) aild;,, 0,,1) are the only non-negative solutions
of (1.2) foru € (u*, u* + B]. This completes the proof.O

To complete the proof of Theorem 6.3, we need to compute the fixed point index of the
minimal solution(«,, v,) of (1.2). The proof is similar to that of [5, Theorem 8.10]. We
are only to sketch it. Thanks to [1, Proposition 20(4],, v,.) is weakly stable and so

A (L) =0,

where
-A 0
L= ( . _A> — A, (6.13)
and
A+ f(uu) + by buy,
A, = . .14
® < cvy w+ g () +cuy (6.14)

If Af (L£,) > 0, the same argument as in the proof of [5, Theorem 8.10] completes the
proof of Theorem 6.3.

If Af(ﬁu) =0, it follows from of [5, Lemma 8.13] that there exists- 0 and a differ-
entiable mappingyu, u, v) : (—¢, &) — R x P2 which is strictly increasing in such that
(1 (0), u(0), v(0)) = (u, uy, vy) and for eachy € (—¢, &), (u(s), u(s), v(s)) is a coexis-
tence state of (1.2). Moreover,

sgnu’(s) = sgmi? (Ly),

where
—-A 0
‘CS = ( O _A) — ASa
where
A — (x + f'(u(s)) + bu(s) bu(s) )
P cv(s) 1(s) + &' ((s)) +cu(s) )

Arguing as in the proof of [5, Theorem 8.10], we find that
u(s) <pu Vse(—e0).
Thus, two different situations may occur foe (0, ¢):

Case (a). If u(s) < u for all s € (0,¢), then the same argument as in the proof of
[5, Theorem 8.10] applies to complete the proof of this case.

Case (b). If u(s) > u for all s € (0, ¢), then there exists; > 0 such thaiu/(s1) > 0 and
hence,

i (Kpugsp- (u(s1), v(s1))) = 1.
Now, setting

pri= (G vsn)|, =8, p2i= |G )|, 8.
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we know that (1.2) does not admit a coexistence state in

[1£(s1). 11 (s1) 4 8] x (P \ Ppy).

Moreover, by the uniqueness of [5, Lemma 8.13(#)}> O can be chosen so that (1.2)
does not have a coexistence stat@jn\ P, for i = 11(s1) + 6 either. Thus, the homotopy
invariance implies

i(’CM(Sl)v Ppl\P_pz) =0.
Now, for § > 0 sufficiently small, setting

p = | (u(s), v(sD) |, +8
we also know that

i (Kt Po\Pp) = 1.

Since the monotonicity ofu(s), v(s)) and the uniqueness given by [5, Lemma 8.13(ii)]
imply that (1.2) does not admit a coexistence state on

(1, n(s1)] X 3(Pp\Ppy).
then

i(Ku, (up,vp)) =1

Therefore, our conclusion is obtained by using Lemma 6.4. This completes the proof of
Theorem 6.3. O

Theorem 6.5. The following assertions are true

(i) Assumelfo, < < A£(0) and A = (—oo, A*] with A (=bbj0e) — f(0) <
A* < Ifo s Then (1.2) possesses at least two coexistence states for @aeh
(AF (=bBj.0.5) — f(0), 1%).

(i) Assumelijo, ] < A < Af (0) and M = (—o0, u*] with Af(—ce[k,o,ﬂ) - g0 <
w* < INog). Then(1.2) possesses at least two coexistence states for gaeh
(AF (—cbp.0.0). 1) = 8'(0).

Proof. The proof of this theorem is similar to that of Theorem 6.3. Deffjesimilar

to KC,, as above. For case (i), we need the condifidn< I, s to guarantee that0, 0)

and(0, 6,,0,¢1) are the only non-negative solutions of (1.2) foe (A*, I'o, r)). Moreover,

(0, 6.,0,¢7) is linearly unstable fokf(—be[u,o,.f]) — f/(0) < A < A* by Proposition 3.1.
Thus, a similar lemmato Lemma 6.4 can be obtained. The rest of the proof of Theorem 6.5
is a little variant of the proof of [5, Theorem 8.14]0

Remark 6.6. The assumptior* < Io s} in Theorem 6.5 is reasonable since we can
see that there exis{$ < Af(O), which depends upoifijo, r1, such that this assumption
holds foru > 1. Indeed, it follows from the proof of Theorem 5.3(i) that if (1.2) pos-
sesses a coexistence state, then @@ o0 < (A{Z (0) — A)/c. Choosinggi such that
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maxg fj7.0.¢) = (A2 (0) — Io, 1) /c (the existence of sucfi can be known from Theo-
rem 2.3), we can show that' < I7o s providedu > (. On the contrary, there i6., u)
with A > Io, 71, # > ft such that (1.2) has a coexistence state). Then

Maxv > Maxti o, = (A1 (0 — o, f1) /.

On the other hand,
maxv < (A7 —2)/c < (A (0 — Io.p1) /.

This is impossible. Similarly, the assumptipri < 7o, 4 in Theorem 6.5 is also reason-
able.
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