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Abstract

In this paper, we investigate the existence and multiplicity of positive solutions for nonlinea
tional differential equation boundary value problem:

Dα
0+u(t) + f

(
t, u(t)

) = 0, 0< t < 1,

u(0) = u(1) = 0,

where 1< α � 2 is a real number,Dα
0+ is the standard Riemann–Liouville differentiation, a

f : [0,1] × [0,∞) → [0,∞) is continuous. By means of some fixed-point theorems on cone,
existence and multiplicity results of positive solutions are obtained. The proofs are based u
reduction of problem considered to the equivalent Fredholm integral equation of second kind
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1. Introduction

Fractional differential equations have been of great interest recently. It is cause
by the intensive development of the theory of fractional calculus itself and by the a
cations of such constructions in various sciences such as physics, mechanics, ch
engineering, etc. For details, see [4,6–8,12,14] and references therein.

It should be noted that most of papers and books on fractional calculus are devo
the solvability of linear initial fractional differential equations in terms of special funct
[11,14,15]. Recently, there are some papers deal with the existence and multipli
solution (or positive solution) of nonlinear initial fractional differential equation by the
of techniques of nonlinear analysis (fixed-point theorems, Leray–Shauder theory, et
[1–3,5,16,17].

However, there are few papers consider the Dirichlet-type problem for linear ord
differential equations of fractional order, see [8,13]. No contributions exist, as far a
know, concerning the existence and multiplicity of positive solutions of the following p
lem:

Dα
0+u(t) + f

(
t, u(t)

) = 0, 0< t < 1, (1.1)

u(0) = u(1) = 0, (1.2)

where 1< α � 2 is a real number,Dα
0+ is the standard Riemann–Liouville differentiatio

andf : [0,1] × [0,∞) → [0,∞) is continuous.
In this paper, we firstly derive the corresponding Green’s function. Consequently

lem (1.1), (1.2) is deduced to a equivalent Fredholm integral equation of the second
Finally, by the means of some fixed-point theorems, the existence and multiplicity o
itive solutions are obtained.

2. Background materials and preliminaries

For the convenience of the reader, we present here the necessary definitions fro
tional calculus theory. These definitions can be found in the recent literature.

Definition 2.1. The fractional integral of orderα > 0 of a functiony : (0,∞) → R is given
by

Iα
0+y(t) = 1

Γ (α)

t∫
0

(t − s)α−1y(s) ds

provided the right side is pointwise defined on(0,∞).

Definition 2.2. The fractional derivative of orderα > 0 of a continuous function
y : (0,∞) → R is given by

Dα
0+y(t) = 1

Γ (n − α)

(
d

dt

)n
t∫

y(s)

(t − s)α−n+1
ds,
0
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wheren = [α] + 1, provided that the right side is pointwise defined on(0,∞).

Remark 2.1. As a basic example, we quote forλ > −1,

Dα
0+tλ = Γ (λ + 1)

Γ (λ − α + 1)
tλ−α,

giving in particularDα
0+tα−m = 0,m = 1,2, . . . ,N , whereN is the smallest integer great

than or equal toα.

In fact, forλ > −1,

Dα
0+tλ = 1

Γ (n − α)

(
d

dt

)n
t∫

0

sλ

(t − s)α−n+1
ds

= 1

Γ (n − α)

(
d

dt

)n

tn−α+λ

1∫
0

zλ(1− z)n−α−1 dz

= Γ (λ + 1)

Γ (λ + 1+ n − α)

(
d

dt

)n

tn−α+λ.

So,

Dα
0+tα−m = Γ (α − m + 1)

Γ (n − m + 1)

(
d

dt

)n

tn−m = 0, for m = 1,2, . . . ,N.

From Definition 2.2 and Remark 2.1, we then obtain

Lemma 2.1. Letα > 0. If we assumeu ∈ C(0,1) ∩ L(0,1), then the fractional deferentia
equation

Dα
0+u(t) = 0

hasu(t) = C1t
α−1+C2t

α−2+· · ·+CNtα−N , Ci ∈ R, i = 1,2, . . . ,N , as unique solutions

As Dα
0+Iα

0+u = u for all u ∈ C(0,1) ∩ L(0,1). From Lemma 2.1 we deduce the follow
ing law of composition.

Lemma 2.2. Assume thatu ∈ C(0,1) ∩ L(0,1) with a fractional derivative of orderα > 0
that belongs toC(0,1) ∩ L(0,1). Then

Iα
0+Dα

0+u(t) = u(t) + C1t
α−1 + C2t

α−2 + · · · + CNtα−N,

for someCi ∈ R, i = 1,2, . . . ,N .

In the following, we present the Green’s function of fractional differential equa
boundary value problem.
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Lemma 2.3. Giveny ∈ C[0,1] and1< α � 2, the unique solution of

Dα
0+u(t) + y(t) = 0, 0< t < 1, (2.1)

u(0) = u(1) = 0, (2.2)

is

u(t) =
1∫

0

G(t, s)y(s) ds,

where

G(t, s) =



[t (1−s)]α−1−(t−s)α−1

Γ (α)
, 0� s � t � 1,

[t (1−s)]α−1

Γ (α)
, 0� t � s � 1.

(2.3)

Proof. We may apply Lemma 2.2 to reduce Eq. (2.1) to an equivalent integral equat

u(t) = Iα
0+y(t) + C1t

α−1 + C2t
α−2,

for someC1,C2 ∈ R. Consequently, the general solution of Eq. (2.1) is

u(t) = −
t∫

0

(t − s)α−1

Γ (α)
y(s) ds + C1t

α−1 + C2t
α−2.

By (2.2), there areC2 = 0, C1 = ∫ 1
0 (1 − s)α−1y(s) ds/Γ (α). Therefore, the unique solu

tion of problem (2.1), (2.2) is

u(t) = −
t∫

0

(t − s)α−1

Γ (α)
y(s) ds +

1∫
0

(1− s)α−1tα−1

Γ (α)
y(s) ds

=
t∫

0

[t (1− s)]α−1 − (t − s)α−1

Γ (α)
y(s) ds +

1∫
t

[t (1− s)]α−1

Γ (α)
y(s) ds

=
1∫

0

G(t, s)y(s) ds.

The proof is complete. �
Lemma 2.4. The functionG(t, s) defined by Eq.(2.3)satisfies the following conditions:

(1) G(t, s) > 0, for t, s ∈ (0,1);
(2) There exists a positive functionγ ∈ C(0,1) such that

min
1/4�t�3/4

G(t, s) � γ (s) max
0�t�1

G(t, s) = γ (s)G(s, s), for 0< s < 1. (2.4)



Z. Bai, H. Lü / J. Math. Anal. Appl. 311 (2005) 495–505 499

,

e
e
t have

on a
Proof. Observing the expression ofG(t, s), it is clear thatG(t, s) > 0 for s, t ∈ (0,1). In
the following, we consider the existence ofγ (s). Firstly, for givens ∈ (0,1), G(t, s) is de-
creasing with respect tot for s � t and increasing with respect tot for t � s. Consequently
setting

g1(t, s) = [t (1− s)]α−1 − (t − s)α−1

Γ (α)
, g2(t, s) = [t (1− s)]α−1

Γ (α)
,

one has

min
1/4�t�3/4

G(t, s) =




g1(
3
4, s), s ∈ (0,1/4],

min{g1(
3
4, s), g2(

1
4, s)}, s ∈ [1/4,3/4],

g2(
1
4, s), s ∈ [3/4,1),

=
{

g1(
3
4, s), s ∈ (0, r],

g2(
1
4, s), s ∈ [r,1),

=
{

1
Γ (α)

{[3
4(1− s)]α−1 − (3

4 − s)α−1}, s ∈ (0, r],
1

Γ (α)
1

4α−1 (1− s)α−1, s ∈ [r,1),

where 1/4< r < 3/4 is the unique solution of the equation[
3

4
(1− s)

]α−1

−
(

3

4
− s

)α−1

= 1

4α−1
(1− s)α−1.

Specially,r = 0.5 if α = 2; r → 0.5 asα → 2 andr → 0.75 asα → 1.
Secondly, with the use of the monotonicity ofG(t, s), we have

max
0�t�1

G(t, s) = G(s, s) = 1

Γ (α)

[
s(1− s)

]α−1
, s ∈ (0,1).

Thus, setting

γ (s) =



[ 3
4 (1−s)]α−1−( 3

4−s)α−1

[s(1−s)]α−1 , s ∈ (0, r],
1

(4s)α−1 , s ∈ [r,1),

the proof is complete. �
Remark 2.2. Clearly, γ (s) → 0 whens → 0 unless thatα = 2 (inf0<s<1 γ (s) = 1/4 if
α = 2). Consequently, we cannot acquire a positive constantγ take instead of the rol
of positive functionγ (s) with 1 < α < 2 in (2.4). In our opinion, it is the key that th
results obtained for fractional differential equations in this paper are weaker than tha
obtained for integer-order differential equations.

Definition 2.3. The mapθ is said to be a nonnegative continuous concave functional
coneP of a real Banach spaceE provided thatθ :P → [0,∞) is continuous and

θ
(
tx + (1− t)y

)
� tθ(x) + (1− t)θ(y)

for all x, y ∈ P and 0� t � 1.
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The following fixed-point theorems are fundamental in the proofs of our main resu

Lemma 2.5 [9]. LetE be a Banach space,P ⊆ E a cone, andΩ1,Ω2 two bounded open
balls ofE centered at the origin with̄Ω1 ⊂ Ω2. Suppose thatA :P ∩ (Ω̄2 \ Ω1) → P is a
completely continuous operator such that either

(i) ‖Ax‖ � ‖x‖, x ∈ P ∩ ∂Ω1 and‖Ax‖ � ‖x‖, x ∈ P ∩ ∂Ω2, or
(ii) ‖Ax‖ � ‖x‖, x ∈ P ∩ ∂Ω1 and‖Ax‖ � ‖x‖, x ∈ P ∩ ∂Ω2

holds. ThenA has a fixed point inP ∩ (Ω̄2 \ Ω1).

Lemma 2.6 [10]. LetP be a cone in a real Banach spaceE, Pc = {x ∈ P | ‖x‖ � c}, θ a
nonnegative continuous concave functional onP such thatθ(x) � ‖x‖, for all x ∈ P̄c, and
P(θ, b, d) = {x ∈ P | b � θ(x), ‖x‖ � d}. SupposeA : P̄c → P̄c is completely continuou
and there exist constants0< a < b < d � c such that

(C1) {x ∈ P(θ, b, d) | θ(x) > b} 	= ∅ andθ(Ax) > b for x ∈ P(θ, b, d);
(C2) ‖Ax‖ < a for x � a;
(C3) θ(Ax) > b for x ∈ P(θ, b, c) with ‖Ax‖ > d .

ThenA has at least three fixed pointsx1, x2, x3 with

‖x1‖ < a, b < θ(x2), a < ‖x3‖ with θ(x3) < b.

Remark 2.3. If there holdsd = c, then condition (C1) of Lemma 2.6 implies conditio
(C3) of Lemma 2.6.

3. Main results

In this section, we impose growth conditions onf which allow us to apply Lemmas 2.
and 2.6 to establish some results of existence and multiplicity of positive solution
problem (1.1), (1.2).

Let E = C[0,1] be endowed with the orderingu � v if u(t) � v(t) for all t ∈ [0,1],
and the maximum norm,|u| = max0�t�1 |u(t)|. Define the coneP ⊂ E by

P = {
u ∈ E | u(t) � 0

}
.

Let the nonnegative continuous concave functionalθ on the coneP be defined by

θ(u) = min
1/4�t�3/4

∣∣u(t)
∣∣.

Lemma 3.1. LetT :P → E be the operator defined by

T u(t) :=
1∫

0

G(t, s)f
(
s, u(s)

)
ds,

thenT :P → P is completely continuous.
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Proof. The operatorT :P → P is continuous in view of nonnegativeness and contin
of G(t, s) andf (t, u).

Let Ω ⊂ P be bounded, i.e., there exists a positive constantM > 0 such that‖u‖ � M ,
for all u ∈ Ω . Let L = max0�t�1,0�u�M |f (t, u)| + 1, then, foru ∈ Ω , we have

∣∣T u(t)
∣∣ �

1∫
0

G(t, s)f
(
s, u(s)

)
ds � L

1∫
0

G(s, s) ds.

Hence,T (Ω) is bounded.
On the other hand, givenε > 0, setting

δ = 1

2

(
Γ (α)ε

M

) 1
α−1

,

then, for eachu ∈ Ω , t1, t2 ∈ [0,1], t1 < t2, andt2 − t1 < δ, one has|T u(t2)−T u(t1)| < ε.
That is to say,T (Ω) is equicontinuity.

In fact,∣∣T u(t2) − T u(t1)
∣∣

=
∣∣∣∣∣

1∫
0

G(t2, s)f
(
s, u(s)

)
ds −

1∫
0

G(t1, s)f
(
s, u(s)

)
ds

∣∣∣∣∣
=

t1∫
0

[
G(t2, s) − G(t1, s)

]
f

(
s, u(s)

)
ds +

1∫
t2

[
G(t2, s) − G(t1, s)

]
f

(
s, u(s)

)
ds

+
t2∫

t1

[
G(t2, s) − G(t1, s)

]
f

(
s, u(s)

)
ds

<
M

Γ (α)

[ t1∫
0

(1− s)α−1(tα−1
2 − tα−1

1

)
ds

+
1∫

t2

(1− s)α−1(tα−1
2 − tα−1

1

)
ds +

t2∫
t1

(1− s)α−1(tα−1
2 − tα−1

1

)
ds

]

<
M

Γ (α)

(
tα−1
2 − tα−1

1

)
.

In the following, we divide the proof into two cases.
Case1. δ � t1 < t2 < 1.∣∣T u(t2) − T u(t1)

∣∣ <
M

Γ (α)

(
tα−1
2 − tα−1

1

)
� M

Γ (α)

α − 1

δ2−α
(t2 − t1)

� M
(α − 1)δα−1 � ε.
Γ (α)
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Case2. 0� t1 < δ, t2 < 2δ.∣∣T u(t2) − T u(t1)
∣∣ <

M

Γ (α)

(
tα−1
2 − tα−1

1

)
� M

Γ (α)
tα−1
2 <

M

Γ (α)
(2δ)α−1 � ε.

By the means of the Arzela–Ascoli theorem, we haveT :P → P is completely continuous
The proof is complete. �

Denote

M =
( 1∫

0

G(s, s) ds

)−1

, N =
( 3/4∫

1/4

γ (s)G(s, s) ds

)−1

.

Theorem 3.1. Let f (t, u) is continuous on[0,1] × [0,∞). Assume that there exist tw
positive constantsr2 > r1 > 0 such that

(H1) f (t, u) � Mr2, for (t, u) ∈ [0,1] × [0, r2];
(H2) f (t, u) � Nr1, for (t, u) ∈ [0,1] × [0, r1].

Then problem(1.1), (1.2)has at least one positive solutionu such thatr1 � ‖u‖ � r2.

Proof. By Lemmas 2.3 and 3.1, we knowT :P → P is completely continuous and pro
lem (1.1), (1.2) has a solutionu = u(t) if and only ifu solves the operator equationu = T u.
In order to apply Lemma 2.5, we separate the proof into the following two steps.

Step1. Let Ω2 := {u ∈ P | ‖u‖ < r2}. For u ∈ ∂Ω2, we have 0� u(t) � r2 for all
t ∈ [0,1]. It follows from (H1) that fort ∈ [0,1],

‖T u‖ = max
0�t�1

1∫
0

G(t, s)f
(
s, u(s)

)
ds � Mr2

1∫
0

G(s, s) ds = r2 = ‖u‖.

Step2. Let Ω1 := {u ∈ P | ‖u‖ < r1}. For u ∈ ∂Ω1, we have 0� u(t) � r1 for all
t ∈ [0,1]. By assumption (H2), fort ∈ [1/4,3/4], there is

T u(t) =
1∫

0

G(t, s)f
(
s, u(s)

)
ds �

1∫
0

γ (s)G(s, s)f
(
s, u(s)

)
ds

� Nr1

3/4∫
1/4

γ (s)G(s, s) ds = r1 = ‖u‖.

So

‖T u‖ � ‖u‖, for u ∈ ∂Ω1.

Therefore, by (ii) of Lemma 2.5, we complete the proof.�
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Example 3.1. Consider the problem

D
3/2
0+ u(t) + u2 + sint

4
+ 1= 0, 0< t < 1, (3.1)

u(0) = u(1) = 0. (3.2)

A simple computation showedM = 4/
√

π ≈ 2.25676,N ≈ 13.6649. Choosingr1 = 1/14,
r2 = 1, we have

f (t, u) = 1+ sint

4
+ u2 � 2.2107� Mr2, for (t, u) ∈ [0,1] × [0,1],

f (t, u) = 1+ sint

4
+ u2 � 1� Nr1, for (t, u) ∈ [0,1] × [0,1/14].

With the use of Theorem 3.1, problem (3.1), (3.2) has at least one solutionu such that
1/14� ‖u‖ � 1.

Theorem 3.2. Supposef (t, u) is continuous on[0,1] × [0,∞) and there exist constan
0< a < b < c such that the following assumptions hold:

(A1) f (t, u) < Ma, for (t, u) ∈ [0,1] × [0, a];
(A2) f (t, u) � Nb, for (t, u) ∈ [1/4,3/4] × [b, c];
(A3) f (t, u) � Mc, for (t, u) ∈ [0,1] × [0, c].

Then, the boundary value problem(1.1), (1.2)has at least three positive solutionsu1, u2,
andu3 with

max
0�t�1

∣∣u1(t)
∣∣ < a, b < min

1/4�t�3/4

∣∣u2(t)
∣∣ < max

0�t�1

∣∣u2(t)
∣∣ � c,

a < max
0�t�1

∣∣u3(t)
∣∣ � c, min

1/4�t�3/4

∣∣u3(t)
∣∣ < b.

Proof. We show that all the conditions of Lemma 2.4 are satisfied.
If u ∈ P̄c, then‖u‖ � c. Assumption (A3) impliesf (t, u(t)) � Mc for 0 � t � 1. Con-

sequently,

‖T u‖ = max
0�t�1

∣∣∣∣∣
1∫

0

G(t, s)f
(
s, u(s)

)
ds

∣∣∣∣∣ �
1∫

0

G(s, s)f
(
s, u(s)

)
ds

�
1∫

0

G(s, s)Mc ds � c.

Hence,T : P̄c → P̄c. In the same way, ifu ∈ P̄a , then assumption (A1) yieldsf (t, u(t)) <

Ma, 0� t � 1. Therefore, condition (C2) of Lemma 2.6 is satisfied.
To check condition (C1) of Lemma 2.6, we chooseu(t) = (b + c)/2, 0� t � 1. It is

easy to see thatu(t) = (b+c)/2∈ P(θ, b, c), θ(u) = θ((b+c)/2) > b, consequently,{u ∈
P(θ, b, c) | θ(u) > b} 	= ∅. Hence, ifu ∈ P(θ, b, c), thenb � u(t) � c for 1/4 � t � 3/4.
From assumption (A2), we havef (t, u(t)) � Nb for 1/4� t � 3/4. So
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t least

ns
θ(T u) = min
1/4�t�3/4

∣∣(T u)(t)
∣∣ �

1∫
0

γ (s)G(s, s)f
(
s, u(s)

)
ds

>

3/4∫
1/4

γ (s)G(s, s)Nb ds = b,

i.e.,

θ(T u) > b, for all u ∈ P(θ, b, c).

This shows that condition (C1) of Lemma 2.6 is also satisfied.
By Lemma 2.6 and Remark 2.3, the boundary value problem (1.1), (1.2) has a

three positive solutionsu1, u2, andu3 satisfying

max
0�t�1

∣∣u1(t)
∣∣ < a, b < min

1/4�t�3/4

∣∣u2(t)
∣∣,

a < max
0�t�1

∣∣u3(t)
∣∣, min

1/4�t�3/4

∣∣u3(t)
∣∣ < b.

The proof is complete. �
Example 3.3. Consider the problem

D
3/2
0+ u(t) + f (t, u) = 0, 0< t < 1, (3.3)

u(0) = u(1) = 0, (3.4)

where

f (t, u) =
{

t
20 + 14u2, for u � 1,

13+ t
20 + u, for u > 1.

We haveM = 4/
√

π ≈ 2.25676,N ≈ 13.6649. Choosinga = 1/10, b = 1, c = 12, there
hold

f (t, u) = t

20
+ 14u2 � 0.19� Ma ≈ 0.225, for (t, u) ∈ [0,1] × [0,1/10],

f (t, u) = 13+ t

20
+ u � 14.05� Nb ≈ 13.7, for (t, u) ∈ [1/4,3/4] × [1,12],

f (t, u) = 13+ t

20
+ u � 25.05� Mc ≈ 27.1, for (t, u) ∈ [0,1] × [0,12].

With the use of Theorem 3.2, problem (3.3), (3.4) has at least three positive solutiou1,
u2 andu3 with

max
0�t�1

∣∣u1(t)
∣∣ < 1/10, 1< min

1/4�t�3/4

∣∣u2(t)
∣∣ < max

0�t�1

∣∣u2(t)
∣∣ � 12,

1/10< max
0�t�1

∣∣u3(t)
∣∣ � 12, min

1/4�t�3/4

∣∣u3(t)
∣∣ < 1.
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