Available online at www.sciencedirect.com

Fournal pf

SC'E"CE@D'RE°T° MATHEMATICAL
A ANALYSIS AND
ELSEVIER J. Math. Anal. Appl. 311 (2005) 495-505 APPLICATIONS

www.elsevier.com/locate/jmaa

Positive solutions for boundary value problem
of nonlinear fractional differential equation

Zhanbing Baf*?, Haishen L

@ Department of Applied Mathematics, University of Petroleum, Dong ying 257061, People’s Republic of China
b Department of Applied Mathematics, Hohai University, Nanjing 210098, People’s Republic of China

Received 14 October 2004
Available online 2 April 2005
Submitted by A. Cellina

Abstract

In this paper, we investigate the existence and multiplicity of positive solutions for nonlinear frac-
tional differential equation boundary value problem:

Dg u(t) + f(t,u(®)) =0, O<it<1,
u(0)=u(l)=0,

where 1< o < 2 is a real numbengJr is the standard Riemann-Liouville differentiation, and
f:10,1] x [0, 00) — [0, 00) is continuous. By means of some fixed-point theorems on cone, some
existence and multiplicity results of positive solutions are obtained. The proofs are based upon the
reduction of problem considered to the equivalent Fredholm integral equation of second kind.
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1. Introduction

Fractional differential equations have been of great interest recently. It is caused both
by the intensive development of the theory of fractional calculus itself and by the appli-
cations of such constructions in various sciences such as physics, mechanics, chemistry,
engineering, etc. For details, see [4,6—-8,12,14] and references therein.

It should be noted that most of papers and books on fractional calculus are devoted to
the solvability of linear initial fractional differential equations in terms of special functions
[11,14,15]. Recently, there are some papers deal with the existence and multiplicity of
solution (or positive solution) of nonlinear initial fractional differential equation by the use
of techniques of nonlinear analysis (fixed-point theorems, Leray—Shauder theory, etc.), see
[1-3,5,16,17].

However, there are few papers consider the Dirichlet-type problem for linear ordinary
differential equations of fractional order, see [8,13]. No contributions exist, as far as we
know, concerning the existence and multiplicity of positive solutions of the following prob-
lem:

D8‘+u(t)+f(t,u(t))=0, O<rt<1, (1.1)
1u(0)=u(l) =0, 1.2)

where 1< o < 2isareal numbenDOJr is the standard Riemann-Liouville differentiation,
and f: [0, 1] x [0, co) — [0, c0) is continuous.

In this paper, we firstly derive the corresponding Green'’s function. Consequently prob-
lem (1.1), (1.2) is deduced to a equivalent Fredholm integral equation of the second kind.
Finally, by the means of some fixed-point theorems, the existence and multiplicity of pos-
itive solutions are obtained.

2. Background materialsand preliminaries

For the convenience of the reader, we present here the necessary definitions from frac-
tional calculus theory. These definitions can be found in the recent literature.

Definition 2.1. The fractional integral of order > 0 of a functiony : (0, c0) — R is given
by

1§,y = / (t —)* " ty(s)ds

I()
provided the right S|de is pointwise defined @) o).

Definition 2.2. The fractional derivative of ordexr > 0 of a continuous function
y:(0,00) — R is given by

o y(s)
D0+y(t) — ) (dt) / (t — )2~ n+1
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wheren = [«] + 1, provided that the right side is pointwise defined(®o).

Remark 2.1. As a basic example, we quote for- —1,

_ T+1) A
T TI'(h—a+1l)

—a
’

o LA

giving in particularDg, 1*~™ =0,m =1,2,..., N, whereN is the smallest integer greater
than or equal te.

In fact, foraA > —1,

t
1 d\" st
pei=—t (4 /761
0+ I'n—o) (dt) (t —s)a—ntl g
0

1
1 d\"
— m(@) tn—OH-)»\/‘Z)L(l_Z)n—Ol—le
0

__ Ie+y _i”ﬂﬂﬂ
I'hA+1+n—a)\dt '

So,

+ 'n—m+1) \dt

From Definition 2.2 and Remark 2.1, we then obtain

n
) t""=0, form=12,...,N.

Lemma2l. Leta > 0. If we assuma € C(0, 1) N L(0, 1), then the fractional deferential
equation

D, u(t)=0

hasu(r) = C1t¥ 14+ Cot*2+...4Cnt* N, C; € R,i=1,2,..., N, as unique solutions.

As Dy Ig u=uforallu e C(0,1)N L(0, 1). From Lemma 2.1 we deduce the follow-

ing law of composition.

Lemma 2.2. Assume that € C (0, 1) N L(0, 1) with a fractional derivative of ordes > O
that belongs ta” (0, 1) N L(0, 1). Then

I§. D u(t) =u(t) + Cet* 4+ Cot* 2+ 4 Cyt* N,
forsomeC; e R,i=1,2,...,N.

In the following, we present the Green’s function of fractional differential equation
boundary value problem.
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Lemma 2.3. Giveny € C[0, 1] and1 < « < 2, the unique solution of

Dy u(t)+y(#) =0, 0<r<l1, (2.1)
u(0) =u(1) =0, (2.2)
is
1
u(t) = / G(t,s)y(s)ds,
0
where
HEE) () L WP |
G(t.s) = [ et ’ 0; o (2.3)
ST <r<s<l

Proof. We may apply Lemma 2.2 to reduce Eq. (2.1) to an equivalent integral equation
() =I§,y(0) + Cur* t+ Cot* 2,

for someC1, C, € R. Consequently, the general solution of Eq. (2.1) is

1
(1 — s)(x—l a—1 a—2
u(t)=— | ——2—y(s)ds + Crt* L + Co1*2,
(@)
0

By (2.2), there areC> =0, C1 = [01(1 — )% 1y(s)ds/ I (o). Therefore, the unique solu-
tion of problem (2.1), (2.2) is

(l— )a 1 (1_S)a—lta—l
u(t) =— f @ ——— (s )ds+/Ty(s)ds

_f[r(l—sn“—l—(r—sw—l )d +[1[t<1—s)]“—1 )d
- I'(@) yiera r@ W%

t
1

:fG(t,s)y(s)ds.
0
The proof is complete. O

Lemma 2.4. The functionG (¢, s) defined by Eq(2.3) satisfies the following conditions
(1) G(t,s) >0, fort,s €(0,1);
(2) There exists a positive functigne C (0, 1) such that

i G G = G for0 1 2.4
1/4223/4 (t,s) > y(s)oTixl (t,s)=y(s)G(s,s), forO<s< (2.4)

SIS
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Proof. Observing the expression 6f(z, s), it is clear thatG (¢, s) > 0 for s, € (0, 1). In
the following, we consider the existenceyofs). Firstly, for givens € (0, 1), G(z, s) is de-
creasing with respect tofor s < ¢ and increasing with respecttdor ¢ < 5. Consequently,
setting

) el et )
gl(tvs)_ F(Ol) 5 gZ(I’S)—T,
one has
813, 5), s €(0,1/4],
e, Gl = minl{gl(%, $),82(3,9)), s €l1/4,3/4],
82(21,5)7 SE[3/47 1)7

gl(%,S), s €(0,r],
g2(3.9), selnd),
FlA—91 =G -9, se©r],
roETd—9" selr ),

where ¥4 < r < 3/4 is the unigue solution of the equation

3 a—1 3 a—1 1 o1
Geo] -(G) mamano

Speciallyr =05if « =2;r — 0.5 ase¢ — 2 andr — 0.75 aso — 1.
Secondly, with the use of the monotonicityGfz, s), we have

max G(1,5) = G(s,5) = ——[s(L—9)]*"", se (.

o<1 I'(o)
Thus, setting

-1 1-G-s?
- AT
v (s) , e
(4s)2—1°

s€(0,r],
selrl),

the proof is complete. O

Remark 2.2. Clearly, y (s) — 0 whens — 0 unless thatt = 2 (infocs<1y(s) = 1/4 if

a = 2). Consequently, we cannot acquire a positive constatetke instead of the role

of positive functiony (s) with 1 < « < 2 in (2.4). In our opinion, it is the key that the
results obtained for fractional differential equations in this paper are weaker than that have
obtained for integer-order differential equations.

Definition 2.3. The map? is said to be a nonnegative continuous concave functional on a
coneP of areal Banach spadg provided that : P — [0, co) is continuous and
O(tx + (1 —1)y) > 10(x) + (L — 1) (y)

forall x,y e P and 0< ¢ < 1.
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The following fixed-point theorems are fundamental in the proofs of our main results.

Lemma 2.5[9]. Let £ be a Banach space} C E a cone, and?1, £2, two bounded open
balls of E centered at the origin witli2; C £25. Suppose thatl: P N (£22\ £21) > Pisa
completely continuous operator such that either

() IAx] < llxll, x € PN a2, and |l Ax|| = [lx]l, x € P N8, or
(i) [IAx| = llx|l, x € P Nos21 and || Ax[| < llx|l, x € PN 3S2

holds. Then4 has a fixed point irP N (£22 \ £21).

Lemma 2.6 [10]. Let P be a cone in areal Banach spa¢e P. ={x c P | ||x]| <c},f a
nonnegative continuous concave functionalsuch thav (x) < || x|, for all x € P., and
P@®,b,d)={x e P|b<0(x), ||x|| <d}. Supposed: P. — P. is completely continuous
and there exist constanfs< a < b < d < ¢ such that

(C1) {xe PO,b,d)|0(x) >b} £V andb(Ax) > bforx e P(0,b,d);
(C2) | Ax|| <aforx <a;
(C3) 8(Ax) > bforx e P8, b, c) with || Ax| > d.

ThenA has at least three fixed points, x2, x3 with
Ixil <a, b<6(x2), a<]|xal| with6(x3) <b.

Remark 2.3. If there holdsd = ¢, then condition (C1) of Lemma 2.6 implies condition
(C3) of Lemma 2.6.

3. Main results

In this section, we impose growth conditions grwhich allow us to apply Lemmas 2.5
and 2.6 to establish some results of existence and multiplicity of positive solutions for
problem (1.1), (1.2).

Let E = C[0, 1] be endowed with the ordering< v if u(t) < v(¢) for all ¢ € [0, 1],
and the maximum normy| = maxyg, <1 lu(t)|. Define the coné® C E by

P={uckE |u() >0}
Let the nonnegative continuous concave functienah the coneP be defined by
O(u) = min 1.
(@) 1/4g;g3/4|u( )|
Lemma3.1l. LetT : P — E be the operator defined by
1

Tu(t):= / G(t, s)f(s, u(s)) ds,
0
thenT : P — P is completely continuous.
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Proof. The operatofl : P — P is continuous in view of nonnegativeness and continuity
of G(¢,s) and f (¢, u).

Let 2 C P be bounded, i.e., there exists a positive constant 0 such thatju|| < M,
forall u € 2. Let L = maxpg,<1, o<ucm 1 f (2, )| + 1, then, foru € £2, we have

1 1
| Tu()] </G(l,s)f(s,u(s))ds<L/G(s,s)ds.
0 0

Hence,T (£2) is bounded.
On the other hand, given> 0, setting

s 1(T@e a1
-3(5)"

then, foreacly € £2, 11,12 € [0, 1], 11 < tp, andrr — 11 < 8, 0ne hagTu(r2) — Tu(ty)| < €.
That is to say7 (£2) is equicontinuity.
In fact,

|Tu(t) — Tu(ry)|

1 1
fG(tz,s)f(s,u(s)) ds —/G(tl,s)f(s,u(s)) ds
0 0

n

1
= /[G(tz, ) — G(t1, )] f (s, u(s)) ds + /[G(tz, ) — G(11,8)] f (s, u(s)) ds
0 7]

2

+/[G(t2,s) —G(11,5)] f (s, u(s))ds

41

1
M a—1(,a— a—
0

1 2
+ /(1 — ) (g — Y ds + /(1 =) g™ =Y ds}
17 n
M

tozfl _ tozfl )

< (@) (12 1)

In the following, we divide the proof into two cases.
Casel.s <11 <t <1.

M a-1
a=1__ _a-1 <

|Tu(tz) — Tu(ty)| < i(tz 1S 7o
() I(a) 82

(2 —11)

(@ —1)8* <.

<

()
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Case2.0<rn <6, < 26.

M M M
tafl _ totfl < tozfl 25 a—1 <e.
F(a)(2 i) ro? “Tw?® ¢

By the means of the Arzela—Ascoli theorem, we h&ve? — P is completely continuous.
The proof is complete. O

|Tu(tz) — Tu(ty)| <

Denote
1 1 3/4 _1
M = (/G(s,s)ds) , N = (/y(s)G(s,s)ds) .
0 1/4

Theorem 3.1. Let f(z,u) is continuous or0, 1] x [0, o). Assume that there exist two
positive constants, > r1 > 0 such that

(H1) f(@t,u) < Mrp, for (t,u) € [0, 1] x [0, r2];
(H2) f(t,u) > Nry,for (¢,u) €[0, 1] x [0, r1].

Then problen{1.1), (1.2) has at least one positive soluti@ansuch thatry < |Ju|| < r2.

Proof. By Lemmas 2.3 and 3.1, we knotv: P — P is completely continuous and prob-

lem (1.1), (1.2) has a solutian= u(¢) if and only if u solves the operator equation= Tu.

In order to apply Lemma 2.5, we separate the proof into the following two steps.
Stepl. Let 22 :={u € P | ||ul| < r2}. Foru € 3822, we have 0K u(t) < rp for all

t € [0, 1]. It follows from (H1) that forr € [0, 1],

1 1
|Tul| = max /G(t,s)f(s,u(s)) ds < MrZ/ G(s,s)ds =rp=|ul.
o<1
0 0

Step2. Let 21 :={u € P | ||ul| < r1}. Foru € 321, we have 0 u(r) < rp for all
t € [0, 1]. By assumption (H2), for € [1/4, 3/4], there is

1 1
Tu(t):/G(t,s)f(s,u(s))ds2fy(s)G(s,s)f(s,u(s))ds
0 0
3/4
>Nr1fy(s)6(s,s>ds=r1= Jull.
1/4

So
I Tull = |lull, forueds2;.

Therefore, by (i) of Lemma 2.5, we complete the proofl
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Example 3.1. Consider the problem

DY2u(t) +u +¥+1zo, O<t<1, 3.1)

u(0)=u(l)=0. (3.2)

A simple computation showed = 4/./7 ~ 2.25676,N ~ 13.6649. Choosing; = 1/14,
ro =1, we have

Fltu) =1+ %‘t 12 <22107< Mrp, for (1, u) €[0, 1] x [0, 1],

sint
Fltu) =1+ IT $u2>1>Nry, for(t,u)€[0,1] x [0,1/14].

With the use of Theorem 3.1, problem (3.1), (3.2) has at least one soltsuch that
1/14< |lul < 1.

Theorem 3.2. Supposef (¢, u) is continuous on0, 1] x [0, co) and there exist constants
0 < a < b < ¢ such that the following assumptions hold

(Al) f(t,u) < Ma, for (¢t,u) €[0, 1] x [0, a];
(A2) f(t,u) > Nb,for (t,u) €[1/4,3/4] x [b, c];
(A3) f(t,u) < Mc,for (¢,u) €[0,1] x [0, c].

Then, the boundary value problgith 1), (1.2) has at least three positive solutions, u»,
andusz with

max |u1(t)] <a, b < lua(t)| < Jmax |u2(t)] <c,
0< 1/4<z<3/4
a< OTZX1|M3(O| 1/4r<n[I23/4|M3(t)| < b.

Proof. We show that all the conditions of Lemma 2.4 are satisfied.
If u e P., then|lu| <c. Assumption (A3) impliesf (¢, u(z)) < Mc for 0< ¢ < 1. Con-
sequently,

1

< / G (s, s)f(s, u(s)) ds

0

1
|Tul| = max
<r<

Y / G(t, s)f(s, u(s)) ds

0

X

1
< / G(s,s)Mcds < c.
0

Hence,T : P. — P..Inthe same way, ifi € P,, then assumption (A1) yieldg(z, u(1)) <
Ma, 0<t < 1. Therefore, condition (C2) of Lemma 2.6 is satisfied.

To check condition (C1) of Lemma 2.6, we choose) = (b +¢)/2,0<t < 1. ltis
easytoseethat(rt) = (b+c)/2€ P(,b,c),0m) =0((b+c)/2) > b, consequentlyfu
P(0,b,c) | 6(u) > b} # . Hence, ifu € P(0, b, ¢), thenb < u(t) < ¢ for 1/4 <t < 3/4.
From assumption (A2), we hav&(r, u(t)) > Nb for 1/4 <t < 3/4. So
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1

6(Tu)= min |(Tu)(t)|>/y(s)G(s,s)f(s,u(s))ds

1/4<1<3/4
0
3/4

>/y(s)G(s,s)Nbds=b,
1/4

0(Tu)>b, forallue P@©,b,c).

This shows that condition (C1) of Lemma 2.6 is also satisfied.
By Lemma 2.6 and Remark 2.3, the boundary value problem (1.1), (1.2) has at least
three positive solutionss, uz, andug satisfying

Orgagxl|ul(t)| <a, b < 1/42i23/4|u2(t)|,
’ug(t)| < b.

1/4< <3/4

The proof is complete. O

Example 3.3. Consider the problem

DYZu(t) + f(t,uy=0, 0<r<1, (3.3)
u(0) = u(l) =0, (3.4)
where

t 2
55 + 14u”, foru <1,

fou)=
Fuw 13+2’—O+u, foru > 1.

We haveM = 4/./7 ~ 2.25676,N ~ 13.6649. Choosing = 1/10,b =1, ¢ = 12, there
hold

f(t,u)= —+14u2 <0.19< Ma ~0.225 for (r,u) € [0, 1] x [0, 1/10),
ft,u)= 13+§)+u 14.05> Nb~ 137, for (t,u) € [1/4,3/4] x [1,12],

f(tu) = 13—{—%4—14 2505< Mc~27.1, for (r,u) € [0, 1] x [0, 12.

With the use of Theorem 3.2, problem (3.3), (3.4) has at least three positive solutions
up andus with

Orgla;xl\ul(t)] <1/10, 1< Ll t<3/4\u2(t)] < max lu2()] <

1/10< max |uz(r)| <12, min_ |us(®)| < 1.
0<r<1 1/4<1<3/4
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