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Abstract

New compactness results on the velocity functions and shear stress functions of the well-known Falkner–
Skan equation are obtained. The methodology is to utilize the equivalence between the Falkner–Skan
equation and a singular integral equation established recently by Lan and Yang.
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1. Introduction

The following well-known Falkner–Skan equation

f ′′′(η) + f (η)f ′′(η) + λ
[
1 − (f ′)2(η)

] = 0 on η ∈ (0,∞), (1.1)
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subject to the boundary condition

f (0) = f ′(0) = 0, f ′(∞) = 1, (1.2)

and the side condition

0 < f ′(η) < 1 for η ∈ (0,∞), (1.3)

is one of the most important equations in laminar boundary layer theory, where η is the similarity
boundary-layer ordinate, f (η) is the similarity stream function and f ′(η) and f ′′(η) are the
velocity and the shear stress, respectively.

(1.1)–(1.3) has been extensively studied analytically and numerically. We refer to [1,4–10,16–
21] and references therein for the analytical treatments and to [3,11,13] for the numerical results.
The physical significance of (1.1)–(1.3) can be found, for example in [2,12,14].

It is well known that there exists λ∗ < 0 such that (1.1)–(1.3) has multiple solutions for each
λ ∈ (λ∗,0), has a unique solution for λ = λ∗ or λ � 0 and has no solutions for λ < λ∗ (see [6,
Theorems 6.1, 7.1 and 8.1], [7, Proposition 1.1 and Theorem 1.1], [8, Theorem]). Moreover,
every solution f of (1.1)–(1.3) satisfies the following condition:

f ′′(η) > 0 for η ∈ (0,∞) (1.4)

(see [6, Theorems 6.1, 7.1 and 8.1]).
Recently, we have estimated the number λ∗ analytically and shown λ∗ ∈ [−0.4,−0.12]

in [10]. We refer to [3,11,13] for the numerical results, where λ∗ = −0.1988. Moreover, some
useful properties of solutions f of (1.1), (1.2), (1.4) are given in [10]. It is clear that f is increas-
ing and concave up on (0,∞) and it is shown in [10] that f satisfies f (η) < η for η ∈ (0,∞)

and limη→∞ f (η)/η = 1.
In this paper, we study compactness of the set of velocity functions f ′ and of the set of shear

stress functions f ′′. We shall prove that the two sets are compact when λ ∈ [λ∗,0] in BC(R+).
The main technique is to utilize the equivalence between (1.1), (1.2), (1.4) and a singular integral
equation of the form

z(t) =
1∫

t

(1 − s)(λ + λs + s)

z(s)
ds + (1 − t)

t∫
0

s

z(s)
ds for t ∈ (0,1), (1.5)

which was established in [10]. In Section 2, we prove some new properties of positive solutions
of (1.5). These properties, together with the Helly selection principle for an infinite sequence of
functions of bounded variation will be used to prove that the set of positive solutions of (1.5) is
compact in C[0,1] when λ ∈ [λ∗,0]. In Section 3 we apply the compactness result, together with
the equivalence of (1.5) and (1.1), (1.2), (1.4), to prove that both the set of velocity functions
and the set of shear stress functions are compact in BC(R+) when λ ∈ [λ∗,0].

2. Compactness of the set of positive solutions of (1.5)

Let z ∈ C(0,1) with z(t) > 0 for t ∈ (0,1). We define

Az(t) =
1∫
fz(s) ds for t ∈ [0,1] and Bz(t) =

t∫
s

z(s)
ds for t ∈ [0,1),
t 0
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where fz(s) := (1−s)(λ+λs+s)
z(s)

for s ∈ (0,1). Let δ := δ(λ) = −λ
1+λ

. Then δ ∈ [0,1) if and only if
λ ∈ (−1/2,0]. It is shown in [10] that if δ ∈ (0,1), then

fz(s) � 0 for s ∈ (0, δ) and fz(s) � 0 for s ∈ [δ,1), (2.1)

and

Az is increasing on (0, δ) and decreasing on [δ,1). (2.2)

Let

Q = {
z ∈ C[0,1]: z(t) > 0 for t ∈ (0,1)

}
.

Then, if z ∈ Q, then the improper integral Az(t) is a Lebesgue integral for t ∈ [0,1) and

Az(t) � 0 for t ∈ [0,1], (2.3)

and if z ∈ Q is a solution of (1.5), then

Bz(1) = lim
t→1− Bz(t) = ∞ and lim

t→1−(1 − t)Bz(t) = 0.

If a function z : [0,1] → R+ satisfies (1.5), then z ∈ C(0,1).
The following result shows that the limits of z at the end-points exist under suitable conditions

on z and Az(0) (see [10, Proposition 2.2]).

Lemma 2.1. Let λ > −1/2 and let z : (0,1) → R+ be bounded. Assume that (λ, z) satisfies (1.5)

and Az(0) ∈ R+. Then limt→0+ z(t) = Az(0) and limt→1− z(t) = 0.

It is showed in [10] that (1.5) is equivalent to some differential equations with suitable bound-
ary conditions which we give below and will use later.

Theorem 2.1.

(1) Let (λ, z) ∈ (−1/2,∞) × Q. Then (λ, z) satisfies (1.5) if and only if z(1) = 0 and

z′(t) = −λ(1 − t2)

z(t)
− Bz(t) for t ∈ (0,1). (2.4)

(2) Let (λ, z) ∈ R+ × Q. Then (λ, z) satisfies (1.5) if and only if (λ, z) is a solution of the
following second order differential equation of the form

z′′(t) = −λ

(
1 − t2

z(t)

)′
− t

z(t)
for t ∈ (0,1), (2.5)

subject to the boundary condition:

z(0) > 0, z(1) = 0 and z′(0) = −λ/z(0). (2.6)

It is known that there exists λ∗ < 0 such that (1.1)–(1.3) has at least one solution in Q for
each λ ∈ (λ∗,0) (in this case, the solutions are not unique), has a unique solution for either
λ = λ∗ or λ � 0 and has no solutions for λ < λ∗ (see [6,10]). Recently, Lan and Yang [10] have
proved λ∗ ∈ [−0.4,−0.12]. Since (1.1)–(1.3) is equivalent to (1.5) (see Lemma 3.1 below or
Theorem 3.2 in [10]), these results on (1.1)–(1.3) just mentioned above hold for (1.5). Hence,
(1.5) has multiple positive solutions when λ ∈ (λ∗,0). We write

Σ := {
(λ, z) ∈ [

λ∗,0
] × Q: (λ, z) satisfies (1.5)

}
. (2.7)
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Our main purpose of this section is to prove that the set Σ is compact in R×C[0,1]. We need the
following result obtained in [10] which gives the upper and lower bounds of positive solutions
of (1.5).

Lemma 2.2. Assume that (λ, z) ∈ Σ . Then the following assertions hold:

(H1) 2/27 � ‖z‖ � 1 and
(H2) z(t) � 1

2 (1 − t)t2 for t ∈ [0,1].

We denote by BV[0,1] the space of functions of bounded variation on [0,1] and by Vz the
(total) variation of z over [0,1].

The following result provides some new properties of positive solutions of (1.5).

Proposition 2.1. Assume that (λ, z) ∈ Σ and ‖z‖ = z(t0) for some t0 ∈ (0,1). Then the following
assertions hold:

(P1) t0 <
√

2/2.
(P2) z is strictly increasing on [0, t0] and strictly decreasing on [t0,1].
(P3) Vz = 2‖z‖ − z(0).

Proof. (P1) Let t0 ∈ (0,1) be such that ‖z‖ = z(t0). Then it follows from Fermat’s theorem that
z′(t0) = 0 and by (2.4), we have

z′(t0) �
−λ(1 − t2

0 )

z(t0)
− 1

z(t0)

t0∫
0

s ds = 1

z(t0)

[
−λ +

(
λ − 1

2

)
t2
0

]
.

This implies −λ + (λ − 1
2 )t2

0 � 0 and t0 <
√

2/2.
(P2) By (2.5), we see that if z′(t) = 0 for some t ∈ (0,1), then z′′(t) < 0. This implies that z

satisfies the following property:

(P ) z is not a constant on any interval [a, b] ⊂ (0,1) with a < b.

Let t1, t2 ∈ [0, t0] with t1 < t2. Let ξ ∈ [t1, t0] be such that z(ξ) = min{z(t): t ∈ [t1, t0]}. Then
it follows from (P ) that ξ < t0. If ξ ∈ (t1, t0), it follows from Fermat’s theorem that z′(ξ) = 0 and
z′′(ξ) < 0. It follows that z(ξ) is a local maximum. Hence, there exists [a, b] ⊂ (t1, t0) such that
z(t) � z(ξ) for t ∈ [a, b]. This implies z(t) = z(ξ) for t ∈ [a, b], which contradicts (P ). Hence,
ξ = t1 and z(t1) < z(t2). This shows that z is strictly increasing on [0, t0]. A similar proof shows
that z is strictly decreasing on [t0,1].

(P3) Let 0 < t1 < t2 < · · · < tm = 1 and σ = ∑m
i=1 |z(ti) − z(ti−1)|. Then there exists 0 <

i < m such that t0 ∈ [ti , ti+1) and we have

σ =
i∑

j=1

∣∣z(tj ) − z(tj−1)
∣∣ + ∣∣z(ti+1) − z(ti)

∣∣ +
m∑

j=i+2

∣∣z(tj ) − z(tj−1)
∣∣

�
i−1∑(

z(tj ) − z(tj−1)
) + 2z(t0) − z(ti+1) − z(ti) −

m∑ (
z(tj ) − z(tj−1)

)

j=1 j=i+2
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= 2z(t0) − z(0) − z(1) = 2z(t0) − z(0).

This implies Vz = 2‖z‖ − z(0). �
The following new results provide some properties of a sequence of positive solutions of (1.5).

Lemma 2.3. Let {(λn, zn)} ⊂ Σ with λn 
= 0 be such that λn → λ ∈ [λ∗,0]. Assume that there
exists a real-valued function z defined on [0,1] such that

zn(t) → z(t) for each t ∈ [0,1].
Then the following assertions hold:

(h1) {Bzn(t)} is bounded for each t ∈ (0,1) and

Bzn(t) �
√

−2
(
t + ln(1 − t)

)
. (2.8)

(h2) If z(t) > 0 for t ∈ (0,1), then limn→∞
∫ 1
t

Fn(s) ds = Az(t) for each t ∈ (0,1), where

Fn(s) = (1−s)(λn+λns+s)
zn(s)

for s ∈ (0,1).
(h3) {zn} is equicontinuous on [a, b] for each [a, b] ⊂ (0,1).
(h4) If z(0) > 0, then {zn} is equicontinuous on [0, b] for each b ∈ (0,1).
(h5) If z(0) = 0, then λ < 0 and if Az(0) = 0, then limtn→0+ zn(tn) = 0.
(h6) limtn→1− zn(tn) = 0.

Proof. Since (λn, zn) ∈ Σ , it follows that

zn(t) =
1∫

t

Fn(s) ds + (1 − t)Bzn(t) for t ∈ (0,1). (2.9)

(h1) By Lemma 2.2(H2) and (2.2), we have zn(t) � (1−t)t2

2 for t ∈ [0,1] and
∫ 1
t

Fn(s) ds � 0
for t ∈ [0,1] and n ∈ N. This implies (1 − t)Bzn(t) � zn(t) for t ∈ (0,1) and n ∈ N. Since
(Bzn)

′(t) = t
zn(t)

for t ∈ (0,1), we have for t ∈ (0,1),

(Bzn)
′(t)Bzn(t) = tBzn(t)

zn(t)
= t

1 − t
.

Integrating the above inequality from 0 to t implies

1

2
(Bzn)

2(t) �
t∫

0

s

1 − s
ds = −t − ln(1 − t) for t ∈ (0,1).

This implies {Bzn(t)} is bounded for each t ∈ (0,1) and (2.8) holds.
(h2) Let δn = −λn

1+λn
. By Lemma 2.2(H2), we have for s ∈ [δn,1),

0 � Fn(s) � 2(λn + λns + s)/s2 � (1 + 3s)/s2 (2.10)

and 2(λn + λns + s)/s2 � Fn(s) � 0 for s ∈ (0, δn]. This implies∣∣Fn(s)
∣∣ �

∣∣2(λn + λns + s)/s2
∣∣ � (1 + 3s)/s2 for s ∈ (0,1).
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Let t ∈ (0,1). Since
∫ 1
t
(1 + 3s)/s2 ds < ∞ and Fn(s) → fz(s) for each s ∈ (t,1), it follows

from the Lebesgue dominated convergence theorem that (h2) holds.
(h3) Let [a, b] ⊂ (0,1). By (2.4), we have

z′
n(t) = −λn(1 − t2)

zn(t)
− Bzn(t) for t ∈ (0,1). (2.11)

Using Lemma 2.2(H2), we have for t ∈ [a, b],
∣∣z′

n(t)
∣∣ � −λn(1 − t2)

zn(t)
+ Bzn(t) � −2λn(1 − t2)

(1 − t)t2
+ Bzn(b)

� 1 + a

a2
+ Bzn(b) < ∞.

This implies that {‖z′
n‖C[a,b]} is bounded and {zn} is equicontinuous on [a, b].

(h4) If z(0) > 0, then there exist ε > 0 and n0 ∈ N such that zn(0) � ε for n � n0. By (2.8),
there exists a ∈ (0,1/2) such that Bzn(t) � ε for t ∈ [0, a] and n � n0. This and (2.11) imply
z′
n(t) � −Bzn(t) � −ε for t ∈ (0, a] and n � n0. Let t ∈ (0, a]. Integrating this inequality from 0

to t implies

zn(t) � −εt + zn(0) � ε/2 for t ∈ (0, a] and n � n0.

Hence, we obtain for t ∈ (0, a],
∣∣z′

n(t)
∣∣ � −λn(1 − t2)

zn(t)
+ Bzn(t) � −2λn

ε
+ Bzn(a) < ∞.

This implies that {‖z′
n‖C[0,a]} is bounded. By the proof of (h3), {‖z′

n‖C[a,b]} is bounded and {zn}
is equicontinuous on [0, b].

(h5) If z(0) = 0, then zn(0) → 0. Let sn ∈ (0,1) such that zn(sn) = ‖zn‖. Differentiat-
ing (2.9), we have zn(t)z

′
n(t) � −λn(1 − t2) for t ∈ (0,1). Integrating the inequality from 0

to sn, we obtain

1

2

(
z2
n(sn) − z2

n(0)
)
� (−λn)

sn∫
0

(
1 − t2)dt � (2/3)(−λn)

and 1
2 (‖zn‖2 − z2

n(0)) � (2/3)(−λn). It follows from Lemma 2.2(H1) that 1
2 (2/27)2 �

(−λ)(2/3). This implies λ < 0 and δ = λ/(1 + λ) > 0. Let tn → 0+. Since λn → λ, there exists
n0 ∈ N such that δn � δ/2 and tn < δ/2 for n � n0. Let t ∈ (0, δ/2). Then there exists n1 � n0

such that tn < t and λn + λns + s � 0 for s ∈ [tn, t] and n � n1. This implies
∫ t

tn
Fn(s) ds � 0

and

zn(tn) =
1∫

tn

Fn(s) ds + (1 − tn)Bzn(tn) �
1∫

t

Fn(s) ds + (1 − tn)Bzn(tn).

It follows from (h2) that 0 � lim supn→∞ zn(tn) � Az(t) for each t ∈ (0, δ/2). This implies 0 �
lim supn→∞ zn(tn) � limt→0+ Az(t). By Lemma 2.1 and Az(0) = 0, we obtain limt→0+ Az(t) =
Az(0) and limn→∞ zn(tn) = 0.
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(h6) Since λ � λ∗ > −1/2, we have (1 + δ(λ))/2 < 1. Let {tn} ⊂ (0,1) with tn → 1−. Then
there exists n0 ∈ N such that δn < (1 + δ(λ))/2 < tn < 1 for n � n0. It follows from (2.10) that

0 �
1∫

tn

Fn(s) ds �
1∫

tn

1 + 3s

s2
ds for n � n0.

This implies limtn→1
∫ 1
tn

Fn(s) ds = 0. Let γ ∈ (0,1). Then there exists n1 � n0 such that γ � tn
for n � n1. By Lemma 2.2(H2), we have

Bzn(tn) = Bzn(γ ) +
tn∫

γ

s

zn(s)
ds � Bzn(γ ) + 2

tn∫
γ

1

s(1 − s)
ds

= Bzn(γ ) + 2 ln tn − 2 ln(1 − tn) − 2 ln
γ

1 − γ
.

Noting that {Bzn(γ )} is bounded and limtn→1−(1 − tn) ln(1 − tn) = 0, we have

lim
tn→1−(1 − tn)Bzn(tn) = 0.

This implies

lim
tn→1− zn(tn) = lim

tn→1−

1∫
tn

Fn(s) ds + lim
tn→1−(1 − tn)Bzn(tn) = 0

and (h6) holds. �
In order to prove compactness of Σ , we need the following Helly selection principle (see [15,

Corollary 3.2]).

Lemma 2.4. Let {zn(t)} ⊂ BV[0,1] be an infinite sequence. Assume that {Vzn} is bounded and
there exists K > 0 such that |zn(t)| � K for t ∈ [0,1] and n ∈ N. Then there exist a subsequence
{znk

} of {zn} and z ∈ BV[0,1] such that znk
(t) → z(t) for each t ∈ [0,1].

We are now in a position to prove our main result of this section.

Theorem 2.2. The set Σ defined in (2.7) is compact in R × C[0,1].
Proof. Let (λm, zm) ∈ Σ be such that λm < 0 and λm → λ ∈ [λ∗,0]. Then

zm(t) =
1∫

t

Fm(s) ds + (1 − t)Bzm(t) for t ∈ (0,1). (2.12)

It suffices to show that there exist a subsequence {zn} of {zm} and z ∈ Q such that zn → z in
C[0,1] and (λ, z) ∈ Σ . In fact, by Lemma 2.2(H1) and Lemma 2.3(h2), we have ‖zm‖ � 1
and Vzm = 2‖zm‖ − zm(0) � 2. By Lemma 2.4, there exist a subsequence {zn} of {zm} and
z ∈ BV[0,1] such that zn(t) → z(t) for each t ∈ [0,1]. Let t ∈ (0,1) and γ ∈ (0, t). Then

zn(t) =
1∫
Fn(s) ds + (1 − t)

t∫
s

zn(s)
ds + (1 − t)Bzn(γ ). (2.13)
t γ
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By Lemma 2.2(H2), we have zn(t) � 1
2 (1− t)t2 for t ∈ (0,1). This implies z(t) � 1

2 (1− t)t2 > 0
for t ∈ (0,1). By Lemma 2.3(h2), we have

lim
n→∞

1∫
t

Fn(s) ds = Az(t) for t ∈ (0,1),

and by Lemma 2.3(h1), {Bzn(γ )} is bounded. We may assume that Bzn(γ ) → η(γ ). By (2.8),
we have 0 � η(γ ) �

√−2(γ + ln(1 − γ )) and limγ→0 η(γ ) = 0. Since limn→∞
∫ t

γ
s

zn(s)
ds =∫ t

γ
s

z(s)
ds, it follows from (2.13) that

z(t) = Az(t) + (1 − t)

t∫
γ

s

z(s)
ds + (1 − t)η(γ ) for γ ∈ (0, t).

Taking limit as γ → 0 implies that (λ, z) satisfies (1.5) and z ∈ C(0,1). We prove

0 � lim
t→0+ Az(t) < ∞. (2.14)

Indeed, if λ < 0, then there exists n0 ∈ N such that δ/2 < δn for n � n0 and

0 � zn(0) = Azn(0) � Azn(t) for t ∈ (0, δ/2) ⊂ (0, δn] and n � n0.

This implies

0 � z(0) � Az(t) � Az(t) + Bz(t) = z(t) � Vz for t ∈ (0, δ/2). (2.15)

Since Az is increasing on (0, δ/2) by (2.2), it follows from (2.15) that limt→0 Az(t) exists and
(2.14) holds. If λ = 0, then (Az)(t) � 0 for t ∈ [0,1] and Az is decreasing on (0,1]. Since 0 �
Az(t) � Az(t) + Bz(t) = z(t) � V z for t ∈ (0,1), it follows that limt→0 Az(t) exists and (2.14)

holds. By Lemma 2.1, we have limt→0+ z(t) = Az(0) and limt→1− z(t) = 0. Since zn(1) = 0 and
zn(1) → z(1), we have z(1) = 0 and limt→1− z(t) = z(1). Hence, z is continuous from the left
at 1. Now, we prove that z is continuous from the right at 0. Since limt→0+ z(t) = Az(0) and
zn(0) → z(0), it suffices to show zn(0) = ∫ 1

0 Fn(s) ds → Az(0). We consider two cases:
(i) If z(0) > 0, then there exists n0 > 0 such that zn(0) � z(0)/2 > 0 for n � n0. By

Lemma 2.3(h4), there exists γ0 ∈ (0,1) such that |zn(t) − zn(0)| < z(0)/4 for t ∈ [0, γ0]. This
implies zn(t) � z(0)/4 for t ∈ [0, γ0] and n � n0. Hence, we have

lim
n→∞

γ0∫
0

Fn(s) ds =
γ0∫

0

fz(s) ds.

It follows from Lemma 2.3(h2) that

z(0) = lim
n→∞ zn(0) = lim

n→∞

1∫
0

Fn(s) ds = lim
n→∞

( γ0∫
0

Fn(s) ds +
1∫

γ0

Fn(s) ds

)

=
1∫
fz(s) ds = Az(0).
0
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(ii) If z(0) = 0, then zn(0) → 0. By Lemma 2.3(h5), λ < 0 and τ = inf{ −λn

1+λn
: n ∈ N} > 0.

Hence, λn + λns + s � 0 for s ∈ [0, τ ] and n ∈ N. Since zn(t) �
∫ 1
t

Fn(s) ds for t ∈ (0,1) and
Fn(t) � 0 for t ∈ (0, τ ), we obtain

−(λn + λnt + t) � Gn(t)G
′
n(t) for t ∈ (0, τ ), (2.16)

where Gn(t) = ∫ 1
t

Fn(s) ds. Since Gn is increasing on (0, τ ), we have for γ ∈ (0, τ ),

( 1∫
γ

Fn(s) ds

)2

−
( 1∫

0

Fn(s) ds

)2

� 0.

Integrating (2.16) from 0 to γ , we have
γ∫

0

−(λn + λnt + t) dt � 1

2

[
G2

n(γ ) − G2
n(0)

]
� 0.

This implies
∫ γ

0 −(λ + λt + t) dt � 1
2 [(Az(γ ))2 − G2

n(0)] � 0 for γ ∈ (0, τ ). Taking limit as
γ → 0+ implies (Az(0))2 = limn→∞(Gn(0))2 and

z(0) = lim
n→∞ zn(0) = lim

n→∞

1∫
0

Fn(s) ds = Az(0).

It follows that limt→0+ z(t) = Az(0) = z(0), so z is continuous from the right at 0. Hence, z is
continuous on [0,1]. It follows that (λ, z) is a solution of (1.5). Next, we prove that {zn} con-
verges to z in C[0,1], that is, limn→∞ ‖zn − z‖ = 0. In fact, if not, then there exist ε0 > 0,
a subsequence {zj } of {zn} and {tj } ⊂ [0,1] with tj → t0 ∈ [0,1] such that

‖zj − z‖ = ∣∣zj (tj ) − z(tj )
∣∣ � ε0. (2.17)

By Lemma 2.3(h3) and (h4), we have either t0 = 0 and z(0) = 0 or t0 = 1. If t0 = 0 and
z(0) = 0, then Az(0) = z(0) = 0 and it follows from Lemma 2.3(h5) that zj (tj ) → 0 and
by Lemma 2.1, we have limtj →0+ z(tj ) = z(0) = 0. Hence, we have |zj (tj ) − z(tj )| → 0,
which contradicts (2.17). If t0 = 1, then it follows from Lemma 2.3(h6) that zj (tj ) → 0. Since
z(tj ) → z(1) = 0, we have |zj (tj ) − z(tj )| → 0, which contradicts (2.17). Hence, zn → z in
C[0,1] and Σ is compact in R × C[0,1]. �
3. Compactness on velocity and shear stress functions

In this section we apply Theorem 2.2 and the following known equivalence result obtained
in [10] to prove results on compactness of velocity and shear stress functions.

Lemma 3.1.

(1) If (λ,f ) ∈ R × C2(R+) satisfies (1.1), (1.2), (1.4), then (λ, z) satisfies (1.5), where
z : [0,1] → R+ is defined by

z(t) =
{

f ′′((f ′)−1(t)) if t ∈ [0,1),

0 if t = 1.
(3.1)
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(2) If (λ, z) ∈ (−1/2,∞) × Q satisfies (1.5), then (λ,f ) ∈ R × C2(R+) and satisfies (1.1),
(1.2), (1.4), where f : R+ → R+ is defined by

f (η) =
g−1(η)∫

0

s

z(s)
ds (3.2)

and g : [0,1) → R+ is defined by

g(t) =
t∫

0

1

z(s)
ds. (3.3)

It is shown in [10] that there exists λ∗ ∈ [−0.4,−0.12] such that (1.1), (1.2), (1.4) has at least
one solution for λ ∈ (λ∗,0) and has a unique solution for λ ∈ {λ∗,0}. We denote by Γ the set of
solutions of (1.1), (1.2), (1.4), that is,

Γ := {
(λ,f ) ∈ [

λ∗,0
] × C2(R+): (λ,f ) satisfies (1.1), (1.2), (1.4)

}
.

Let Γ ′ = {(λ,f ′): (λ,f ) ∈ Γ } and Γ ′′ = {(λ,f ′′): (λ,f ) ∈ Γ }. We denote by BC(R+)

the Banach space of continuous bounded functions defined on R+ with the norm ‖f ‖ =
sup{|f (x)|: x ∈ R+}.

Using Theorem 2.2 and Lemma 3.1, we prove the following compactness result.

Theorem 3.1. Γ ′ and Γ ′′ are compact in R × BC(R+).

Proof. Let (λn, fn) ∈ Γ . By Lemma 3.1, there exists (λn, zn) ∈ Σ such that (2.9) holds and

fn(η) =
g−1
n (η)∫
0

s

zn(s)
ds, gn(t) =

t∫
0

1

zn(s)
ds and f ′

n(η) = g−1
n (η).

By Theorem 2.2, one may assume that (λn, zn) → (λ, z) ∈ Σ and there exists (λ,f ) ∈ Γ such
that (3.2) and (3.3) hold and f ′(η) = g−1(η). We prove

lim
t→0+ lim sup

n→∞
gn(t) = 0. (3.4)

In fact, if z(0) > 0, it follows from Lemma 2.3(h4) that there exist δ > 0, b > 0 and n0 ∈ N such
that zn(s) � σ for s ∈ [0, b] and n � n0. This implies gn(t) � t/σ for t ∈ [0, b] and (3.4) holds.
If z(0) = 0, then by Lemma 2.3(h5) we have λ < 0 and there exists n1 > 0 such that λn � λ/2
for n � n1. Since (1 − t)Bzn(t) � zn(t) for t ∈ (0,1), it follows from Lemma 2.2(H1) that

Bzn(t) � zn(t)

1 − t
� 1

1 − t
for t ∈ (0,1).

This, together with (2.11) implies

−λ(1 − t2)

2zn(s)
� −λn(1 − s2)

zn(s)
� z′

n(s) + 1

1 − s
for t ∈ (0,1) and s ∈ (0, t).

Integrating the above inequality from 0 to t , we have

gn(t) � 2
2

[
zn(t) − zn(0) − ln(1 − t)

]
.
−λ(1 − t )
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This implies lim supn→∞ gn(t) � 2
−λ(1−t2)

[z(t) − ln(1 − t)] for t ∈ (0,1) and (3.4) holds.

Let η ∈ R+ and let tn = f ′
n(η) and t = f ′(η). Then tn, t ∈ (0,1) and η = gn(tn) = g(t).

We prove f ′
n(η) → f ′(η). It is obviously true when η = 0, so we assume that η > 0 and

tn → t0 ∈ [0,1]. We prove t0 > 0. In fact, if t0 = 0, then for each γ ∈ (0,1) there exists
nγ ∈ N such that tn < γ for n � nγ . It follows that η = gn(tn) � gn(γ ) and by (3.4) we
have η = 0, a contradiction. By Lemma 2.2(H1), we have zn(s) � s2(1 − s)/2 for s ∈ (0,1).
This implies limn→∞

∫ tn
t0

1
zn(s)

ds = 0. Since g(t) = gn(tn) = gn(t0)+ ∫ tn
t0

1
zn(s)

ds, it follows that
limn→∞ gn(t0) = g(t). On the other hand, we have for γ ∈ (0, t0),

lim
n→∞gn(t0) = lim

n→∞

t0∫
γ

1

zn(s)
ds + lim

n→∞

γ∫
0

1

zn(s)
ds

=
t0∫

γ

1

z(s)
ds + lim

n→∞

γ∫
0

1

zn(s)
ds.

Taking limit as γ → 0+ implies limn→∞ gn(t0) = g(t). Hence, we obtain g(t0) = g(t). Since g

is strictly increasing on (0,1), t = t0 and f ′
n(η) → f ′(η).

In order to prove that Γ ′ and Γ ′′ are compact, it is sufficient to prove that limn→∞ ‖f ′
n −

f ′‖ = 0 and limn→∞ ‖f ′′
n − f ′′‖ = 0. We prove

lim
n→∞

∥∥f ′
n − f ′∥∥ = 0. (3.5)

In fact, if (3.5) is false, then there exist a subsequence {ηnk
} with ηnk

→ η0 ∈ [0,∞] and ε > 0
such that∣∣f ′

nk
(ηnk

) − f ′(ηnk
)
∣∣ � ε. (3.6)

If η0 < ∞, then noting that f ′′
n (η) = zn(f

′(η)) � 1 for η ∈ R+, we have |f ′
nk

(ηnk
) −

f ′
nk

(η0)| → 0. Since∣∣f ′
nk

(ηnk
) − f ′(ηnk

)
∣∣

�
∣∣f ′

nk
(ηnk

) − f ′
nk

(η0)
∣∣ + ∣∣f ′

nk
(η0) − f ′(η0)

∣∣ + ∣∣f ′(η0) − f ′(ηnk
)
∣∣

and |f ′
nk

(η0) − f ′(η0)| → 0 and |f ′(η0) − f ′(ηnk
)| → 0, we have |f ′

nk
(ηnk

) − f ′(ηnk
)| → 0,

which contradicts (3.6). If η0 = ∞, then for each η ∈ R+, there exists n0 ∈ N such that η � ηnk

for nk � n0. Since f ′
nk

is increasing on (0,∞), we have f ′
nk

(η) � f ′
nk

(ηnk
) < 1. Taking limit

implies

f ′(η) � lim sup
nk→∞

f ′
nk

(ηnk
) � 1 for η ∈ (0,∞).

This, together with f ′(∞) = 1 implies limnk→∞ f ′
nk

(ηnk
) = 1. Since f ′(ηnk

) → 1, we have
|f ′

nk
(ηnk

) − f ′(ηnk
)| → 0, which contradicts (3.6). This implies f ′

n → f ′.
Now, we prove limn→∞ ‖f ′′

n − f ′′‖ = 0. For ε > 0, there exists n1 > 0 such that ‖zn − z‖ <

ε/2 for n � n1. Since z is uniformly continuous on [0,1], there exists δ > 0 such that whenever
|t2 − t1| < δ, |z(t2) − z(t1)| < ε/2. Since f ′

n → f ′, there exists n2 � n1 such that ‖f ′
n − f ‖ < δ

for n � n2. Hence we have for n � n2 and η ∈ R+,∣∣f ′′
n (η) − f ′′(η)

∣∣ = ∣∣zn

(
f ′

n(η)
) − z

(
f ′(η)

)∣∣
�

∣∣zn

(
f ′

n(η)
) − z

(
f ′

n(η)
)∣∣ + ∣∣z(f ′

n(η)
) − z

(
f ′(η)

)∣∣
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� ‖zn − z‖ + ∣∣z(f ′
n(η)

) − z
(
f ′(η)

)∣∣
< ε/2 + ε/2 = ε.

This implies limn→∞ ‖f ′′
n − f ′′‖ = 0 and Γ ′′ is compact in BC(R+). �
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