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Abstract

Dane$’ drop theorem is extended to bornological vector spaces. An immediate application is to establish
Ekeland-type variational principle and its equivalence, Caristi fixed point theorem, in bornological vector
spaces. Meanwhile, since every locally convex space becomes a convex bornological vector space when
equipped with the canonical von Neumann bornology, Qiu’s generalization of Danes§’ work to locally con-
vex spaces is recovered.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction
Let E be a vector space. If a € E and B C E, then the drop associated with a and B, which
is denoted by D(a, B), is the convex hull of {a} U B. If B is convex as well, then
D(a,B)y={a+t(b—a):beB, 0<r<1}. (1)
In 1972, Danes [5] proved his renowned drop theorem.
Theorem 1.1. Let A be a complete subset of a normed linear space (E, ||-||), letxo € A, b € E\ A

and B(b, r) the closed ball centered at b with radius r < inf{||b — x||: x € A}. Then there exists
a € AN D(xg, B(b, r)) such that

D(a, B(b,r)) N A={a)}.
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In the two decades after its birth, generalizations of Theorem 1.1 have been made but the
authors mainly working within the Banach setting [7,11,15,18,19]. In 1996, Danes$’ result was
pushed to more abstract spaces. Cheng et al. [4] proved a drop theorem in sequentially-complete
locally convex spaces (see also [8,10]), which was later extended by Zheng [21] to sequentially-
complete topological vector spaces, without assuming any local convexity. However, as pointed
out by Qiu [16], Zheng’s result was reduced to the one in [4] when the underlying space was
locally convex. The contribution of Qiu [16] is the following theorem.

Theorem 1.2. Let A be a locally closed subset of a locally convex space E and B be a locally
closed, bounded, convex subset of E. Moreover, assume that there exists a locally convex topol-
0gy T on E such that 0 ¢ cl7(A — B) (the closure of A— B ={a—b: ac A, be B}in (E,T)).
Then for any xg € A, there exists a € D(xg, B) N A such that D(a, B) N A = {a} provided that
either of the following conditions is satisfied:

(Q1) the local closure of BN L(A) is locally complete, where L(A) denotes the linear manifold
generated by A,
(Q2) A is locally complete.

Recall that a sequence {x,} in a Hausdorff locally convex vector space is locally convergent if
there is a bounded disk B in E such that {x,} is convergent in the normed space (E g, pp) where

EB:UA-B

A>0

and pp is the Minkowski gauge of B: for all x € Ep,
pp(x)=inf{r > 0: x er - B}.
In the following, we do not distinguish pp from its extension to the whole space E defined by

() = inf{r >0: xer-B} ifxeEp,
P =1 4o ifxeE\Eg.

Similarly, {x,} is locally Cauchy if there is a bounded disk B in E such that {x,} is Cauchy in
(EB, pp)- In addition, a subset A of E is locally closed if the limit of every locally convergent
sequence in A remains in A while A is locally complete if every locally Cauchy sequence in A
is locally convergent to some element in A.

Since local-completeness is strictly weaker than sequential-completeness, Qiu’s result gener-
alizes Dane§’ drop theorem to an extremely wide class of locally convex spaces (see the hierarchy
in [3]).

Instead of working in the category of topological vector spaces, we shall proceed in another
direction. We extend Theorem 1.1 to a class of bornological vector spaces. Roughly speaking,
our attention is shifted from the collection of ‘open subsets’ of the underlying space to the collec-
tion of ‘bounded subsets.” One motivation is the recent work of Michor who argued that bounded
subsets, rather than open subsets, should play the fundamental role in infinite-dimensional cal-
culus [13].

This paper is organized as following. After recalling some preliminary results in bornologi-
cal vector spaces in Section 2, of which our main reference is [9], our main theorem is stated
and proved in Section 3. We then apply the main theorem in different contexts in Section 4. On
one hand, counterparts of well-known results in topological vector spaces are transplanted to
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bornological vector spaces. On the other hand, results in sequentially complete locally convex
spaces are strengthened to locally complete locally convex spaces. To be precise, bornological
counterparts of a couple of well-known results in locally convex spaces are proved in Section 4.1,
namely, an Ekeland-type variational principle and a Caristi-type fixed point theorem in bornolog-
ical vector space are obtained in Sections 4.1.1 and 4.1.2, respectively. The equivalence of these
two theorems is also established. In Section 4.2, Qiu’s drop theorem (Theorem 1.2) is recovered.

2. Fundamentals of bornological vector spaces

Throughout this paper, E is a vector space over R and we shall denote the zero vector in E
by Of.

A vector bornology on E is a collection B of subsets of E that satisfies the following condi-
tions:

(B1) x € E implies that {x} € B.

(B2) B; C B, and B; € B implies that B € B.
(B3) Bj, By € Bimplies that B; U By € 5.
(B4) By, B> € B implies that

B+ By ={x1 +x2: x1 € Bi, xp € B} € B.
(B5) For any bounded interval I C R, B € B implies that
I-B={ax:ael, xeB}ehB.

In view of (BY), if B € B, so is its balanced hull By which is defined by B, =[—1, 1] - B.

The ordered pair (E, B) is called a bornological vector space (BVS) and every candidate of B
is called a bounded subset (with respect to 5). We shall simply denote (E, B) by E if there is no
ambiguity.

Example 2.1. Let E = R” and || - || be the usual Euclidean norm on R”. The topology determined
by || - || is denoted by Tporm. We define B to be the collection of all subsets B C R" satisfying

sup{||b||: b € B} < oco. It is easy to see thr;trm(R”, Br )isaBVS.

norm

Lemma 2.2. If x € E and B is a convex subset of E, then

(1) D(x, B) € B whenever B € B,
(2) D(y, B) € D(x, B) whenever y € D(x, B).

A sequence {x,} in E is said to be Mackey-convergent (or M -convergent) to a point x, denoted
by lim®,,_, o0 X = x, if there is a balanced B € B and a sequence of positive real numbers {A,}
such that lim,_, o A, =0 and

X, —x €ly+-B forallneN.

Also, we say that x is a bornological limit of {x,}.

Similarly, a sequence {x,} in E is said to be Mackey—Cauchy (or M-Cauchy) if there is a bal-
anced B € B and a double sequence of positive real numbers {A,,,,} such that lim,, ,— 0o Amn =0
and

X — Xn € A - B forall m,n e N.
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Remark 2.3. It is very easy to check that bornological limits enjoy the following standard alge-
braic properties [9]: if {A,} is a convergent sequence of reals, {x,} and {y,} are M-convergent
sequences in E, then both 1imb,,_>oo(xn + y,) and limbnqoo(knx,,) exist; in addition,

lim® (x, 4+ yn) = lim® x,, 4+ lim® y, (2a)
n—oo n—oo n—oo

and
1im’® (o, x,) =( lim An> : ( lim" x,,). (2b)
n—oo n—oo n— 00

If A C E, then the set of all bornological limits of sequences in A is denoted by A1), Clearly,
AC AD | A issaid to be Mackey-closed (or M -closed) if A= AW,

Remark 2.4. Though the collection of all (complements of) M-closed subsets of E defines a
topology on E, it is rarely a vector topology with respect to the algebraic structure of E (cf. [9]).
In other words, those known results in topological vector spaces do not cover ours.

It is known that, in a general topological space, limit of a convergent sequence need not to be
unique without assuming Hausdorffness. Similarly, a BVS (E, B) is said to be separated if every
M -convergent sequence is M -convergent to exactly one bornological limit.

Remark 2.5. It could be proved [9] that a BVS is separated if and only if there is no non-trivial
bounded subspace in E.

From now on, we will consider only separated BVS.
The following theorem yields the M-closedness of a drop relative to some M -closed set.

Theorem 2.6. If B € B is convex and M-closed, then the drop D(x, B) is M-closed for every
xek.

Proof. Note that for each b € B, D(x — b, B — {b}) = D(x, B) — {b}; and it is easy to see that
D(x, B) is M-closed if and only if D(x, B) — {b} is. We may thus assume that Og € B. Suppose
that z is the bornological limit of a sequence in D(x, B). Then there exists a sequence {(b,, t,)}
in B x [0, 1] such that limbn_mo(l — )X + t,b, = z.

As every subsequence of {(1 — #,)x + ,b,} will be M-convergent to z as well, by passing to
a subsequence if necessary, we may further assume that lim,,_, o t,, = fo, which is in [0, 1]. As

(I —t)x — (1 —to)x = (to — tp)x € (fo — ty) - {x} C |to — tu] - {x}p
for all n € N, limbn_mo(l — ty)x = (1 — t9)x, whereby {z,b,} is M-convergent (cf. (2a)). We
claim that limbnﬁoo tyby €ty - B. Consequently,
z=(1—19)x + lim” t,b, € (1 —19)x + 1o - B C D(x, B)
n—>oo

and we are done.
Since we shall need the above claim later, it is worth treating it separately in the coming
Lemma2.7. O

Lemma 2.7. Let B € B be M-closed. If {t,} is a sequence of positive real numbers convergent
tot and {b,} is a sequence in B such that {t,b,} is M-convergentto b € B, thenb €t - B.
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Proof. Note that
tb,€t,-BCt, B, forallneN.

If limy, o0 f, = 0, then lim®,,_, o0 1,6, = 0. Since E is separated, b =0 € 0 - B as claimed.
Now we turn to the case ¢ > 0. By considering a subsequence of {z,} if necessary, we may
assume that 7, > 0 for all n € N. Observe that lim,,_, o, 1/t, = 1/t and hence, with the aid of (2b),

i’ by = lim’ [ = - (taby) | = hm——-(h Mm):-a
n—00 n—o0o tn n—o00 tn n—o00 t
Since B is M-closed,bet-B. O

A common feature of all those known drop theorems in a topological vector space (E, 7T) is
the ‘separateness’ between A and B (e.g., Theorems 1.1 and 1.2), which could be encoded in
the form O ¢ cl7 (A — B). To describe its counterpart in BVS, we need the notion of bornivorous
subsets.

Definition 2.8. Let (E, B) be a BVS. A subset A C E is bornivorous if it absorbs every bounded
subset of E. To be precise, for all B € B, there is A9 > 0 such that

[0,40] - B C A.

Remark 2.9. It is well known [9] that a set A is bornivorous if and only if

0¢ (E\ AW,

To end this section, we introduce a kind of completeness in a BVS, which we shall employ in
later discussion.

Definition 2.10. Let (E, B) be a BVS. A subset A of E is Mackey-complete (or M-complete) if
every M-Cauchy sequence in A will be M-convergent to some element in A.

Lemma 2.11. Let (E, B) be a BVS and suppose that B € B is convex and M -complete. Then, for
allAeRanda € E, both A - B and the drop D(a, B) are M-complete.

Proof. Let {b,} be an M-Cauchy sequence in A - B. We need only consider the case A # 0. By
definition, b, = Abj, for some b), € B. Also, there are a balanced B; € 3 and a double sequence
of real numbers {1, ,,} such that lim, ;00 An.m =0 and

by — by =2 (b}, — b},) € hnm - By

Clearly, b, — b, € Apm/X - By and limy, 00 An,m /2 = 0. It follows that {b},} is M-Cauchy
in B and hence is M-convergent to some b, € B. It is easy to show that {b,} is M-convergent to
Aby € AB.So A - B is M-complete.

We proceed to prove the M-completeness of D(a, B). As explained in the proof of Theo-
rem 2.6, we may assume that Og € B.

Let {a + t,(b, — a)} be a M-Cauchy sequence in D(a, B). In view of the next Lemma 2.12,
it suffices to prove that {a 4 t,(b, — a)} has a M-convergent subsequence.

Suppose that {z,, } is a convergent subsequence of {#,} and limy_, o #,, = . Then

[ =ty)a] = [ =na] =t =ty )a €|t = ta| - {a}h.
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As aresult, {(1 —1,,)a} is M-convergent to (1 —t)a. Note also that O € B and hence (1 —1t)a €
D(a, B).

Since M-convergent sequences are M-Cauchy and the sum of two M-Cauchy sequences is
M -Cauchy as well, we may thus conclude that {t,,b,,} is M-Cauchy. Since B is convex, con-
tains 0, and 1, € [0, 1] for all n, we conclude that {#,, b,, } is a M-Cauchy sequence in B. By the
M-completeness of B and Lemma 2.7, {t,,b,,} is M-convergent to some element tb for some
beB.

In conclusion, limbk%oo[a +tn, (by, —a)l=a+t(b—a) € D(a, B) and thus {a +1,, (b,, —a)}
is a convergent subsequence of {a + #,(b, —a)}. O

Lemma 2.12. If {x,} is a M-Cauchy sequence and {xp,} is a subsequence M-convegent to x,
then {x,} is also M -convergent to x.

Proof. Since {x,} is M-Cauchy, there is a balanced B; € B and a double sequence {X,, ,} such
that

lim Ap,=0 and x, —Xxmu €Apm- B1.
n,m—00

On the other hand, {x,,} is M-convergent to x implies that there is a balanced B, € B and a
sequence of real numbers {A,, } such that

lim A,, =0 and x, —x €A, -B>.
k—00

Then, we define
B=(BiUByU{x, —x:n=1.2,....,n; —1}),

and

1 if1<n<ny,
Hn = max{r,,, Ang,} if ng <n <ngyg.

Note that B € B by (B3) and (BS5), and in addition, lim,,_, o, i, = 0. Clearly, x, — x € u,, - B if
1 <n<ny. Ifn > n satisfying ny <n < ng41, then

{xp —x}= {(xn _xnk) + (xnk _x)} - )\n,nk - By +)¥nk By Cu,-B

as well. Consequently, {x,} is M-convergent to x as claimed. O

Finally, the following lemma demonstrates a relation between M-closedness and M-com-
pleteness.

Lemma 2.13. Let (E, B) be a BVS and A C E be an M-complete subset. Then A is M-closed.
On the other hand, if (E, B) is M-complete and A C E is M-closed, then A is M-complete.

3. Drop theorem in bornological vector spaces

Let A and B be subsets of a BVS (E, B). For each xg € A, we set
Cyy = D(xp, B) — B.

We first present a key lemma.
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Lemma 3.1. If B € B, B is convex, and E \ (A — B) is bornivorous, then Cy, is convex and
bounded. In addition, for each x € A N D(xg, B) and ¢ > 0, there exists a(x,e) € D(x, B) N A
such that

sup pc,(alx,e) —y) <e.
yeAND(a(x,e),B)

Proof. As (E,B) is a BVS and B € BB, by Lemma 2.2(1), Cy, € B. Moreover, since D(xq, B)
and — B is convex, Cy, is convex.
We then claim that for each x € A N D(xg, B),

oy = infpcxo ((A N D(x, B)) - B) € (0, 1]. 3

Instead of proving this claim, we assume it and proceed. Fix x € A N D(x¢, B) and & > 0.
Then there exist b(x, ) € B and a(x, &) € AN D(x, B) such that

Pcy, (a(x,e) = b(x,e)) < (1+&)ay. @
We are going to establish that

sup pe, (ax,e) —y) <e.
yeAND(a(x,e),B)

Let y € AN D(a(x,¢), B) be arbitrary. By definition, y = (1 — t)a(x, €) + tb for some
t €[0,1] and b € B. On one hand,

pcy(atx.e) = y) = pe,, (t(alx, &) = b)) = tpc, (alx, &) = b) <1, 5)
where the second equality follows from the positive homogeneity of PCy, and the last equality
follows from

la(x,e) —b} € D(x,B) — B S D(xo, B) — B=Cx,
and Lemma 2.2(2).
On the other hand, y — (tb 4+ (1 — t)b(x,¢)) € (AN D(x, B)) — B and hence, with the aid
of (3) and (4),
ar < pey, (v = (1h+ (1 = D)b(x, )))
=pc, (1 =0)(ax, &) = b(x,8))) = (1 = 1) pe, (a(x, &) = b(x, )
< (1 = Dax(l+¢).

As oy > 0, we have t < (1 — t)e < €. Combining this with (5), we are done.
It remains to establish (3) for any x € AN D(xp, B). On the one hand, for each x € D(xo, B),
D(x, B) C D(xg, B) by Lemma 2.2. It follows that

(AND(x,B)) — B C Cy,

and hence ay < 1. On the other hand, since E \ (A — B) is bornivorous and C,, is bounded, there
is a positive real number Ag > 0 such that [0, Ag] - Cx, € E \ (A — B), whereby

([O, Aol - CXO) N(A—B)=0.
As aresult, for each x € AN D(xg, B),

pc, ((AND(x, B)) = B) € pc, (A — B) S [0, 0]
The proof of Lemma 3.1 is completed. O

We need one more notion before we state our main Theorem 3.3.
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Definition 3.2. Let (E, B) be a BVS. Suppose that A, B C E. We say that A is drop-Mackey-
complete relative to B if every M-Cauchy sequence {x,} in A satisfying

Xn41 € D(x,, B) forallneN,
is M-convergent in E.
Theorem 3.3. Let (E,B) be a BVS. If A C E is M-closed, B € B is M-closed and convex,

E \ (A — B) is bornivorous, and A is drop-Mackey-complete relative to B, then for all xo € A,
there exists a € D(xg, B) N A such that D(a, B) N A = {a}.

Proof. Using Lemma 3.1, we can construct a sequence {a,} in A recursively by setting a; = xg
and a,4+1 = a(ay, 1/n) sothata; € D(xp, B) N A, ay4+1 € D(an, B)YN A, and

(6)

S| =

sup pcy, (an —y) <
yeD(an,B)NA
for all n € N.
Firstly, we claim that {a,} chosen in this way is M-Cauchy. Since a,+1 C D(a,, B), in view
of Lemma 2.2(2), for all k € N,

D(aptk, B) € D(aptk—1,B) C--- € D(apy1, B) € D(ay, B). (N
By (6), forall k e N, Py, (an — ap+tk) < 1/n and thus

1
Aptk — Qp € ; [Cxolb-

Therefore, {a,} is M-Cauchy as claimed. Since A is drop-Mackey-complete relative to B and A
is M-closed, there exists a € A such that lim’,,_, o0 a, = a.
Secondly, we shall prove that

D(a.B) < (| D(an. B). (8)

n=1

In fact, for each n € N, the hierarchy in (7) implies that the truncated sequence {a;,+1, an+2, ...}
is a M-convergent sequence in D(ay, B), which is M-closed by Theorem 2.6. As a result,
a € D(ay, B) for every n € N. Again, in view of Lemma 2.2(2), we have D(a, B) C D(a,, B)
for all n € N. We have thus established (8).

Thirdly, we shall show that D(a, BYN A ={a}.If x € D(a, B)N A, then x € ﬂ;’;l D(ay, B)
by (8). Applying (6), we have

1
prO (ap —x) < —
n

for all n € N, which simply means that lirnb,,_>oo a, = x. As E is separated, x must be a.
It remains to prove that a € D(xg, B). By (8), a € D(aj, B). In addition, by our choice of a;
and Lemma 2.2(2), D(a;, B) C D(xq, B). The result follows. O

An essential assumption in Theorem 3.3 is that A is drop-Mackey-complete relative to B.
Clearly, if A is M -complete, then A is drop-Mackey-complete relative to B. The same conclusion
is also valid when B is M-complete.
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Lemma 3.4. If either A or B is M-complete, then A is drop-Mackey-complete relative to B.
The following corollary is immediate.

Corollary 3.5. Let (E,B) be a BVS. If A C E is a M-closed, B € B is M-closed and convex,
E \ (A — B) is bornivorous, and moreover, either A or B is M-complete, then for all xy € A,
there is a € D(xo, B) N A such that D(a, B) N A = {a}.

4. Applications

In this section, several applications of Theorem 3.3, to be more precise, Corollary 3.5, are
illustrated. We divide them into two categories: in separated bornological vector spaces and in
Hausdorff locally convex spaces.

4.1. In bornological vector spaces

It is well known that the following three theorems are equivalent: Danes’ drop theorem, Eke-
land’s variational principle, and Caristi fixed point theorem (see [6] or [15] when E is Banach;
and see [21] for general topological vector spaces). We shall transplant some of these results to
bornological vector spaces.

4.1.1. Ekeland-type variational principle
Let (E,B) be a BVS and B7__ be as defined in Example 2.1. Then (E x R, B x BT

norm norm ) 18

also a BVS. In addition, B; x By € B x By, is balanced if and only if both B; and B; are

norm

balanced. The following lemma is another simple observation.

Lemma 4.1. If {(x,, t,)} is a M-Cauchy sequence, then {t,,} is convergent and {x,} is M -Cauchy.
In case that {(x,,t,)} is M-convergent, {x,} is M-convergent too. To be more precise, if
limbn_,oo(xn, t,) = (x, 1), then M’y 00 Xn = X and limy,_ oo 1, = £.

We state first our Ekeland-type Variational Principle in BVS.

Theorem 4.2. Let (E, B) be a BVS equipped with a subadditive, positively homogeneous funtion
P:E— RU{4oo}. If f: E — RU {400} is bounded from below, i.e., infxcg f(x) > —00, and
there exists xo € E such that f(xo) < +o00o and satisfies the following conditions:

(EVP1) the intersection of the epigraph of f and E x (—oo, f(x0)],
A={(x,n) € ExR: f(x) <1< flxo)},

is M-closed in (E xR, B x Bz, );
(EVP2) the set

C={er: P(x)gl}

is M-closed and bounded,
(EVP3) either {x € E: f(x) < f(x0)} or C is M-complete.
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Then, for all € > 0, there exists x. € E such that

f(xe) +eP(xe — x0) < f(x0), (%a)
fx)+eP(x —x¢) > f(xe) forall x # xe. (9b)

Before we present its proof, we state without proof two simple lemmas. In the sequel, we shall
employ the same notations as in Theorem 4.2.

Lemmad4.3.If{x € E: f(x) < f(x0)}is M-complete and (EVP1) holds, then A is M-complete.

Lemma 4.4. If P: E — R U {+o0} is a subadditive and positively homogeneous function, then
C is convex. If, in addition, C is bounded, then x # 0 implies that P(x) > 0.

We need also the following technical lemma, of which the proof is deferred to the end of this
section.

Lemma 4.5. Suppose that f is bounded from below (cf. Theorem 4.2). Let m = inf{t: (x,1) € A}
and P : E — R U {oo} be a subadditive, positively homogeneous function. We set for ¢ > 0,

e}

1
B:{(x,m—l): X €
Then

(1) B is convex,

(i) (E x R)\ (A — B) is bornivorous,
(iii) B is M -closed and bounded provided that (EVP2) holds,
(iv) B is M-complete whenever C is.

Assuming these lemmas, we present the proof of Theorem 4.2.

Proof of Theorem 4.2. Without loss of generality, we may assume that f (xg) =0 and xo =0g.
Thus, m = inf{t: (x,1) € A} <O.
First of all, under the assumptions (EVP1)~(EVP3), and according to Lemmas 4.3 and 4.5,
the hypotheses of Corollary 3.5, applied to A from (EVP1) and B from Lemma 4.5, are satisfied.
As a result, we get a pair (x¢,7) € D((0g, 0), B) N A such that

D((x,7), B)NA={(xc,1)}.

We claim that

P(xe) < _?t and  f(x;)=T1. (10)

Once (10) is established, we are ready to prove (9a) and (9b). In fact, (9a) follows immediately
from (10):

fxe) +eP(xe) <t —1=0= f(xp).
Next, we establish (9b). Let x € E \ {x.}. By Lemma 4.4,
P(x —x¢)>0.

We investigate the two mutually exclusive cases (x, f(x)) ¢ A and (x, f(x)) € A separately.
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Case I: (x, f(x)) ¢ A. It follows that f(x) > 0. Hence
S +eP(x —xe)>02 f(xe)

and we are done.

Case 2: (x, f(x)) € A. Assume to the contrary that

F&x)+eP(x —xp) < fxe). (11)
We shall prove that (x, f(x)) € D((x¢, 1), B). However, if it were the case, then (x, f(x)) €
{(x¢, 1)} and hence x = x;. It contradicts our choice of x. Therefore, (11) must be violated and
therefore (9b) holds.
Now we proceed to prove that (x, f(x)) € D((xe, 1), B) provided that (11) is valid. In view
of (10), it amounts to establish

(x, f(x)) € D((xe, f(xc)), B). (12)
By the definition of m and the positivity of P(x — x;), we have

m—1< f(x) < f(xe).
It follows that
flxe)—m+1 -
fxe) = f(x)
Further, a direct computation yields that
fx)—m+1

(x, f0) = ) —mt1 (xe. f(xe))
Jx)—m+1 fxe) —m+1
i (1 R 1) | (’” FGn = f TR 1)’

Thus, (12) is proved provided that

<x5+f(xa)—m+1

P = fo & TR 1) <5

ie.,

flxe)—m+1 1—m
P(’C‘Q+ FOe) — @) (X_XS))g e

Indeed, by (10), (11) and the sublinearity of P, we have

p(xé3 + M(x —Xs)) < P(xs) + Mp(x —X,)

fe) = f@) fxe) — f(x)
< P(xg) + fe) =m+1 flxe) = f(x)
f(xé‘)_f(.x) e
g__t_ t__m*‘l:l—m.
& e e
Therefore,
fxg)—m+1
(e ey e m 1) €5

as claimed.
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It remains to justify our claim (10).
Since (x,, 1) € D((0g, 0), B), there exist A € [0, 1] and (b, m — 1) € B such that

(xe, 1) = (Ab, M(m — 1)).
It follows that ¢ /(1 —m) - b € C and —f = A(1 — m), whereby

P(xs)zk(le_m) -P( £ b><M=_—’.

l—m £ e
The first assertion in (10) is thus established. We proceed to prove that r = f (x,).
Note that (x¢,7) € A implies that f > m > m — 1 and hence

1—m
P(xe) < .
£

Therefore, x; € (1 —m)/e - C,i.e., (x;,m — 1) € B.
Recall that A\(m — 1) =7 > f(x.) > m — 1. So, there is € [A, 1) such that

fxe) =p(m—1).
Using this u, we see that

_l=p - 1—u
(x&f(xs))— m(xe,t)‘f‘ <1 - m)(xs,m— 1)

and therefore (x., f(x¢)) € D((x¢, 1), B).
Clearly, f(x.) <0, whereby (x¢, f(x¢)) € D((x¢, 1), B) N A = {(x,,7)}. Hence,  must be
f(xg). This finishes our proof of (10) and thus the proof of Theorem 4.2. O

Proof of Lemma 4.5. (iv) is trivial. Meanwhile, (i) follows from the convexity of C, which is
asserted in Lemma 4.4.
We proceed to prove (ii). Suppose the contrary. In view of Remark 2.9, we can find sequences
(xn. tn) € A and (x,, m — 1) € B such that
L’ (x, =y, 1 —m +1) = 0. 0).
By Lemma 4.1, lim,,_, o , = m — 1. But this is impossible as #,, > m > m — 1 forall n e N.
Finally, we establish (iii). By (EVP2), C € B and therefore

B=|:1 8'" ~C} x {m — 1} € B x Bg.
It remains to show that B is M-closed. Suppose that {(x,,m — 1)}, is an M-convergent se-
quence in B with limbn_mo(xn, m — 1) = (x,r), where x € E and r € R. We shall show that
(x,r) € B.
It follows immediately from Lemma 4.1 that limb,Hoo xp =x and r =m — 1. It is easy to
see that (1 —m)/e - C is M-closed whenever C is M-closed. Thus, x € (1 —m)/e - C. We are
done. O

4.1.2. Caristi-type fixed point theorem

In this section, an extension of the well-known Caristi fixed point theorem [1] to BVS is
presented. Indeed, we may better call it Browder—Caristi fixed point theorem: according to
Caristi [2], it is a strengthened form suggested by Browder. Though the original theorem handled
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only single-valued functions, the proof is valid for set-valued functions with ad hoc assumptions.
Moreover, we would like to remark that Caristi-type fixed point theorem has already been estab-
lished in different topological spaces in the past decades; for instance, it has been extended to a
partially ordered complete metric space by Mizoguchi [14] and to a topological vector space by
Qiu [17]. We denote the collection of all nonempty subsets of E by 2.

Theorem 4.6. Let (E,B) be a separated convex BVS and T : E — 2F be a set-valued map.
Suppose that there is a subadditive, positively homogeneous function P: E — R U {400} with
C={xeE: P(x)<1}

being M -closed and bounded. Suppose also that there are a function f:E — R U {400} which
is bounded from below and a point xo € E such that f(xg) < 400 and the set

{0 € ExR: f(0) <1< f(x0))
is M-closed. If

(1) either {x e E: f(x) < f(x0)} or C is M-complete, and
(2) forallx € E,

P(y—x) < f(x) = f(y) forsomeyeT(x), 13)

then T has a fixed point, i.e., there is x € E with x € T (x).
In addition, if (13) is strengthened to

P(y=x)< f(x) = f(y) forallyeT(x), (14)

then there exists x € E such that T (x) = {x}.

Proof. Under the given hypothesis, A, C, and P satisfy (EVP1)-(EVP3). Let ¢ € (0, 1) be fixed.
In view of Theorem 4.2, we could find x, such that (9b) holds.

Suppose that (13) is true. Then take y € T (x;) so that the inequality in (13) holds. If 7" has no
fixed point, then y # x.. By (9b),

fFO)+eP(y—x¢) > f(xe).
It follows that

eP(y —x¢) > f(xe) — f(y) 2 P(y — x¢).

But it is impossible. Therefore, T must have a fixed point.

Now suppose that (14) is true. If there exists y € T (xg) \ {x.}, then we may proceed as
above and arrive at a contradiction. In other words, T (x;) € {x,}. But T (x;) # @ implies that
T(xe)={xe}. O

To end this section, we shall show that Theorems 4.2 and 4.6 are indeed equivalent, as their
topological vector space counterpart.

Theorem 4.7. Ekeland’s variational principle (Theorem 4.2) is equivalent to Caristi fixed point
theorem (Theorem 4.6).
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Proof. We have seen that Caristi fixed point theorem is a consequence of Ekeland’s variational
principle. It remains to establish the converse.
Suppose that Ekeland’s principle is not true. Then there is &9 > 0 such that for all x € E, either

fx) +eoP(x —x0) > f(x0)
or there is y, € E \ {x} satisfying
F) < f(x) —eoP(yx — x).

Firstly, we set P =goP.Then P is again a subadditive, positively homogeneous function from E
to R U {oo}, and the set

- ~ 1
C={xeE: P)L1l}=- -C
€0
is M -closed and bounded as well.
Secondly, let

S={xeE: f(x)+ P(x —x0) < f(x0)}.
Clearly, xg € S. Define f: E — RU {400} by

fx) ifxes,

FO=1400 ifxeE\S,

and T : E — 2F by

Ty [ PEENEE FOI<F@) - Py-n) ifxes,
{xo} ifxeE\S.

Since y, € T(x) whenever x € S, we have T (x) # ) for all x € E. In addition, as xp € S, we
may conclude that 7" has no fixed point.

Note that T satisfies (14) with P and f being replaced by P and f , respectively. To see this,
we divide into two cases: x € E\ S and x € S. When x € E \ S, observe that f(x) = 400
and T (x) = {xo}; thus (14) follows immediately. When x € S, observe that f x) = fx) is
finite, by the definition of S, which in turn implies that f(y) is finite for any y € T'(x) as well.
Consequently, (14) holds as claimed.

Further, if

A={E0: fO<t< fof={G.0:x eS8, fx) <t < fxo)} (15)

is M-closed, then T has a fixed point in view of Theorem 4.6. A contradiction arises and we are
done.

It remains to prove the M-closedness of A and we shall present its proof in the following
lemma. O

Lemma 4.8. Suppose that all hypotheses of Theorem 4.2 hold. Then A, defined in (15), is
M-closed.

Proof. We shall continue using the notations of Theorem 4.7 and its proof. Let (z,s) € [A]D
and {(x,, t;)} be a sequence in A such that

im® (x,, 1) = (2, 5).
n—oo
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As {(x,, t,)} is also a sequence in A and A is M-closed, we have (z, s) € A. It remains to prove
thatz € S.

Note that { f (x;)} is bounded above by f(xp), and since f is bounded below, the sequence
{f(xn)} has a convergent subsequence { f (x,,)}. We put limy_, » f(x,,) = . In addition, by
definition,

f(xn) + P(xn, —x0) < f(xo) forall keN. (16)

Firstly, if there are infinitely many x,,’s being equal to xp, then Hm®,,—s 0o Xn = X0 by
Lemma 2.12. Since E is separated, xo = z and we are done.

From now on, by resorting to a subsequence if necessary, we shall assume that x,, # xo for
all k € N. Moreover, we claim that f(z) < «. Suppose not. Then there is K € N such that

a+ f(2)
2

SOy < < f(z) forallk > K,

whereby (x,, , (¢ + f(z))/2) isasequence in A. But Hm®s—s o0 Xn , = z implies that lim® s oo (Xn,
(a4 f(2))/2) = (z, (@ + f(2))/2). But, (z, (¢ + f(z))/2) ¢ A! Contradicting the fact that A is
M -closed. It establishes our claim that f(z) < «. We shall now digress to two cases: « = f(xg)
and o < f(xp).

We treat the case a = f(xo) first. As x,,, # xo, we have ﬁ(x,,k —x0) > 0 for all k € N (cf.
Lemma 4.4); in addition, according to (16), we have limj_, I3(x,,k — x0) = 0. As aresult,

~ xnk —xO ~ ~
X — X0 = P(xp, —x0) - =————— € P(xy, —x0) - [Clp,
P(xnk - .X())

which is balanced and bounded, and hence limbkeooxnk = x¢. But E is separated implies that
z=x9€S.

Finally, we treat the case that o« < f(xp). Without loss of generality, we may assume that
S (xn) < f(xo) for all k € N. It follows from (16) that

(Fon=rtm)
Pl ——— ) <1,
fxo) — f )

i.e.,

Xnp — X0 c C,
f(x0) = f(xny)

However, as

lim® _ w7 X0 lim —— . lim® (Xp, — X0) = Lo
k—oo f(x0) — f(xn) k—oo f(x0) — f(xn) k—oo S (x0) —

and Cis M -closed, we have
P <7Z — %0 ) <1
fxo) —«
In particular,

@)+ P(z—x0) <a+ P(z—x0) < f(x0).

Thatis, z € S as claimed. O
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4.2. In locally convex spaces

In this section, we show that how Theorem 3.3 improves some known results in locally convex
space (LCS). In the sequel, all LCS’s are Hausdorff.

Let (E,7) be a LCS and {p;};c; be a family of continuous semi-norms generating the topol-
ogy 7. We set

Br ={B C E: Bisboundedin (E,T)}.

It could be checked that By is a bornology. We called it the von Neumann bornology associated
with 7. Recall that B C E is bounded if for any neighbourhood V of 0 in E, there is Ao > 0 such
that [0, Ag] - B C V. Since there is a neighbourhood base at 0 consisting of convex open sets, the
convex hull of every B € Br, denoted by B., remains in B (in sophisticated terms, a bornology
having this property is called a convex bornology). As a result, if B € By is balanced, then B is
a bounded disk.

The following lemma demonstrates that the class of locally convergent/locally Cauchy se-
quences in (E,7) and the class of all M-convergent/M-Cauchy sequence in (E, Br) are the
same.

Lemma 4.9. Let (E, T) be a LCS and By be the associated von Neumann bornology. A sequence
{xn}in (E,T) is locally convergent if and only if it is M -convergent in (E, Br); and it is locally
Cauchy if and only if it is M-Cauchy in (E, Br).

Proof. Suppose that {x,} is locally convergent to xo. By definition, there is a bounded disk B
such that lim,_, o, pp(x, — x9) = 0. Note also that, for every n € N, x, — xg € [(1 + 1/n) X
pB(xn —x0)]- B. Since lim, oo [(1+ 1/n) pp (x, —x0)] = 0, we conclude that limb,,_)C><J Xp = XQ.
Conversely, suppose that 1im’,,_, 5 x, = xo. So we could find a balanced bounded set B and a
sequence of positive real numbers {A,} such that lim, ,coc A, =0and x, —xg € A, - B C A, - Be..
Recall that B. is a bounded disk. Clearly,

0< pp,(xy —x0) <Ay, forallneN.

By the Sandwich principle, lim,—  pg.(x, — x0) = 0. Therefore, {x,} is locally convergent
to xo. The equivalence between locally Cauchy and M-Cauchy sequences is analogous and is
therefore omitted. O

We are now able to state a general drop theorem in locally convex spaces, which is a direct
consequence of our main theorem (Theorem 3.3).

Theorem 4.10. Let (E,7T) be a LCS and A be a locally closed subset of E. If B € B is locally-
closed and convex, 0 ¢ (A — B)V, and A is drop-Mackey-complete relative to B, then for all
X € A, there is a € D(xg, B) N A such that D(a, B) N A = {a}.

Proof. In view of Remark 2.9 and Lemma 4.9, it is simply a restatement of Theorem 3.3. O
Since there are both a topological structure and a bornological structure on E, a sequence

could be convergent topologically or bornologically. The following lemma tells us how these
convergence concepts are related. Note that it works for arbitrary topological vector spaces.
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Lemma 4.11. Let (E,7T) be a topological vector space. Then, every M-Cauchy sequence in
(E, Br) is Cauchy and every M-convergent sequence is convergent. As a result, if A C E is
closed, then it is M -closed.

Proof. Let {x,} be an M-Cauchy sequence. Then there is a balanced B € By and a double
sequence of real numbers {A, ,} such that lim, ;00 An,m =0 and

Xp — Xm € Apm - B.
Suppose that V is a neighbourhood of Og. Then, as B is bounded, there is o > 0 such that
[0,0] -BC V.

For this o > 0, there are N, M € N such that |1, | <« whenever n > N and m > M. In other
words, x, — x,, € V whenever n > N and m > M. As aresult, {x,} is Cauchy. In case that {x,}
is M-convergent, the proof is similar and is omitted.

Finally, let {x,} be a M-convergent sequence in A. By the above discussion, {x,} will be
convergent. Since A is closed, we are done. 0O

Before we show that Theorem 1.2 by Qiu is a particular case of Theorem 4.10, however, we
would like to add one remark on an assumption therein, namely, O ¢ cl; (A — B) for some locally
convex topology T on E. One should be careful that 7 is not completely arbitrary but with which
A is kept to be locally closed while B is kept to be locally closed and locally bounded in (E, 7)
as well.

In fact, it is the content of Mackey’s theorem [12] which gives a precise description of all such
locally convex topology.

Lemma 4.12. Let (E,T) be a LCS and E* be its topological dual. Now suppose that T is a
topology of the pair (E, E*), i.e., (E, 1) is locally convex and (E, t)* = E*; then

(1) B is convex implies that clT B =cl; B and

(2) B € Br ifand only if B € B;.

In addition, a locally convex topology t on E is a topology of the pair of (E, E*) if and only if
o(E,E*) St CT(E,EY),

where o (E, E*) and t(E, E*) denote the weak topology and Mackey topology on E, respec-

tively.

Now, we are ready to propose a version of Theorem 1.2.

Theorem 4.13. Let A be a locally closed subset of a LCS (E,T) and B be a locally closed,
bounded, convex subset of E. Moreover, assume that 0 ¢ cl.(A — B) for some locally con-
vex topology t lying between o(E,E*) and t(E, E*). Then for any xo € A, there exists
a € D(xo, B) N A such that D(xo, B) N A = {a} provided that either (Q1) or (Q2) is satisfied.

Proof. By definition, B € Br. Moreover, A, B are M-closed by Lemma 4.9 while E \ (A — B)
is bornivorous according to Remark 2.9.
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We claim that either one of (Q1) and (Q2) will imply that A is drop-Mackey-complete relative
to B. Then our assertion will follow from Theorem 4.10 immediately.

We proceed to prove that A is drop-Mackey-complete relative to B. Let {a,} be a M-Cauchy
sequence in A with a,41 € D(a,, B) for all n € N. By Lemma 4.9, it is locally Cauchy.

Clearly, if (Q2) holds, it must be locally convergent and hence is M-convergent according to
Lemma 4.9.

Now suppose that (Q1) holds. Note that a,1 € D(a,, B) implies that there are ¢,, € [0, 1] and
b,, € B such that

an+1 = (A = ty)ay + tyby,

for all n € N.
If there is a subsequence {ay, } of {a,} such that

an1:an2:"':ank:"',

then we are done by Lemma 2.12. So, by considering a subsequence if necessary, we may assume
that a, 41 # a,, for all n € N. It follows that #,, # O for all n € N. As a result,
1 1—1¢,

by = —any1 —
In n

and hence, by Lemma 2.2(2),

ay € BN L(A)

an+1 € D(an, BNL(A)) C--- < D(ar, BNL(A)) € D(ar, [BNL(A)]")

for all n € N. In other words, {a,} is a M-Cauchy sequence in D(aj, [B N L(A)D).

As BN L(A) C B, we have [BN L(A)]Y < BY = B as B is M-closed. Therefore [B N
L(A)]D is bounded by (B2). We claim that [B N L(A)]V is convex. To prove this claim, we
let z1, z2 € [BN L(A)]Y, @ € (0, 1); and we shall show that (1 — )z +azz € [B N L(A)]D.
Let {u,} and {v, } be sequences in BN L(A) with z]; = lim®,,_ oo 4, and 7o = lim’,,, oo vy, Since
BN L(A) is convex, {(1 —a)u, +av,}is a sequence in B N L(A) and

lim® [(l —a)uy, +avn] =(1—-a) lim® U, +o lim” v, = —a)z1 +az.

n—0oo n—oo n— 00
In conclusion, [B N L(A)]V is bounded and convex, which is also M-complete by (Q1). We can
then apply Lemma 2.11 and conclude that D(ay, [B N L(A)]V) is M-complete. Consequently,
{a,} is M-convergent. Finally, lim’,_, o a, € A as A is M-closed. Therefore, A is drop-Mackey-
complete relative to B as claimed. O

We end this section with a variant of drop theorem in LCS’s, which asserts that the drop
property will be valid on a whole spectrum of LCS’s whenever it holds somewhere between the
weak topology and the Mackey topology.

Theorem 4.14. Let (E,7) be a LCS and A be an M-closed subset of (E,Br). If B € By is
T’ -closed, convex and 0 ¢ cl7:(A — B) and A is drop-Mackey-complete relative to B, where T’
denotes a locally convex topology on E with T CT' C t(E, E*). Then for any xq € A, there is
a € D(xg, B) N A such that D(a, B) N A = {a}.

Proof. Firstly, according to Theorem 4.12, B € By and A is M-closed as well as drop-Mackey-
complete relative to B in (E,7"). Secondly, 7 € 7' implied that 0 ¢ cl7/(A — B). Lastly, B is
M-closed by Lemma 4.11. By Theorem 4.13, we are done. 0O
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Remark 4.15. In view of Lemma 4.9, one could easily deduce the topological counterparts of
Theorems 4.2, 4.6 and 4.7 in a locally complete LCS (see also a recent paper by Qiu [17]).

5. Conclusion

In this work, Danes§’ drop theorem is extended to bornological vector spaces. On the one hand,
an Ekeland-type variational principle, and hence the equivalent Caristi-type fixed point theorem,
is proved to be valid in general bornological vector spaces under some mild completeness con-
ditions. On the other hand, this suggests the possibilities to extend several well-known results in
analysis beyond sequentially complete spaces.

One motivation to this project is the infinite-dimensional calculus developed by Kriegl and
Michor [13], which depends only on the von Neumann bornology of the underlying locally con-
vex space. In other words, we have developed tools available in a very general class of locally
convex spaces, namely, convenient spaces (see [13]). Our work may shed new lights on analy-
sis (for example, optimization problems) in infinite-dimensional spaces beyond Fréchet spaces
(see [20)).
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