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The motion of Korteweg fluids is governed by the Euler–Korteweg model, which admits
planar solitary waves for nonmonotone pressure laws such as the van der Waals law below
critical temperature. In an earlier work with Danchin, Descombes and Jamet, it was shown
by variational arguments and numerical computations that some of these solitary waves
are stable in one space dimension. The purpose here is to study their stability with respect
to transverse perturbations in several space dimensions. By Evans functions techniques and
Rouché’s theorem, it is shown that transverse perturbations of large wave length always
destabilize solitary waves in the Euler–Korteweg model, whereas energy estimates show
that perturbations of short wave length tend to stabilize them.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

A Korteweg fluid is by definition endowed with internal capillarity, and sensitive to surface tension effects. Capil-
lary/surface tension effects are known to be important in thin tubes, but also at liquid-vapor interfaces, which is the main
application we have in mind. As shown for instance in [14,20], the motion of a Korteweg fluid is governed by the Euler–
Korteweg model, made of the standard Euler equations for compressible fluids supplemented with the so-called Korteweg
tensor, which encodes capillary/surface tension effects. This tensor is obtained by allowing the free energy of the fluid to
depend not only on its density ρ but also on ∇ρ , the density gradient, in the following way

F (ρ,∇ρ) = F0(ρ) + 1

2
K (ρ)|∇ρ|2,

where K (ρ) is a capillarity coefficient that can depend on ρ . Then, if dissipation phenomena are neglected, the classical
principles of mechanics lead to the following conservation laws for isothermal flows{

∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) + ∇p = ∇(
ρ div(K∇ρ)

) − div(K∇ρ ⊗ ∇ρ),
(1.1)

where u is the velocity of the fluid, and p := ρ ∂ F
∂ρ − F is a generalized pressure depending on both ρ and ∇ρ . A model

of this kind also arises in quantum hydrodynamics, with ρK ≡ constant, see for instance [16]. When p0 := ρ dF0
dρ − F0 is

nonmonotone, which is typically the case with van der Waals fluids below critical temperature (i.e. when p0 = RTρ
1−bρ − aρ2

with T < (8a)/(27bR)), the Euler–Korteweg model (1.1) is known to admit two classes of planar traveling waves:
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• heteroclinic waves, representing diffuse phase boundaries [3] (a ‘phase’ being defined as a region where p0 is mono-
tonically increasing with ρ , and the term ‘diffuse’ meaning the interface is not sharp, its width even becoming infinite
when approaching the critical temperature in van der Waals fluids),

• homoclinic, or solitary waves [6], of which the physical significance remains unclear.

The neutral spectral stability of diffuse phase boundaries was shown by ‘direct’ energy estimates in [3], and an orbital
stability result was proved in [6] in one space dimension, by introducing a suitable Hamiltonian framework and using
variational arguments analogous to those of Grillakis, Shatah and Strauss [12].

Concerning solitary waves, several kinds of them were identified in [6], depending on the location of their endstates.
Their one-dimensional orbital stability was investigated by (slightly) adapting the method of Grillakis, Shatah and Strauss
to solitary waves with nonzero endpoints. The starting point was their interpretation as critical points under constraint of
the total energy, the constraint being linked to spatial translational invariance. This led to a sufficient condition for their
stability. Numerical evidence was given that this condition is satisfied by some dynamic solitary waves, whereas it fails
for solitary waves closer to thermodynamic equilibrium. To be more precise, for a solitary wave of speed σ , the stability
condition is m′′(σ ) > 0, where m is the constrained energy of the wave, which can be evaluated in the phase plane (i.e.
without integrating the ODE governing the wave profile, see Section 2 below for more details). Various plottings were
displayed in [6], showing that for some solitary waves m is indeed strictly convex (m′′(σ ) > 0), and for others it can be
strictly concave (m′′(σ ) < 0). This paper will mainly concern solitary waves for which m′′(σ ) > 0.

Another approach to (spectral) stability is by Evans functions techniques, as for instance in [18], where Pego and Weinstein
show that m′′(σ ) is linked to the low frequency behavior of the Evans function associated with the linearized equations
about solitary waves for three Hamiltonian PDEs (namely, generalized Korteweg–de Vries, Benjamin–Bona–Mahoney, and
Boussinesq equations). A similar link has been pointed out by Zumbrun [22] (and independently by Bridges and Derks [9])
for a special case (with a particular capillarity) of (1.1) in Lagrangian coordinates. In particular, Zumbrun proved that
m′′(σ ) � 0 is necessary for linearized stability in that context. This result will be revisited here in Section 3, with gen-
eral capillarities in Eulerian coordinates. This will serve as a milestone for the multi-dimensional stability analysis, which is
the main purpose of the present paper.

Variational tools are not appropriate for the stability analysis of planar solitary waves in several space dimensions,
because we lose their interpretation as critical points (under constraint) of the total energy (which is not even properly
defined) in the whole space R

d , d � 2. Nevertheless, the Evans function technique does extend to arbitrary space dimensions,
and its low frequency behavior can be computed explicitly, as far as the Euler–Korteweg system is concerned. This will be
done in Section 4, by computations resembling the one-dimensional ones but with more equations (to take into account
transverse velocities) and including a wave vector η corresponding to perturbations in transverse directions. Our main result
(Theorem 2) follows from the low frequency behavior of the Evans function and an argument pointed out by Zumbrun and
Serre [23] in the framework of viscous shocks. It says that one-d stable planar solitary wave solutions of the Euler–Korteweg
model are spectrally unstable with respect to transverse perturbations of large wave length. By contrast, energy estimates
as performed in [3] show that they are neutrally stable with respect to transverse perturbations of short wave length.

2. Main assumptions and definitions

The capillarity K (ρ) will be assumed to depend smoothly of ρ , and to be positive for all positive values of ρ . Recall that
by definition,

p(ρ,∇ρ) = p0(ρ) + 1

2

(
ρK ′(ρ) − K (ρ)

)|∇ρ|2, p0 := ρ
dF0

dρ
− F0.

Then for smooth solutions, (1.1) is easily seen to be equivalent to⎧⎨⎩
∂tρ + div(ρu) = 0,

∂tu + (u · ∇)u + ∇g0 = ∇
(

K�ρ + 1

2
K ′

ρ |∇ρ|2
)

,
(2.2)

where K ′
ρ := dK

dρ , and g0 := dF0
dρ is the standard chemical potential of the fluid, which satisfies

dg0

dρ
= 1

ρ

dp0

dρ
.

In one space dimension, (2.2) reduces to⎧⎨⎩
∂tρ + ∂x(ρu) = 0,

∂t u + u∂xu + ∂x(g0) = ∂x

(
K∂2

x ρ + 1

2
K ′

ρ(∂xρ)2
)

,
(2.3)

which admits the formal Hamiltonian formulation

∂tU = J δH[U] (2.4)
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where

U :=
(

ρ
u

)
, J :=

(
0 −∂x

−∂x 0

)
,

H[U] :=
∫

H(U, ∂xU)dx, H(U, ∂xU) = 1

2
ρu2 + F0(ρ) + 1

2
K (ρ)(∂xρ)2,

and

δH[U] =
( 1

2 u2 + g0(ρ) − K (ρ)∂2
x ρ − 1

2
dK
dρ (ρ)(∂xρ)2

ρu

)
.

To make this formulation correct we may prescribe the behavior of U at infinity, and change the integral of H accordingly,
in order to turn it into a convergent one. As far as perturbations of solitary waves are concerned, we may assume that U
converges (exponentially fast) to some limit U∞ at ±∞. Then

H̃[U;U∞] :=
∫ (

H(U, ∂xU) − H(U∞,0) − δH[U∞] · (U − U∞)
)

dx

is well defined for U ∈ U∞ + (H1 × L2), and for such U, (2.3) equivalently reads

∂tU = J δH̃[U;U∞]. (2.5)

Here above, the notation δ stands for the variational gradient with respect to U, the endstate U∞ being kept fixed. A solitary
wave is by definition a homoclinic traveling wave solution, that is, a solution that propagates a same profile, say U, at con-
stant speed, say σ , with a same endstate U∞ at +∞ and −∞. For a nonmonotone pressure law p0 = p0(ρ), or equivalently,
for a nonconvex free energy F0 = F0(ρ), (2.3) is known to admit solitary waves, that is, global smooth solutions of the form

U(x, t) = U(x − σ t), lim
ξ→±∞ U(ξ) = U∞.

The existence of solitary waves follows from a simple phase portrait analysis of the governing ODEs, which appear to be
Hamiltonian too (a general fact, see [2, pp. 11–12]), see [6] for more details. Solitary waves – unlike heteroclinic connec-
tions – persist under perturbation of the speed σ . Moreover, solitary waves can be viewed, in one space dimension, as
critical points of the Hamiltonian H̃ under the constraint

Q̃[U;U∞] :=
∫ (

(ρ − ρ∞)(u − u∞)
)

dx.

Indeed, working in the abstract Hamiltonian setting described above, we may write the traveling wave ODEs as

d

dξ

(−σU + JδH̃[U;U∞]) = 0, J :=
(

0 1
1 0

)
, ξ = x − σ t,

hence, multiplying the ODE by J and using that J2 = I,

δH̃[U;U∞] − σ JU ≡ constant.

Evaluating at ±∞, we see that the constant must be −σ JU∞ , and since J(U − U∞) = δQ̃[U;U∞], we obtain

δ(H̃ − σ Q̃)[U;U∞] ≡ 0. (2.6)

As claimed above, this means that U is a critical point of H̃ under the constraint Q̃, with associated Lagrange multiplier σ
(the speed of the wave). The fact that Q̃ is a conserved quantity along solutions of (2.3) (in U∞ + C1(R; H1 × L2)) is linked
to translational invariance. Indeed, we have

d

dt
Q̃[U;U∞] =

∫ (
δQ̃[U;U∞] · ∂tU

)
dx = −

∫ (
J(U − U∞) · J∂xδH̃[U;U∞]) dx

=
∫ (

δH̃[U;U∞] · ∂xU
)

dx

after integration by parts (and using that Jt J = I), and the nullity of the last integral follows from the equality

d

ds
H̃[Us;U∞] = 0

for Us(x, t) := U(x + s, t). This very same translational invariance also implies that solitary waves of given speed σ and
endstate U∞ , form a one-parameter family (Us)s∈R , with U(ξ) = U(ξ + s). In addition, we see on (2.6) that

H̃[Us;U∞] − σ Q̃[Us;U∞]
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does not depend on s. So there is no ambiguity in defining

m(σ ;U∞) := H̃[U;U∞] − σ Q̃[U;U∞].
This constrained energy plays a crucial role in the one-dimensional stability analysis of the wave U. As observed in [6], the
actual computation of m(σ ;U∞) does not require the resolution of the traveling wave ODEs, and can be done in the phase
plane. Indeed, H̃[U;U∞] has the special form of

H̃[U;U∞] =
∫ (

H̃0(U;U∞) + 1

2
K (ρ)(∂xρ)2

)
dx,

where

H̃0(U;U∞) := H0(U) − H0(U∞) − dH0(U∞) · (U − U∞), H0(U) := 1

2
ρu2 + F0(ρ).

(The actual expression of H̃0(U;U∞) is rather complicated and is not important for what follows.) This implies that

δH̃[U;U∞] · ∂xU = ∂x

(
H̃0(U;U∞) − 1

2
K (ρ)(∂xρ)2

)
,

so that dU/dξ is an integrating factor of (2.6). The integrated equation reads

H̃0(U;U∞) − σ(ρ− − ρ∞)(u − u∞) − 1

2
K (ρ−)

(
dρ−
dξ

)2

≡ 0,

hence

m(σ ;U∞) =
∫

K (ρ−)

(
dρ−
dξ

)2

dξ = 2

+∞∫
ξ0

K (ρ−)

(
dρ−
dξ

)2

dξ,

where ξ0 is the center of symmetry of the soliton. To compute m(σ ;U∞) in the phase plane it suffices to make the change
of variables r = ρ− (ξ) for ξ ∈ (ξ0,+∞) and use the formula

dρ−
dξ

= ±
(

2

K (ρ−)

(
H̃0(U;U∞) − σ(ρ− − ρ∞)(u − u∞)

))1/2

.

3. One-dimensional stability criterion

In what follows we omit the tilda on H and Q for simplicity, and we emphasize with a superscript the dependence
on σ of solitary waves.

Theorem 1. We fix an endstate U∞ , and assume that, for all σ in an open interval there exists a solitary wave solution of (2.3), Uσ , of
speed σ and endstate U∞ . We consider the function m defined by

m(σ ;U∞) := H
[
Uσ ;U∞

] − σ Q
[
Uσ ;U∞

]
,

the functionals H and Q being defined by

H[U;U∞] :=
∫ (

H0(U) − H0(U∞) + 1

2
K (ρ)(∂xρ)2 − ∂ρ H0(U∞)(ρ − ρ∞) − ∂u H0(U∞)(u − u∞)

)
dx

with

H0(ρ, u) := 1

2
ρu2 + F0(ρ),

and

Q[U;U∞] :=
∫ (

(ρ − ρ∞)(u − u∞)
)

dx.

• The solitary wave Uσ is orbitally stable if

∂2m

∂σ 2
(σ ;U∞) > 0.

• It is linearly unstable if

∂2m

∂σ 2
(σ ;U∞) < 0.
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Remark 1. As mentioned before, solitary waves can be found by phase portrait analysis. For double-well free energy, typical
of van der Waals fluids, this matter is investigated in details in [6], with a classification of solitary waves according to their
endstate (liquid or vapor) and their amplitude.

Proof of Theorem 1. The sufficient condition m′′(σ ) > 0 for orbital stability can be deduced from the abstract result of
Grillakis, Shatah and Strauss [12]: this was already pointed out by Bona and Sachs in [8] for the ‘good’ Boussinesq equation,
a special case of (2.3) rewritten in Lagrangian coordinates; for the general system (2.3), see [6]. That m′′(σ ) < 0 implies
instability cannot be deduced from the Grillakis–Shatah–Strauss result – which is an if and only if result for orbital stability –
basically because the operator J is not onto. However, an Evans function calculation does yield a necessary condition for
stability, as was shown by Zumbrun [22] in a Lagrangian framework (also see [9]) with a constant capillarity coefficient κ ,
related to the Eulerian capillarity coefficient by κ = Kρ5. We are going to perform this calculation in the Eulerian framework
with an arbitrary capillarity coefficient K . We first make standard observations on the profile equation

(δH − σδQ)
[
Uσ ;U∞

] ≡ 0 (3.7)

(which is just (2.6) with slightly different notations). The variational form of (3.7) has two crucial consequences regarding
the second-order differential operator

Lσ := (Hess H − σ Hess Q)
[
Uσ ;U∞

]
.

The first consequence is linked to translational invariance. Indeed, all translated profiles Uσ
s : ξ 	→ Uσ (ξ + s) satisfy the same

equation (3.7). Therefore, differentiating

(δH − σδQ)
[
Uσ

s ;U∞
] ≡ 0

with respect to s and evaluating at s = 0 we find that ∂ξ Uσ is in the kernel of Lσ . The second consequence is obtained by
differentiating (3.7) with respect to σ . This yields

Lσ · ∂σ Uσ = δQ
[
Uσ ;U∞

]
. (3.8)

To address the linearized stability of Uσ , the first, usual step consists in making a change of Galilean frame (x, t) 	→ (ξ :=
x − σ t, t), so as to make the wave stationary. This clearly changes the abstract form of (2.3),

∂tU = −∂x JδH[U;U∞],
into

∂tU − σ∂ξ U = −∂ξ JδH[U;U∞].
Linearizing about Uσ we are led to

∂tU̇ − σ∂ξ U̇ = −∂ξ J(Hess H)
[
Uσ ;U∞

] · U̇,

or equivalently, observing that U̇ = J2U̇ = J(Hess Q)[Uσ ;U∞] · U̇,

∂tU̇ = −∂ξ JLσ · U̇.

Introducing the third-order differential operator Lσ := −∂ξ JLσ , we infer from (3.8) that Lσ · ∂σ Uσ = −∂ξ JδQ[Uσ ;U∞], that
is,

Lσ · ∂σ Uσ = −∂ξ Uσ . (3.9)

Since

Lσ · ∂ξ Uσ = −∂ξ JLσ · ∂ξ Uσ = 0,

this means that 0 is an eigenvalue of Lσ of algebraic multiplicity greater or equal to 2. It will turn out that, if

∂2m

∂σ 2
(σ ;U∞) 
= 0,

the eigenvalue 0 is exactly of multiplicity 2, or equivalently, the Evans function associated to Lσ has a zero of multiplicity
two at zero. This will follow from Lemma 1 below and the more explicit formula

∂2m

∂σ 2
(σ ;U∞) = −

∫ ((
ρσ
− − ρ∞

)
∂σ uσ + (

uσ − u∞
)
∂σ ρσ

−
)

dξ. (3.10)

The latter comes from the definition of m, which implies

∂m
(σ ;U∞) =

∫
(δH − σδQ)

[
Uσ ;U∞

] · ∂σ Uσ dξ − Q
[
Uσ ;U∞

] = −Q
[
Uσ ;U∞

]

∂σ
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because of (3.7), hence

∂2m

∂σ 2
(σ ;U∞) = −

∫
δQ

[
Uσ ;U∞

] · ∂σ Uσ dξ. (3.11)

Lemma 1 below shows that ∂2m/∂σ 2 is proportional to the second-order derivative of the Evans function at λ = 0. More
precisely, if ∂2m/∂σ 2 is negative, then the Evans function changes sign in between 0 and +∞, so that by the mean value
theorem it must vanish at some positive λ, which is therefore an unstable eigenvalue of the linear operator Lσ . �
Remark 2. The profile Uσ is a critical point of the constrained functional H − σ Q, and the Hessian at Uσ of that functional
is precisely

Lσ =
(

M0 uσ − σ
uσ − σ ρσ

−

)
, M0 := −∂ξ Kσ ∂ξ + ασ with Kσ := K

(
ρσ
−

)
, and

ασ := dg0

dρ

(
ρσ
−

) − dK

dρ

(
ρσ
−

)
∂2
ξ ρσ

− − 1

2

d2 K

dρ2

(
ρσ
−

)(
∂ξρ

σ
−

)2
.

The operator Lσ is not monotone if Uσ is homoclinic. It would be monotone if the Sturm–Liouville operator

M := M0 − 1

ρσ
−

(
uσ − σ

)2

were so. But, Lσ · ∂ξ Uσ = 0 implies that ∂ξρ
σ

− is in the kernel of M, and since ∂ξρ
σ

− vanishes (once), 0 is the second
eigenvalue of M. In fact, this implies that 0 is also the second eigenvalue of Lσ (see Appendix B in [6] for details). Note in
addition that by (3.8) and (3.11),

∂2m

∂σ 2
(σ ;U∞) = −〈

Lσ · ∂σ Uσ , ∂σ Uσ
〉
L2 .

Hence the stable case ∂2m/∂σ 2 > 0 corresponds to when〈
Lσ · ∂σ Uσ , ∂σ Uσ

〉
L2 < 0.

The main result in [12] shows that this ‘bad’ direction ∂σ Uσ can then be factored out, in that〈
Lσ · Y,Y

〉
L2 � 0 for all Y such that

〈
δQ

[
Uσ ;U∞

]
,Y

〉
L2 = 0.

Lemma 1. If (3.7) admits a homoclinic solution then the endstate is necessarily subsonic, that is,

dp0

dρ
(ρ∞) > (u∞ − σ)2, (3.12)

and the essential spectrum of the linear operator

Lσ = −∂ξ J(Hess H − σ Hess Q)
[
Uσ ;U∞

]
consists of the imaginary axis. Furthermore, Lσ can be associated with a smooth Evans function Dσ :λ ∈ [0,+∞) → R, such that

∀λ > 0,
(

Dσ (λ) = 0 ⇐⇒ Ker
(
Lσ − λ

) 
= {0}),
and Dσ (0) = 0, (Dσ )′(0) = 0, Dσ (λ) > 0 for λ � 1,

sgn
(

Dσ
)′′

(0) = − sgn
∫ ((

ρσ
− − ρ∞

)
∂σ uσ + (

uσ − u∞
)
∂σ ρσ

−
)

dξ.

Proof. The profile equation (3.7) can be rewritten more explicitly as⎧⎨⎩ρσ
−

(
uσ − σ

) ≡ ρ∞(u∞ − σ),

K
(
ρσ
−

)
∂2
ξ ρσ

− + 1

2
∂ξ K

(
ρσ
−

)
∂ξρ

σ
− − g0

(
ρσ
−

) + g0(ρ∞) − 1

2

(
uσ − σ

)2 + 1

2
(u∞ − σ)2 = 0.

(3.13)

• Subsonicity of the enstate. We may eliminate the velocity uσ from (3.13) and rewrite the second equation (of second-order)
as the planar system⎧⎪⎪⎨⎪⎪⎩

φ′ = 1√
K (φ)

ψ,

ψ ′ = 1√
(

g0(φ) + 1 j2

2
− μ

)
,

(3.14)
K (φ) 2 φ
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with the simplifying notations φ := ρσ
− , j := ρ∞(u∞ − σ), and μ := g0(ρ∞) + 1

2
j2

ρ2∞
. (Note that ψ = √

K (φ)φ′ implies

ψ ′ = (Kφ′′ + 1
2 K (φ)′φ′)/

√
K (φ).) The matrix of the linearized system at (ρ∞,0) is

1√
K (φ)

(
0 1

dg0
dρ (ρ∞) − j2

ρ3∞
0

)
,

which is hyperbolic if and only if

1

ρ∞
dp0

dρ
(ρ∞) = dg0

dρ
(ρ∞) >

j2

ρ3∞
= (u∞ − σ)2

ρ∞
.

In other words, the fixed point (ρ∞,0) of (3.14) is a saddle-point if (3.12) holds true, and a center if dp0
dρ (ρ∞) < (u∞ − σ)2.

For a homoclinic connection to exist, (ρ∞,0) must be a saddle-point, hence the necessary condition (3.12). Note that (3.12)
implies in particular

dp0

dρ
(ρ∞) > 0,

which means that the density ρ∞ corresponds to a thermodynamically stable state, where we have a real sound speed

c∞ :=
√

dp0

dρ
(ρ∞).

(Recall that the existence and classification of solitary waves has been discussed in [6,7].)

• Essential spectrum of the linearized operator. Regarding the essential spectrum of Lσ , we have to concentrate on the asymp-
totic operator Lσ∞ , obtained by freezing the coefficients at ±∞,

Lσ∞ · U̇ :=
( −(u∞ − σ)∂ξ ρ̇ − ρ∞∂ξ u̇

−(u∞ − σ)∂ξ u̇ − dg0
dρ (ρ∞)∂ξ ρ̇ + K (ρ∞)∂3

ξ ρ̇

)
.

By Fourier transform, we find that λ ∈ C belongs to the spectrum of Lσ∞ if and only if there exists ζ ∈ R such that(
λ + i(u∞ − σ)ζ

)2 + ρ∞
(

dg0

dρ
(ρ∞) + K (ρ∞)ζ 2

)
ζ 2 = 0. (3.15)

Since by assumption K (ρ∞) > 0, and as we have seen above, dg0
dρ (ρ∞) > 0 (a necessary condition for the homoclinic wave

to exist), (3.15) has no solution ζ ∈ R for λ /∈ iR. By standard (Coppel–Palmer [10,17], or Henry [13]) arguments, this implies
that the essential spectrum of the variable-coefficients operator Lσ is contained in iR (and in fact equal to iR because all
elements of iR are ‘approximate eigenvalues’ of Lσ ).

• Construction of the Evans function. In order to construct an Evans function [1,18], we first rewrite the eigenvalue equations
(Lσ − λ) · U̇ = 0 as a first-order system of ODEs, where ξ is viewed as a ‘time’-variable. By definition,

Lσ · U̇ =
( −∂ξ ((uσ − σ)ρ̇ + ρσ

− u̇)

∂ξ (−(uσ − σ)u̇ − ασ ρ̇ + Kσ ∂2
ξ ρ̇ + ∂ξ Kσ ∂ξ ρ̇)

)
.

We recall that

Kσ := K
(
ρσ
−

)
and ασ := dg0

dρ

(
ρσ
−

) − dK

dρ

(
ρσ
−

)
∂2
ξ ρσ

− − 1

2

d2 K

dρ2

(
ρσ
−

)(
∂ξρ

σ
−

)2
.

So (Lσ − λ) · U̇ = 0 is equivalent to(
Bσ Φ

)′ = A(λ)Φ, (3.16)

where the prime (′) stands for d/dξ , and

Φ :=

⎛⎜⎜⎝
ρ̇

ρ̇ ′
ρ̇ ′′
u̇

⎞⎟⎟⎠ , Bσ :=
⎛⎜⎝

1 0 0 0
0 1 0 0

−ασ (K σ )′ K σ −(uσ − σ)

(uσ − σ) 0 0 ρσ
−

⎞⎟⎠ , A(λ) :=
⎛⎜⎝

0 1 0 0
0 0 1 0
0 0 0 λ

−λ 0 0 0

⎞⎟⎠ .

The eigenvalues of the asymptotic system (Bσ∞Φ)′ = A(λ)Φ , with

Bσ∞ :=
⎛⎜⎝

1 0 0 0
0 1 0 0

−c2∞/ρ∞ 0 K∞ −(u∞ − σ)

⎞⎟⎠ , K∞ := K (ρ∞),
(u∞ − σ) 0 0 ρ∞
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are the roots ω of the dispersion relation(
λ + (u∞ − σ)ω

)2 − (
c2∞ − ρ∞K∞ω2)ω2 = 0. (3.17)

(Alternatively, (3.17) can be derived from (3.15) by substituting ω for iζ .) We easily see that, for Reλ > 0, (3.17) has no
purely imaginary root ω, and by studying the case λ ∈ R, λ � 1, we find that (3.17) has exactly two roots of negative
real parts, say ω1(λ) and ω2(λ) (either both real or complex conjugate), and two roots of positive real parts, say ω3(λ)

and ω4(λ) (either both real or complex conjugate). When λ goes to zero, the four roots are real, and two of them go to
zero. We choose their numbering so that

ω2 ∼ −λ

c∞ + u∞ − σ
, ω3 ∼ λ

c∞ − u∞ + σ
,

ω1 → −
√(

c2∞ − (u∞ − σ)2
)
/(ρ∞K∞), ω4 → +

√(
c2∞ − (u∞ − σ)2

)
/(ρ∞K∞)

when λ goes to 0. In addition, at points λ where ω1 and ω2 are distinct, respectively where ω3 and ω4 are distinct, which
is the case for large real λ and for λ close to zero, the corresponding eigenvectors, Wσ

1 (λ), Wσ
2 (λ), and respectively Wσ

3 (λ),
Wσ

4 (λ), span the stable, and respectively the unstable, subspace (in C
4) of the matrix (Bσ∞)−1 A(λ). They can be chosen of

the form

Wσ
j (λ) :=

⎛⎜⎜⎜⎝
ρ∞

ρ∞ωσ
j (λ)

ρ∞ωσ
j (λ)2

− λ
ωσ

j (λ)
− (u∞ − σ)

⎞⎟⎟⎟⎠ . (3.18)

Then their limits at λ = 0 are easily found to be

Wσ
1,4(0) =

⎛⎜⎜⎝
ρ∞

ρ∞ωσ
1,4(0)

ρ∞ωσ
1,4(0)2

−(u∞ − σ)

⎞⎟⎟⎠ , Wσ
2 (0) =

⎛⎜⎝
ρ∞

0
0

c∞

⎞⎟⎠ , Wσ
3 (0) =

⎛⎜⎝
ρ∞

0
0

−c∞

⎞⎟⎠ . (3.19)

We can construct a so-called Evans function Dσ , which is analytic and real-valued for λ ∈ [0,+∞), such that

Dσ (λ) = 0, λ > 0 ⇐⇒ Ker
(
Lσ − λ

) 
= {0}.
(See [1,18] for λ > 0, and [11,15] for the extension to λ = 0.) More precisely, Dσ can be taken of the form

Dσ (λ) = det
(
Φ̃σ

1 (λ), Φ̃σ
2 (λ), Φ̃σ

3 (λ), Φ̃σ
4 (λ)

)∣∣
ξ=0,

where (Φ̃σ
1 (λ), Φ̃σ

2 (λ)) (respectively (Φ̃σ
3 (λ), Φ̃σ

4 (λ))), span the real stable (respectively unstable) manifold of (3.16). These

real-valued Φ̃σ
j can be constructed in a simple way from the complex-valued solutions Φσ

j of (3.16) characterized, away
from collision points, by

Φσ
1,2(λ)

ξ→+∞∼ eωσ
1,2(λ)ξ Wσ

1,2(λ), Φσ
3,4(λ)

ξ→−∞∼ eωσ
3,4(λ)ξ Wσ

3,4(λ). (3.20)

It suffices to define

Φ̃σ
1 := Φσ

1 + Φσ
2 , Φ̃σ

2 := Φσ
1 − Φσ

2

ω1 − ω2
,

Φ̃σ
3 := Φσ

3 + Φσ
4 , Φ̃σ

4 := Φσ
3 − Φσ

4

ω3 − ω4
.

These Φ̃σ
j s, as the Φσ

j s, depend analytically on λ away from collision points. Furthermore, they are obviously real-valued

when the Φσ
j s are so. Otherwise, when (ω1,ω2) is a conjugate pair, so is (Φσ

1 ,Φσ
2 ) and therefore the Φ̃σ

1,2 are still real-

valued. Of course the same observation holds true with the indices (3,4) instead of (1,2). Note also that the Φ̃σ
j s do not

depend on the numbering of stable and unstable modes. As usual, it is trickier to define the Evans function at collision
points, that is, where either ω1 and ω2, or ω3 and ω4, collide (which does happen, as a closer examination of the algebraic
equation (3.17) shows). Indeed, even though the eigenvectors Wσ

j are such that

W̃σ
2 := Wσ

1 − Wσ
2

ω1 − ω2
and W̃σ

4 := Wσ
3 − Wσ

4

ω3 − ω4

do have limits at collision points that are independent of Wσ
2 and Wσ

4 respectively (as is easily found from (3.18)) – which
means that (Bσ∞)−1 A(λ) has a 2 × 2 Jordan block at those points – the behavior of the individual Φ̃σ

2,4 is unclear. However,
working with wedge products [1] we can make sure that the Evans function crosses collision points in a continuous (and
even analytic) manner.
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• Low frequency expansion of the Evans function. Observing that by definition

Dσ (λ) = det(Φσ
1 (λ),Φσ

2 (λ),Φσ
3 (λ),Φσ

4 (λ))|ξ=0

(ω2(λ) − ω1(λ))(ω4(λ) − ω3(λ))
,

where the denominator in the neighborhood of λ = 0 is(
ω2(λ) − ω1(λ)

)(
ω4(λ) − ω3(λ)

) ∼ c2∞ − (u∞ − σ)2

ρ∞K∞
> 0,

we see that Dσ (λ) has the same sign as

�σ (λ) := det
(
Φσ

1 (λ),Φσ
2 (λ),Φσ

3 (λ),Φσ
4 (λ)

)∣∣
ξ=0 (3.21)

for λ close to 0.
Since Lσ · (Uσ )′ = 0 and (Uσ )′ goes exponentially fast to zero at ±∞, the one-dimensional stable/unstable manifold

of (3.16) with λ = 0 is spanned by (Uσ )′ . This means that both Φσ
1 (0) and Φσ

4 (0) must be proportional to (Uσ )′ . Now we
have to be careful to comply with (3.18) and (3.20), which imply in particular that the first component of Φσ

1 (0), respectively
Φσ

4 (0), must be positive when ξ goes to +∞, respectively −∞. Since (ρσ
− )′ has different signs at +∞ and −∞, this means

there exists a nonzero real number r such that

Φσ
1 (0) = −r

⎛⎜⎜⎝
(ρσ

− )′

(ρσ
− )′′

(ρσ
− )′′′

(uσ )′

⎞⎟⎟⎠ , Φσ
4 (0) = r

⎛⎜⎜⎝
(ρσ

− )′

(ρσ
− )′′

(ρσ
− )′′′

(uσ )′

⎞⎟⎟⎠ . (3.22)

The actual value of r can be deduced from the phase portrait of the profile equation (which is symmetric with respect to
the horizontal axis), its sign depending on the type of soliton considered. It is of no importance though. We only need to
know that the sign of Dσ (λ) (for small λ) is opposite to the sign of

�̆σ (λ) := det
(
Φ̆σ

1 (λ),Φσ
2 (λ),Φσ

3 (λ), Φ̆σ
4 (λ)

)∣∣
ξ=0, Φ̆1 := −(1/r)Φ1, Φ̆4 := (1/r)Φ4.

Taking (3.22) into account in (3.21) we readily find that �̆σ (0) = 0. Furthermore, (�̆σ )′(0) = 0. This can be seen as
follows. Denoting by φσ

j (λ) and μσ
j (λ) the first and fourth components of Φσ

j (λ) (or Φ̆σ
j (λ) for j = 1 or 4) respectively, we

find by differentiation of (Bσ Φσ
j (λ))′ = A(λ)Φσ

j (λ) with respect to λ that, thanks to (3.22) and (3.9),

Lσ ·
(

∂λφ
σ
1,4(0)

∂λμ
σ
1,4(0)

)
=

(
(ρσ

− )′

(uσ )′
)

= −Lσ ·
(

∂σ ρσ
−

∂σ uσ

)
,

which implies(
∂λφ

σ
1,4(0) + ∂σ ρσ

−
∂λμ

σ
1,4(0) + ∂σ uσ

)
‖

(
(ρσ

− )′

(uσ )′
)

, a generator of the one-dimensional kernel of Lσ .

Therefore, using (3.22) again and up to adding a constant times λΦσ
1,4(λ) to Φσ

1,4(λ), we may assume without loss of
generality that

∂λΦ̆
σ
1 (0) = ∂λΦ̆

σ
4 (0) = −

⎛⎜⎜⎝
∂σ (ρσ

− )

∂σ (ρσ
− )′

∂σ (ρσ
− )′′

∂σ (uσ )

⎞⎟⎟⎠ . (3.23)

Together with (3.22), this obviously implies that (�̆σ )′(0) = 0. Differentiating once more, we find that(
�̆σ

)′′
(0) = det

(
Φ̆σ

1 (0),Φσ
2 (0),Φσ

3 (0), ∂2
λλ

(
Φ̆σ

4 − Φ̆σ
1

)
(0)

)∣∣
ξ=0.

To evaluate this determinant, we first observe that det Bσ |ξ=0 = ρσ
− (0)K σ (0) 
= 0, so that

det
(
Φ̆σ

1 (0),Φσ
2 (0),Φσ

3 (0), ∂2
λλ

(
Φ̆σ

4 − Φ̆σ
1

)
(0)

)∣∣
ξ=0

= 1

ρσ
− (0)K σ (0)

det
(

Bσ Φ̆σ
1 (0), Bσ Φσ

2 (0), Bσ Φσ
3 (0), ∂2

λλBσ
(
Φ̆σ

4 − Φ̆σ
1

)
(0)

)∣∣
ξ=0.

For simplicity, in what follows, we just denote by Φ j the function Φσ
j (0), and by φ j and μ j its first and last components,

and Θ j = ∂2
λλΦ̆

σ
j (0), with θ j and χ j its first and last components. By construction of Φ j , since the last two rows of A(0)

are zeroes, we have

Bσ Φ j =
⎛⎝ φ j

φ′
j

⎞⎠ ,
R j
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where R j is a constant vector in R
2. More specifically, R1 is the null vector, while

lim
ξ→+∞φ2(ξ) = ρ∞, lim

ξ→+∞μ2(ξ) = c∞, lim
ξ→−∞φ3(ξ) = ρ∞, lim

ξ→−∞μ3(ξ) = −c∞

(which come from (3.19) and (3.20)), imply that

R2 =
(−c∞(u∞ − σ + c∞)

ρ∞(u∞ − σ + c∞)

)
, R3 =

(
c∞(u∞ − σ − c∞)

ρ∞(u∞ − σ − c∞)

)
.

Furthermore, we claim that

Bσ Θ1,4 =
⎛⎝ θ1,4

θ ′
1,4

S1,4

⎞⎠ ,

with S1,4 : ξ → S1,4(ξ) ∈ R
2 such that

S4 − S1 = 2

+∞∫
−∞

(−∂σ uσ

∂σ ρσ
−

)
dξ. (3.24)

Indeed, differentiating twice (Bσ Φσ
j (λ))′ = A(λ)Φσ

j (λ) with respect to λ at λ = 0, and using (3.23), we find that

Lσ ·
(

θ1,4
χ1,4

)
= −2

(
∂σ ρσ

−
∂σ uσ

)
,

hence ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
uσ − σ

)
θ1 + ρσ

− χ1 = −2

+∞∫
ξ

∂σ ρσ
− ,

Kσ θ ′′
1 + (

Kσ
)′
θ ′

1 − ασ θ1 − (
uσ − σ

)
χ1 = 2

+∞∫
ξ

∂σ uσ ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
uσ − σ

)
θ4 + ρσ

− χ4 = 2

ξ∫
−∞

∂σ ρσ
− ,

Kσ θ ′′
4 + (

Kσ
)′
θ ′

4 − ασ θ4 − (
uσ − σ

)
χ4 = −2

ξ∫
−∞

∂σ uσ ,

which imply (3.24) by definition of S1 and S4. To complete the computation of (�̆σ )′′(0), we observe that

det(R2, R3) = 2ρ∞c∞
(
c2∞ − (u∞ − σ)2) > 0

by (3.12), and we introduce (the unique) real numbers d2 and d3 such that

S4 − S1 = d2 R2 − d3 R3.

Therefore,

(
�̆σ

)′′
(0) = 1

ρσ
− (0)K σ (0)

∣∣∣∣∣∣
(ρσ

− )′ φ2 φ3 θ̃4 − θ̃1

(ρσ
− )′′ φ′

2 φ′
3 θ̃ ′

4 − θ̃ ′
1

02 R2 R3 02

∣∣∣∣∣∣|ξ=0

= det(R2, R3)

ρσ
− (0)K σ (0)

∣∣∣∣ (ρσ
− )′ θ̃4 − θ̃1

(ρσ
− )′′ θ̃ ′

4 − θ̃ ′
1

∣∣∣∣|ξ=0

with

θ̃4 := θ4 + d3φ3, θ̃1 := θ1 + d2φ2.

It thus only remains to compute δ|ξ=0, with

δ :=
∣∣∣∣ (ρσ

− )′ θ̃4 − θ̃1

(ρσ
− )′′ θ̃ ′

4 − θ̃ ′
1

∣∣∣∣ ,
knowing that (ρσ

− )′ and θ̃1,4 all satisfy an ODE of the form

K σ y′′ + (
Kσ

)′
y′ − ασ y + 1

ρσ

(
uσ − σ

)2
y = s[y],
−



348 S. Benzoni-Gavage / J. Math. Anal. Appl. 361 (2010) 338–357
and more precisely,

s
[(

ρσ
−

)′] = 0, s[θ̃4] = (
1,

(
uσ − σ

)
/ρσ

−
)
(S4 + d3 R3) = (

1,
(
uσ − σ

)
/ρσ

−
)
(S1 + d2 R2) = s[θ̃1].

The rest of the computation is based on the Melnikov technique. Decomposing δ as

δ = δ4 − δ1, δ1,4 :=
∣∣∣∣ (ρσ

− )′ θ̃1,4

(ρσ
− )′′ θ̃ ′

1,4

∣∣∣∣ , with δ4(−∞) = 0, δ1(+∞) = 0,

and integrating the ODEs

dδ1,4

dξ
= − (K σ )′

K σ
δ1,4 + (ρσ

− )′

Kσ
s[θ̃1,4]

on (0,+∞) and (−∞,0) respectively, we find that

δ|ξ=0 = 1

K σ (0)

+∞∫
−∞

s[θ̃1,4]
(
ρσ
−

)′
.

Now, thanks to the identity(
uσ − σ

)(
ρσ
−

)′ = −ρσ
−

(
uσ

)′
,

we have
+∞∫

−∞
s[θ̃4]

(
ρσ
−

)′ =
+∞∫

−∞

((
ρσ
−

)′
,−(

uσ
)′)

(S4 + d3 R3).

Clearly (since ρσ
− , uσ have the same limits at +∞ and −∞) the constant vector R3 does not contribute to this integral,

and recalling that

S4(ξ) = 2

ξ∫
−∞

(−∂σ uσ

∂σ ρσ
−

)
,

after integration by parts we finally arrive at

δ|ξ=0 = 2

K σ (0)

+∞∫
−∞

((
ρσ
− − ρ∞

)
∂σ uσ + (

uσ − u∞
)
∂σ ρσ

−
)
.

This yields the formula

(
�̆σ

)′′
(0) = 4ρ∞c∞(c2∞ − (u∞ − σ)2)

ρσ
− (0)(K σ (0))2

+∞∫
−∞

((
ρσ
− − ρ∞

)
∂σ uσ + (

uσ − u∞
)
∂σ ρσ

−
)
,

hence

(
�σ

)′′
(0) = −4r2ρ∞c∞(c2∞ − (u∞ − σ)2)

ρσ
− (0)(K σ (0))2

+∞∫
−∞

((
ρσ
− − ρ∞

)
∂σ uσ + (

uσ − u∞
)
∂σ ρσ

−
)
.

• High frequency behavior of the Evans function. This part of the analysis could be omitted – and is indeed omitted in [22] –
in view of the sufficient stability condition provided by the Grillakis–Shatah–Strauss method. It is of interest though, for the
method – which can be useful in other frameworks – and as a way to double-check that the stability condition is indeed∫ ((

ρσ
− − ρ∞

)
∂σ uσ + (

uσ − u∞
)
∂σ ρσ

−
)

dξ < 0. (3.25)

By means of an energy estimate based on a ‘symmetrized’ reformulation of the linearized system (see [7, Proposition 3.4]),
we can find λ0 > 0 such that Lσ has no eigenvalue λ > λ0. We may then argue by homotopy. For θ ∈ [0,1], consider the
operator the operator Lσ

θ defined by

Lσ
θ · U̇ =

( −∂ξ (uσ
θ ρ̇ + ρσ

θ u̇)

σ σ σ 2 σ

)
,

∂ξ (−uθ u̇ − αθ ρ̇ + Kθ ∂ξ ρ̇ + ∂ξ Kθ ∂ξ ρ̇)
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where

uσ
θ := θ

(
uσ − σ

)
, ρσ

θ := ρ∞ + θ
(
ρσ
− − ρ∞

)
, Kσ

θ := K
(
ρσ

θ

)
,

ασ
θ := θ

dg0

dρ

(
ρσ

θ

) − dK

dρ

(
ρσ

θ

)
∂2
ξ ρσ

θ − 1

2

d2 K

dρ2

(
ρσ

θ

)(
∂ξρ

σ
θ

)2
.

At θ = 1 we recover Lσ and at θ = 0 we get the constant-coefficients operator

L0 · U̇ :=
(−ρ∞∂ξ u̇

K∞∂3
ξ ρ̇

)
.

The spectrum of L0 is found to be exactly iR by Fourier transform. Furthermore, the aforementioned energy estimate can
be adapted to deal with Lσ

θ and show that for all θ ∈ [0,1], Lσ
θ has no eigenvalue of real part greater than some threshold

λ∗ � λ0. Let us describe how to obtain this estimate, which is not straightforward. Assume that U̇ = (ρ̇, u̇)t is an eigenvector
associated with a nonzero eigenvalue λ of Lσ

θ (viewed as an unbounded operator on H1 × L2 with domain H3 × H2). We
look for a λ∗ independent of U̇ and θ such that

(Re λ − λ∗)‖U̇‖2
H1×L2 � 0.

Since the principal part of Lσ
θ is not dissipative, the elimination of higher order derivatives is not straightforward. It requires

a ‘symmetrized’ reformulation of the eigenvalue equation (λ − Lσ
θ )U̇ = 0. As observed in earlier work [4,5], a suitable refor-

mulation makes use of the change of variables ρ 	→ ζ := R(ρ), where R is a primitive of ρ 	→ √
K (ρ)/ρ , which urges us to

consider ζ̇ := R ′(ρσ
θ )ρ̇ , and derive an estimate for ‖ζ̇‖L2 + ‖√ρσ

θ u̇‖L2 + ‖√ρσ
θ ẇ‖L2 with ẇ := ∂ξ ζ̇ instead of the standard

norm ‖U̇‖H1×L2 . We first compute the system satisfied by (ζ̇ , u̇, ẇ) if (λ − Lσ
θ )U̇ = 0. Introducing the functions a and h

defined by a(ζ ) := √
R−1(ζ )K (R−1(ζ )) and h(ζ ) := d

dζ
g0(R−1(ζ )), we can write this system as

λζ̇ + uσ
θ ẇ + u̇wσ

θ + aσ
θ ∂ξ u̇ + (

aσ
θ

)′
ζ̇ ∂ξ uσ

θ = 0, (3.26)

λu̇ + ∂ξ

(
uσ

θ u̇ − wσ
θ ẇ − aσ

θ ∂ξ ẇ − (
aσ
θ

)′
ζ̇ ∂ξ wσ

θ

) + hσ
θ ẇ + (

hσ
θ

)′
ζ̇ wσ

θ = 0, (3.27)

λẇ + ∂ξ

(
uσ

θ ẇ + u̇wσ
θ

) + ∂ξ

(
aσ
θ ∂ξ u̇ + (

aσ
θ

)′
ζ̇ ∂ξ uσ

θ

) = 0, (3.28)

where ζσ
θ := R(ρσ

θ ), wσ
θ := R ′(ρσ

θ )∂ξρ
σ
θ , aσ

θ := a(ζ σ
θ ), (aσ

θ )′ := da
dζ

(ζ σ
θ ), hσ

θ := h(ζ σ
θ ), (hσ

θ )′ := dh
dζ

(ζ σ
θ ). Interestingly,

(3.27) and (3.28) can be written as a single equation for the complex-valued function ż := u̇ + i ẇ ,

λż + ∂ξ

(
zσ
θ ż + iaσ

θ ∂ξ ż + i
(
aσ
θ

)′
ζ̇ ∂ξ zσ

θ

) + hσ
θ ẇ + (

hσ
θ

)′
ζ̇ wσ

θ = 0, (3.29)

where zσ
θ := uσ

θ + iwσ
θ . Taking the real part of the inner product of (3.29) with ρσ

θ ż, integrating by part, and using that
aσ
θ ∂ξρ

σ
θ = ρσ

θ wσ
θ , we get

Reλ
∥∥√

ρσ
θ ż

∥∥2
L2 + Re

〈(
∂ξ zσ

θ

)
ż,ρσ

θ ż
〉 + 〈

∂ξ

(
ρσ

θ uσ
θ

)
ż, ż

〉
+ Re

〈(
hσ

θ + i
(
aσ
θ

)′
∂ξ zσ

θ

)
ẇ,ρσ

θ ż
〉 + Re

〈((
hσ

θ

)′ + i∂ξ

((
aσ
θ

)′
∂ξ zσ

θ

))
ζ̇ , ρσ

θ ż
〉 = 0.

(Without the weight ρσ
θ there would have remained a term with the first-order derivative ∂ξ ż: this is reminiscent of the

symmetrization issue for Euler equations.) On the other hand, taking the real part of the inner product of (3.26) with ζ̇ we
obtain

Reλ‖ζ̇‖2
L2 + Re

〈
uσ

θ ẇ, ζ̇
〉 + Re

〈(
wσ

θ − (
aσ
θ

)′
∂ξ ζ

σ
θ

)
u̇, ζ̇

〉 − Re
〈
aσ
θ u̇, ẇ

〉 + Re
〈(

aσ
θ

)′
ζ̇ ∂ξ uσ

θ , ζ̇
〉 = 0.

Summing these two identities we find indeed by Cauchy–Schwarz a λ∗ (depending only on the W 2,∞ norm of (ζ σ
θ , zσ

θ ),
which is uniformly bounded for θ ∈ [0,1]) such that

(Re λ − λ∗)
(‖ζ̇‖2

L2 + ∥∥√
ρσ

θ ż
∥∥2

L2

)
� 0,

which obviously implies, if U̇, and thus (ζ̇ , ż) is nonzero, that Reλ � λ∗ .
Now, we can construct an Evans function, Dσ

θ say, depending smoothly on θ , and determine the sign of Dσ = Dσ
1 for

λ > λ∗ by computing the sign of Dσ
0 , which is constant on [0,+∞). Denoting by ωσ

j (λ; θ) the eigenvalues of (Bσ
θ,∞)−1 A(λ),

with

Bσ
θ,∞ :=

⎛⎜⎝
1 0 0 0
0 1 0 0

−θc2∞/ρ∞ 0 K∞ −θ(u∞ − σ)

⎞⎟⎠ ,
θ(u∞ − σ) 0 0 ρ∞
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and by Wσ
j (λ; θ) the associated eigenvectors,

Wσ
j (λ; θ) :=

⎛⎜⎜⎜⎝
ρ∞

ρ∞ωσ
j (λ; θ)

ρ∞ωσ
j (λ; θ)2

− λ
ωσ

j (λ;θ)
− θ(u∞ − σ)

⎞⎟⎟⎟⎠ , (3.30)

we can find Φσ
j (λ; θ), solutions of the first-order ODE equivalent to (Lσ

θ − λ)U̇ = 0, characterized by their asymptotic be-
havior as in (3.20). In particular, for θ = 0 they are explicitly given by

Φσ
j (λ;0) = eωσ

j (λ;0)ξ Wσ
j (λ;0),

with the ωσ
j (λ;0) occurring in complex conjugate pairs such that

4∑
j=1

ωσ
j (λ;0) = 0.

(Indeed, they are roots of λ2 + ρ∞K∞ω4 = 0.) Therefore, we have

Dσ
0 (λ) = det

(
V1 + V2,

V2 − V1

ν2 − ν1
,V3 + V4,

V4 − V3

ν4 − ν3

)
,

where ν j and V j are simplifying notations for ωσ
j (λ;0) and Wσ

j (λ;0) respectively. The ν j are of the form ±(1 ± i)υ with

υ :=
√

λ

2
√

ρ∞K∞
.

Recall that the ordering of ν1 and ν2, and of ν3 and ν4, does not play any role. To fix the ideas, we can take

ν1 = −(1 + i)υ, ν2 = (−1 + i)υ, ν3 = (1 − i)υ, ν4 = (1 + i)υ.

Then

Dσ
0 (λ) = 4ρ3∞λ

∣∣∣∣∣∣∣∣
1 0 1 0

Reν1 1 Reν3 1
Re(ν2

1 ) ν1 + ν2 Re(ν2
3 ) ν3 + ν4

−Re( 1
ν1

) 1
ν1ν2

−Re( 1
ν3

) 1
ν3ν4

∣∣∣∣∣∣∣∣ = 32ρ3∞λ > 0.

This ends the proof of Lemma 1. �
4. Multi-dimensional stability criterion

The Grillakis–Shatah–Strauss argument invoked for one-dimensional (orbital) stability breaks down in several space di-
mensions because planar solitary waves do not have an interpretation in terms of critical points. However, the form of the
linearized system makes it possible to extend the Evans function calculation of Lemma 1, and eventually show that one-d
stable planar solitary waves are unstable with respect to transverse perturbations.

4.1. The linearized operator

By definition, the profile (ρσ
− ,uσ ) of a planar solitary wave solution of (1.1) propagating in direction n (a unitary vector

in R
d) with speed σ and homoclinic to (ρ∞,u∞), must satisfy⎧⎪⎪⎨⎪⎪⎩

ρσ
−

(
uσ − σ

) ≡ ρ∞(u∞ − σ),(
uσ − σ

)
∂ξ vσ = 0,

K
(
ρσ
−

)
∂2
ξ ρσ

− + 1

2
∂ξ K

(
ρσ
−

)
∂ξρ

σ
− − g0

(
ρσ
−

) + g0(ρ∞) − 1

2

(
uσ − σ

)2 + 1

2
(u∞ − σ)2 = 0,

(4.31)

where uσ := uσ · n and vσ := uσ − uσ n. Therefore, a dynamical solitary wave, for which uσ 
= σ , is such that vσ is constant
and (ρσ

− , uσ ) satisfy the one-dimensional profile equation (3.13). By change of Galilean frame, we may assume without loss
of generality that vσ is zero. Moreover, similarly as in one space dimension, the change of Galilean frame (x, t) 	→ (x−σ tn, t)
changes (2.2) into⎧⎨⎩

∂tρ + div
(
ρ(u − σn)

) = 0,

∂tu + (
(u − σn) · ∇)

u + ∇g0 = ∇
(

K�ρ + 1
K ′

ρ |∇ρ|2
)

,
(4.32)
2
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of which (ρσ
− ,uσ ) is a stationary solution. Linearizing (4.32) about (ρσ

− ,uσ ) we get

∂tU̇ = Lσ · U̇, with U̇ :=
(

ρ̇
u̇

)
,

Lσ · U̇ :=
( −div((uσ − σn)ρ̇ + ρσ

− (u̇ − σn))

−(uσ − σ)∂ξ u̇ − (u̇ − σ)∂ξ uσ n + ∇(−ασ ρ̇ + K σ �ρ̇ + ∂ξ Kσ ∂ξ ρ̇)

)
, (4.33)

where ξ := x · n − σ t , and, as in Section 3,

K σ := K
(
ρσ
−

)
, ασ := dg0

dρ

(
ρσ
−

) − dK

dρ

(
ρσ
−

)
∂2
ξ ρσ

− − d2 K

dρ2

(
ρσ
−

)(
∂ξρ

σ
−

)2
.

A necessary condition for the linearized stability of (ρσ
− ,uσ ) is that Lσ has no spectrum in the open right half-plane.

Equivalently, the operator Lσ (η), obtained by Fourier transform in the direction normal to n, the corresponding wave vector
being denoted by η ∈ R

d−1, has no spectrum in the open right half-plane. To obtain the explicit form of Lσ (η), we may
assume without loss of generality – because of rotational invariance of (2.2) – that n is the last vector ed of the canonical
basis in R

d . Hence we may identify the vector v̇ ∈ e⊥
d with a vector in R

d−1 = span(e1, . . . ,ed−1), and U̇ and Lσ (η) · U̇ with(
ρ̇
v̇
u̇

)
and

⎛⎜⎝ −∂ξ ((uσ − σ)ρ̇ + ρσ
− (u̇ − σ)) − iρσ

− η · v̇

−(uσ − σ)∂ξ v̇ + i(−(ασ + Kσ ‖η‖2)ρ̇ + Kσ ∂2
ξ ρ̇ + ∂ξ K σ ∂ξ ρ̇)η

∂ξ (−(uσ − σ)u̇ − (ασ + Kσ ‖η‖2)ρ̇ + K σ ∂2
ξ ρ̇ + ∂ξ K σ ∂ξ ρ̇)

⎞⎟⎠
respectively. The operator Lσ (η) is clearly similar to the real-valued operator

L̃σ (η) :

⎛⎝ ρ̇
˙̃v
u̇

⎞⎠ 	→
⎛⎜⎝ −∂ξ ((uσ − σ)ρ̇ + ρσ

− (u̇ − σ)) − ρσ
− η · ˙̃v

−(uσ − σ)∂ξ
˙̃v − (−(ασ + K σ ‖η‖2)ρ̇ + K σ ∂2

ξ ρ̇ + ∂ξ Kσ ∂ξ ρ̇)η

∂ξ (−(uσ − σ)u̇ − (ασ + Kσ ‖η‖2)ρ̇ + Kσ ∂2
ξ ρ̇ + ∂ξ K σ ∂ξ ρ̇)

⎞⎟⎠ .

Therefore, the spectra of Lσ (η) and L̃σ (η) coincide. From now on, we concentrate on L̃σ (η) and we omit the tildas for
simplicity. The asymptotic operator at ±∞ is

Lσ∞(η) :

(
ρ̇
v̇
u̇

)
	→

⎛⎜⎝ −(u∞ − σ)∂ξ ρ̇ − ρ∞∂ξ u̇ − ρ∞η · v̇

−(u∞ − σ)∂ξ v̇ − (−(
dg0
dρ (ρ∞) + K (ρ∞)‖η‖2)ρ̇ + K (ρ∞)∂2

ξ ρ̇)η

−(u∞ − σ)∂ξ u̇ − (
dg0
dρ (ρ∞) + K (ρ∞)‖η‖2)∂ξ ρ̇ + K (ρ∞)∂3

ξ ρ̇

⎞⎟⎠ .

By Fourier transform in ξ , we find that τ ∈ C belongs to the spectrum of Lσ∞(η) if and only if there exists ζ ∈ R so that,
either τ = −i(u∞ − σ)ζ , or(

τ + i(u∞ − σ)ζ
)2 + ρ∞

(
dg0

dρ
(ρ∞) + K (ρ∞)

(‖η‖2 + ζ 2))(‖η‖2 + ζ 2) = 0. (4.34)

Therefore, in all cases, τ is purely imaginary. As for the one-dimensional operator Lσ studied in Section 3, this implies the
essential spectrum of Lσ (η) coincides with the imaginary axis. Consequently, the (neutral) linearized stability of (ρσ

− ,uσ )

will be determined by the point spectrum of Lσ (η). As for Lσ , possible unstable eigenvalues τ (with Reτ > 0) of Lσ (η)

can be characterized as zeroes of an Evans function τ 	→ D(τ ;η). Viewed as a function of (τ ,η), D can be made analytic
along rays (as was pointed out by Zumbrun and Serre in [23] for second-order operators associated with viscous shocks;
also see [21]). Furthermore, since Lσ (η) is real-valued, D can be chosen to be real for real τ . Therefore, the comparison of
the signs of D(λτ ;λη) for λ close to zero and for large λ provides a sufficient condition for instability, by the mean value
theorem argument usually valid only in one space dimension. Another way is the one pointed out in [23, Lemma 7.5], which
goes as follows in our situation. By nature of the solitary wave there is a function P (which we shall compute explicitly),
homogeneous of degree 2, such that D(λτ ;λη) ∼ λ2 P (τ ;η) as λ goes to zero. It will turn out that for a one-d stable solitary
wave, P vanishes at points of the form (τ0(η),η). Observing that p(λ,η)(τ ) := λ−2 D(λτ ;λη) defines a family a holomorphic
functions on {Reτ > 0}, depending continuously on (λ,η) ∈ R

+ × R
d−1, Rouché’s theorem will then imply the existence of

a continuous branch τ∗(λ,η) close to τ0(η) for λ close to 0 such that p(λ,η)(τ∗(λ,η)) = 0, hence

D
(
τ�(η);η) = 0

with τ�(η) := ‖η‖τ∗(‖η‖, η/‖η‖).

4.2. The Evans function computations

We proceed similarly as in Section 3. (The following computation is also close to the one in [3] for heteroclinic planar
traveling waves.) We first rewrite the eigenvalue equations (Lσ (η) − τ )U̇ = 0 as a first-order system of ODEs,
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(
Bσ (η)Φ

)′ = Aσ (τ ;η)Φ,

Φ :=

⎛⎜⎜⎜⎜⎝
ρ̇

ρ̇ ′
ρ̇ ′′
v̇
u̇

⎞⎟⎟⎟⎟⎠ , Bσ (η) :=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0∗

d−1 0

0 1 0 0∗
d−1 0

−(ασ + Kσ ‖η‖2) (K σ )′ Kσ 0∗
d−1 −(uσ − σ)

0d−1 0d−1 0d−1 (uσ − σ)Id−1 0d−1

(uσ − σ) 0 0 0∗
d−1 ρσ

−

⎞⎟⎟⎟⎟⎟⎠ ,

Aσ (τ ;η) :=

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0∗

d−1 0

0 0 1 0∗
d−1 0

0 0 0 0∗
d−1 τ

(ασ + K σ ‖η‖2)η −(K σ )′η −K σ η −τ Id−1 0d−1

−τ 0 0 −ρσ
− ηt 0

⎞⎟⎟⎟⎟⎟⎠ . (4.35)

The eigenvalues of the asymptotic system(
Bσ∞(η)Φ

)′ = Aσ∞(τ ;η)Φ (4.36)

are ωσ
0 (τ ) := −τ/(u∞ − σ) and the roots ω of the dispersion relation(
τ + (u∞ − σ)ω

)2 + (
c2∞ + ρ∞K∞

(‖η‖2 − ω2))(‖η‖2 − ω2) = 0 (4.37)

(obtained from (4.34) by substituting ω for iζ ). We assume from now on that u∞ is greater than σ , so that ωσ
0 (τ ) is

negative for positive τ , and thus contributes to the stable manifold of (4.36). In addition, it is found to be of geometric
multiplicity d − 1, the associated eigenspace of Bσ∞(η)−1 Aσ∞(τ ;η) being spanned by the vectors

W j,σ
0 (τ ;η) :=

⎛⎜⎜⎜⎝
0
0
0

τe j
(u∞ − σ)η j

⎞⎟⎟⎟⎠ , j ∈ {1, . . . ,d − 1},

for (τ ,η) 
= (0,0). Since these vectors W j,σ
0 are homogeneous in (τ ,η), we may renormalize them and assume that they

are homogeneous degree 0, that is, constant along rays {(λτ ,λη); λ > 0}. Like the simpler equation (3.17), Eq. (4.37) has
no purely imaginary root when Reτ is positive. Thus the number of roots of negative real parts is independent of (τ ,η),
within the half-space {Reτ > 0}. As already seen in the case η = 0 (in which (4.37) degenerates to (3.17)), this number is
two. We denote by ωσ

1 (τ ;η) and ωσ
2 (τ ;η) those roots. In the same way we find that (4.37) has two roots of positive real

parts, ωσ
3 (τ ;η) and ωσ

4 (τ ;η) say. (Observe that ωσ
j (τ ;η) are distinct from ωσ

0 (τ ) for τ 
= (u∞ − σ)‖η‖.) We choose their
numbering according to their behavior as λ goes to zero along the ray {(λτ ,λη); λ > 0}. More precisely, we have

ωσ
1 (λτ ;λη) → −

√(
c2∞ − (u∞ − σ)2

)
/(ρ∞K∞), ωσ

4 (λτ ;λη) → +
√(

c2∞ − (u∞ − σ)2
)
/(ρ∞K∞),

ωσ
2 (λτ ;λη) ∼ λωσ

2 (τ ;η), ωσ
3 (λτ ;λη) ∼ λωσ

3 (τ ;η),

as λ goes to zero, where ωσ
2,3(τ ;η) are the roots of(

τ + (u∞ − σ)ω
)2 + c2∞

(‖η‖2 − ω2) = 0. (4.38)

By definition, Reωσ
2 < 0 and Reωσ

3 > 0. Associated eigenvectors of Bσ∞(η)−1 Aσ∞(τ ;η) are

Wσ
j (τ ;η) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ∞
ρ∞ωσ

j (τ ;η)

ρ∞ωσ
j (τ ;η)2

τ+(u∞−σ )ωσ
j (τ ;η)

ωσ
j (τ ;η)2−‖η‖2 η

−ωσ
j (τ ;η)

τ+(u∞−σ )ωσ
j (τ ;η)

ωσ
j (τ ;η)2−‖η‖2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.39)

With this choice we have

lim
λ↘0

Wσ
1,4(λτ ;λη) =

⎛⎜⎜⎜⎜⎝
ρ∞

ρ∞ωσ
1,4(0;0)

ρ∞ωσ
1,4(0;0)2

0d−1

⎞⎟⎟⎟⎟⎠ ,
−(u∞ − σ)
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lim
λ↘0

Wσ
2,3(λτ ;λη) =

⎛⎜⎜⎜⎜⎜⎜⎝

ρ∞
0
0

τ+(u∞−σ )ωσ
2,3(τ ;η)

ωσ
2,3(τ ;η)2−‖η‖2 η

−ωσ
2,3(τ ;η)

τ+(u∞−σ )ωσ
2,3(τ ;η)

ωσ
2,3(τ ;η)2−‖η‖2

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

ρ∞
0
0

c2∞
τ+(u∞−σ )ωσ

2,3(τ ;η)
η

− c2∞ωσ
2,3(τ ;η)

τ+(u∞−σ )ωσ
2,3(τ ;η)

⎞⎟⎟⎟⎟⎟⎟⎠ .

By the method of Zumbrun et al. [21,23], we can construct an Evans function Dσ , analytic along rays {(λτ ,λη); λ > 0}
and real-valued for τ ∈ [0,+∞), such that

Dσ (τ ;η) = 0, Reτ > 0 ⇐⇒ Ker
(
Lσ (η) − τ

) 
= {0}.
By definition, away from collision points,

Dσ (τ ;η) = det
(
Φ

1,σ
0 (τ ;η), . . . ,Φ

d−1,σ
0 (τ ;η),Φσ

1 (τ ;η),Φσ
2 (τ ;η),Φσ

3 (τ ;η),Φσ
4 (τ ;η)

)∣∣
ξ=0,

where Φ j(τ ;η) are solutions of (4.35) such that

Φ
j,σ

0 (τ ;η)
ξ→+∞∼ eωσ

0 (τ ;η)ξ W j,σ
0 (τ ;η), Φ0,1,2(τ ;η)

ξ→+∞∼ eω0,1,2(τ ;η)ξ Wσ
0,1,2(τ ;η),

Φ3,4(τ ;η)
ξ→−∞∼ eωσ

3,4(τ ;η)ξ Wσ
3,4(τ ;η). (4.40)

Since Lσ (0) · (Uσ )′ = 0 and (Uσ )′ goes exponentially fast to zero at ±∞, as in dimension 1 we observe that

Dσ (τ ;η) = −r2 det
(
Φ

1,σ
0 (τ ;η), . . . ,Φ

d−1,σ
0 (τ ;η), Φ̆σ

1 (τ ;η),Φσ
2 (τ ;η),Φσ

3 (τ ;η), Φ̆σ
4 (τ ;η)

)∣∣
ξ=0,

where

Φ̆σ
1 (0;0) = Φ̆σ

4 (0;0) =

⎛⎜⎜⎜⎜⎝
(ρσ

− )′

(ρσ
− )′′

(ρσ
− )′′′
0d−1

(uσ )′

⎞⎟⎟⎟⎟⎠ . (4.41)

For simplicity, we shall omit the ˘ hats in what follows. Eq. (4.41) obviously implies that Dσ (0;0) = 0. Furthermore, we
have

d

dλ
Dσ (λτ ;λη)

∣∣∣∣
λ=0

= 0. (4.42)

To prove this, we introduce notations for the components of Φσ
j and Ψ σ

j := ∂λΦ
σ
j (λτ ;λη), namely,

Φσ
j =

⎛⎜⎜⎜⎜⎜⎝
φσ

j

(φσ
j )′

(φσ
j )′′

νσ
j

μσ
j

⎞⎟⎟⎟⎟⎟⎠ , Ψ σ
j =

⎛⎜⎜⎜⎜⎜⎝
ψσ

j

(ψσ
j )′

(ψσ
j )′′

ζσ
j

χσ
j

⎞⎟⎟⎟⎟⎟⎠ .

By differentiation of (Bσ (λη)Φσ
j (λτ ;λη))′ = Aσ (λτ ;λη)Φσ

j (λτ ;λη) with respect to λ, we obtain(
Bσ (0)Ψ σ

j (0;0)
)′ = Aσ (0;0)Ψ σ

j (0;0) + Aσ
1 (τ ;η)Φσ

j (0;0),

Aσ
1 (τ ;η) := d

dλ
Aσ (λτ ;λη)

∣∣∣∣
λ=0

=

⎛⎜⎜⎜⎜⎝
0 0 0 0∗

d−1 0

0 0 0 0∗
d−1 0

0 0 0 0∗
d−1 τ

(ασ + Kσ ‖η‖2)η −(K σ )′η −K σ η −τ Id−1 0d−1

−τ 0 0 −ρσ
− ηt 0

⎞⎟⎟⎟⎟⎠ . (4.43)

By (4.41), we have

Aσ
1 (τ ;η)Φσ

1,4(0;0) =

⎛⎜⎜⎜⎝
0
0

τ (uσ )′
(ασ (ρσ

− )′ − (K σ )′(ρσ
− )′′ − K σ (ρσ

− )′′′)η
σ ′

⎞⎟⎟⎟⎠ .
−τ (ρ− )
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We thus see that the third row, respectively the last row, in (4.43) for j = 1,4 are equivalent to the second (and last) row,
respectively the first row, in

Lσ ·
(

ψσ
1,4(0;0)

χσ
1,4(0;0)

)
= τ

(
(ρσ

− )′

(uσ )′
)

= −τ Lσ ·
(

∂σ ρσ
−

∂σ uσ

)
,

where Lσ is the one-dimensional operator of Section 3. Therefore, up to adding a constant times λΦσ
1,4(λτ ;λη) to

Φσ
1,4(λτ ;λη), we may assume that(

ψσ
1 (0;0)

χσ
1 (0;0)

)
=

(
ψσ

4 (0;0)

χσ
4 (0;0)

)
= −τ

(
∂σ (ρσ

− )

∂σ (uσ )

)
. (4.44)

Now the intermediate (d − 1) rows in (4.43) for j = 1,4 read((
uσ − σ

)
ζ1,4(0;0)

)′ = (
ασ

(
ρσ
−

)′ − (
Kσ

)′(
ρσ
−

)′′ − K σ
(
ρσ
−

)′′′)
η = −

(
1

2

(
uσ − σ

)2
)′

η

by the profile equation (3.13). Therefore, by integration,

ζ1(0;0) = ζ4(0;0) = −1

2

((
uσ − σ

) − (u∞ − σ)2

uσ − σ

)
η.

So finally, we have

Ψ σ
1 (0;0) = Ψ σ

4 (0;0), (4.45)

which together with (4.41) implies (4.42), and

d2

dλ2
Dσ (λτ ;λη)

∣∣∣∣
λ=0

= det
(
Φ

1,σ
0 , . . . ,Φ

d−1,σ
0 ,Φσ

1 ,Φσ
2 ,Φσ

3 , ∂2
λλ

(
Φσ

4 − Φσ
1

))
(λτ ;λη)

∣∣
λ=0

∣∣
ξ=0.

For simplicity, in what follows we omit the superscript σ , and we just denote Φ j for Φσ
j (0;0), and Θ j for

∂2
λλΦ

σ
j (λτ ;λη)|λ=0. The starting point is to evaluate the determinant above is to note that

det B = ρ− K (u − σ)d−1 
= 0,

hence

det
(
Φ1

0 , . . . ,Φd−1
0 ,Φ1,Φ2,Φ3, ∂

2
λλ

(
Φσ

4 − Φσ
1

))
= 1

ρ− K (u − σ)d−1
det

(
BΦ1

0 , . . . , BΦd−1
0 , BΦ1, BΦ2, BΦ3, ∂

2
λλB(Φ4 − Φ1)

)
.

By construction of Φ j , since all but the first two rows of A(0;0) are zeroes, we have

B(0)Φ j =
⎛⎝ φ j

φ′
j

R j

⎞⎠ ,

where R j is a constant vector in R
d+1 determined by the asymptotic behavior of Φ j . In particular R1 is the null vector.

We shall compute the other vectors R j later on. We also need some information on S1,4 : ξ → S1,4(ξ) ∈ R
2 such that, by

definition,

BΘ1,4 =
(

θ1,4
θ ′

1,4
S1,4

)
.

Differentiating twice (B(λη)Φ j(λτ ;λη))′ = A(λτ ;λη)Φ j(λτ ;λη) with respect to λ, we obtain(
B(0)Θ j + B2(η)Φ j

)′ = A(0;0)Θ j + 2Aσ
1 (τ ;η)Ψ j,

B2(η) := d2

dλ2
B(λη)

∣∣∣∣
λ=0

=

⎛⎜⎜⎜⎜⎝
0 0 0 0∗

d−1 0

0 0 0 0∗
d−1 0

−2K‖η‖2 0 0 0∗
d−1 0

0 0 0 0d−1 0d−1

⎞⎟⎟⎟⎟⎠ . (4.46)
0 0 0 0 0
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In particular, we have by (4.41) and (4.44),

S ′
1,4 = 2

⎛⎜⎝
−τ 2∂σ u + (Kρ ′

− )′‖η‖2

−τ (α∂σ ρ− − K ′∂σ ρ ′
− − K∂σ ρ ′′

− )η + 1
2τ ((u − σ) − (u∞−σ )2

u−σ )η

τ 2∂σ ρ− + 1
2ρ−((u − σ) − (u∞−σ )2

u−σ )‖η‖2

⎞⎟⎠ .

Lemma 2. If Π denotes the projection operator

Π :

(
φ

φ′
R

)
∈ C

d+3 	→ R ∈ C
d+1,

then, if τ 2 
= (u∞ − σ)2‖η‖2 , the vectors R j
0 := Π B(0)Φ

j
0 , j = 1, . . . ,d − 1, and Rk := Π B(0)Φk, k = 2,3, are independent.

Remark 3. Points (τ ,η) with τ 2 = (u∞ − σ)2‖η‖2 are collision points, for which ω2 coincides with ω0. Our computation
below does not imply at all that the second-order derivative of the Evans function vanishes at those points: a different
computation should be made to find the actual value of that derivative.

Proof of Lemma 2. We easily compute that

R j
0 = (u∞ − σ)

(−(u∞ − σ)η j
τe j

ρ∞η j

)
,

and for k = 2,3,

Rk = 1

τ + (u∞ − σ)ωk

⎛⎝ −c2∞τ

(u∞ − σ)c2∞η

ρ∞((u∞ − σ)(τ + (u∞ − σ)ωk) − c2∞ωk)

⎞⎠ ,

hence

det
(

R1
0, . . . , Rd−1

0 , R2, R3
) = c2∞(ω2 − ω3)

(
c2∞ − (u∞ − σ)2)(τ 2 − (u∞ − σ)2‖η‖2). �

Thanks to Lemma 2, we may proceed as in Section 3. We introduce (the unique) numbers d j
0, j = 1, . . . ,d − 1, and d2,3

such that

S4 − S1 =
d−1∑
j=1

d j
0 R j

0 + d2 R2 − d3 R3,

and develop the determinant as follows,

det
(

B(0)Φ1
0 , . . . , B(0)Φd−1

0 , BΦ1, B(0)Φ2, B(0)Φ3, ∂
2
λλB(0)(Φ4 − Φ1)

)
=

∣∣∣∣∣∣∣
φ1

0 · · · φd−1
0 ρ ′

− φ2 φ3 θ̃4 − θ̃1

(φ1
0)′ · · · (φd−1

0 )′ ρ ′′
− φ′

2 φ′
3 θ̃ ′

4 − θ̃ ′
1

R1
0 · · · Rd−1

0 0d+1 R2 R3 0d+1

∣∣∣∣∣∣∣
= det

(
R1

0, . . . , Rd−1
0 , R2, R3

) ∣∣∣∣ ρ ′
− θ̃4 − θ̃1

ρ ′′
− θ̃ ′

4 − θ̃ ′
1

∣∣∣∣
with

θ̃4 := θ4 + d3φ3, θ̃1 := θ1 +
d−1∑
j=1

d j
0φ

j
0 + d2φ2.

By the same technique as in Section 3 we find that∣∣∣∣ ρ ′
− θ̃4 − θ̃1

ρ ′′
− θ̃ ′

4 − θ̃ ′
1

∣∣∣∣|ξ=0
= 1

K (0)

+∞∫
s[θ̃1,4]ρ ′

− ,
−∞
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with

s[θ̃4] := K θ̃ ′′
4 + (K )′θ̃ ′

4 − αθ̃4 + 1

ρ−
(u − σ)2θ̃4 = (

1,0∗
d−1, (u − σ)/ρ−

)
(S4 + d3 R3)

= (
1,0∗

d−1, (u − σ)/ρ−
)(

S1 +
d−1∑
j=1

d j
0 R j

0 + d2 R2

)
=: s[θ̃1].

Since

(u − σ)ρ ′
− = −ρ− u′,

we have

+∞∫
−∞

s[θ̃1,4]ρ ′
− =

+∞∫
−∞

(
ρ ′
− ,0∗

d−1,−u′)S4 = 2

+∞∫
−∞

τ 2((ρ− − ρ∞)∂σ u + (u − u∞)∂σ ρ−
)

+
+∞∫

−∞
‖η‖2

(
2K (ρ ′

− )2 + ρ−(u − u∞)

(
(u − σ) − (u∞ − σ)2

u − σ

))
after integration by part. In factor of τ 2 we recognize −m′′(σ ) (see (3.10)), and the factor of ‖η‖2 is obviously positive,
since

2K (ρ ′
− )2 + ρ−(u − u∞)

(
(u − σ) − (u∞ − σ)2

u − σ

)
� ρ−

u − σ

(
u − σ − (u∞ − σ)

)2
(u − σ + u∞ − σ) > 0.

(Recall that as j = ρ− (u −σ) = ρ∞(u∞ −σ) has been assumed positive.) In conclusion, if (τ ;η) is not a collision point, for λ

close to 0, we have D(λτ ,λη) ∼ λ2 P (τ ;η) with

P (τ ;η) = −r2(−m′′(σ )τ 2 + s2‖η‖2),
where r and s are nonzero real numbers. If m′′(σ ) < 0, which implies that the solitary wave is one-d unstable by Theorem 1,
perturbations transverse to the wave makes the local behavior of the Evans function even ‘worse’. If m′′(σ ) > 0, which
implies that the solitary wave is orbitally stable in one space dimension, we find as announced above a continuous branch
η 	→ τ�(η) along which D vanishes. We have thus proved the following.

Theorem 2. Planar solitary waves satisfying the one-dimensional stability condition (3.25) (p. 348) are linearly unstable in several
space dimensions, in the sense that the linearized equations (4.33) (p. 351) admit growing mode solutions U̇(ξ)eτ t+iη·y with Reτ > 0.

In view of the method developed recently by Rousset and Tzvetkov [19], we expect that this linear transverse instability
implies nonlinear instability. This will be the purpose of a separate paper.

Remark 4. There are no growing modes U̇(ξ)eτ t+iη·y with τ /∈ iR if ‖η‖ is large enough. Indeed, if

Kσ ‖η‖2 + ασ − (
uσ − σ

)2
/ρσ

− � 0,

the Sturm–Liouville operator

M + K σ ‖η‖2 = −∂ξ K σ ∂ξ + Kσ ‖η‖2 + ασ − (
uσ − σ

)2
/ρσ

−
is monotone, and by the energy estimates performed in [3, Theorem 2, pp. 245–247], this is enough to preclude the exis-
tence of non-neutral modes.
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