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In this paper, by using the atomic decomposition and molecular characterization of the
homogeneous and non-homogeneous weighted Herz-type Hardy spaces H K̇α,p

q (w1, w2)

(H Kα,p
q (w1, w2)), we obtain some weighted boundedness properties of the Bochner–Riesz

operator and the maximal Bochner–Riesz operator on these spaces for α = n(1/p − 1/q),
0 < p � 1 and 1 < q < ∞.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The Bochner–Riesz operators of order δ > 0 in Rn are defined initially for Schwartz functions in terms of Fourier trans-
forms by

(
T δ

R f
)
^(ξ) =

(
1 − |ξ |2

R2

)δ

+
f̂ (ξ),

where f̂ denotes the Fourier transform of f . The associated maximal Bochner–Riesz operator is defined by

T δ∗ f (x) = sup
R>0

∣∣T δ
R f (x)

∣∣.
These operators were first introduced by Bochner [3] in connection with summation of multiple Fourier series and played
an important role in harmonic analysis. As for their H p boundedness, Sjölin [21] and Stein, Taibleson and Weiss [22] proved
the following theorem (see also [10, page 121]).

Theorem I. Suppose that 0 < p � 1 and δ > n/p − (n + 1)/2. Then there exists a constant C independent of f and R such that∥∥T δ
R( f )

∥∥
H p � C‖ f ‖H p .

In [22], the authors also showed
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Theorem II. Suppose that 0 < p < 1 and δ = n/p − (n + 1)/2. Then there exists a constant C independent of f such that

sup
λ>0

λp
∣∣{x ∈ Rn: T δ∗ f (x) > λ

}∣∣ � C‖ f ‖p
H p .

In 1995, Sato [20] considered the weighted case and obtained the following weighted weak type estimate for the maxi-
mal operator T δ∗ .

Theorem III. Let w ∈ A1 (Muckenhoupt weight class), 0 < p < 1 and δ = n/p − (n+1)/2. Then there exists a constant C independent
of f such that

sup
λ>0

λp · w
({

x ∈ Rn: T δ∗ f (x) > λ
})

� C‖ f ‖p
H p

w
.

In 2006, Lee [9] considered values of δ greater than the critical index n/p − (n + 1)/2 and proved the following weighted
strong type estimate.

Theorem IV. Let w ∈ A1 , 0 < p � 1 and δ > n/p − (n + 1)/2. Then there exists a constant C independent of f such that∥∥T δ∗( f )
∥∥

L p
w

� C‖ f ‖H p
w
.

Using the above H p
w –L p

w boundedness of the maximal operator T δ∗ , Lee [9] also obtained the H p
w boundedness of the

Bochner–Riesz operator.

Theorem V. Let w ∈ A1 with critical index rw for the reverse Hölder condition, 0 < p � 1, δ > max{n/p − (n + 1)/2, [n/p]rw/

(rw − 1) − (n + 1)/2}. Then there exists a constant C independent of f and R such that∥∥T δ
R( f )

∥∥
H p

w
� C‖ f ‖H p

w
.

The main purpose of this paper is to discuss some corresponding estimates of Bochner–Riesz operators on the homo-
geneous and non-homogeneous weighted Herz-type Hardy spaces H K̇ α,p

q (w1, w2) (H K α,p
q (w1, w2)). Our main results are

stated as follows.

Theorem 1. Let w1, w2 ∈ A1 and 1 < q < ∞. If 0 < p � 1, α = n(1/p − 1/q), δ > n/p − (n + 1)/2, then there exists a constant C
independent of f such that∥∥T δ∗( f )

∥∥
K̇α,p

q (w1,w2)
� C‖ f ‖H K̇α,p

q (w1,w2),∥∥T δ∗( f )
∥∥

Kα,p
q (w1,w2)

� C‖ f ‖H Kα,p
q (w1,w2),

where K̇ α,p
q (w1, w2) (K α,p

q (w1, w2)) denotes the homogeneous (non-homogeneous) weighted Herz space.

Theorem 2. Let w1, w2 ∈ A1 and 1 < q < ∞. If 0 < p < 1, α = n(1/p − 1/q), δ = n/p − (n + 1)/2, then there exists a constant C
independent of f such that∥∥T δ∗( f )

∥∥
W K̇α,p

q (w1,w2)
� C‖ f ‖H K̇α,p

q (w1,w2),∥∥T δ∗( f )
∥∥

W Kα,p
q (w1,w2)

� C‖ f ‖H Kα,p
q (w1,w2),

where W K̇ α,p
q (w1, w2) (W K α,p

q (w1, w2)) denotes the homogeneous (non-homogeneous) weak weighted Herz space.

Theorem 3. Let w ∈ A1 and 1 < q < ∞. If 0 < p � 1, α = n(1/p − 1/q), δ > max{n/p − (n + 1)/2, [n/p]rw/(rw − 1)− (n + 1)/2},
then there exists a constant C independent of f and R such that∥∥T δ

R( f )
∥∥

H K̇α,p
q (w,w)

� C‖ f ‖H K̇α,p
q (w,w),∥∥T δ

R( f )
∥∥

H Kα,p
q (w,w)

� C‖ f ‖H Kα,p
q (w,w),

where rw denotes the critical index of w for the reverse Hölder condition.
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2. Notations and definitions

First, let us recall some standard definitions and notations. The classical A p weight theory was first introduced by
Muckenhoupt in the study of weighted L p boundedness of Hardy–Littlewood maximal functions in [19]. A weight w is
a locally integrable function on Rn which takes values in (0,∞) almost everywhere. B = B(x0, r) denotes the ball with the
center x0 and radius r. We say that w ∈ A p , 1 < p < ∞, if(

1

|B|
∫
B

w(x)dx

)(
1

|B|
∫
B

w(x)−
1

p−1 dx

)p−1

� C for every ball B ⊆ Rn,

where C is a positive constant which is independent of B .
For the case p = 1, w ∈ A1, if

1

|B|
∫
B

w(x)dx � C · ess inf
x∈B

w(x) for every ball B ⊆ Rn.

A weight function w is said to belong to the reverse Hölder class R Hr if there exist two constants r > 1 and C > 0 such
that the following reverse Hölder inequality holds(

1

|B|
∫
B

w(x)r dx

)1/r

� C

(
1

|B|
∫
B

w(x)dx

)
for every ball B ⊆ Rn.

It is well known that if w ∈ A p with 1 < p < ∞, then w ∈ Ar for all r > p, and w ∈ Aq for some 1 < q < p. If w ∈ A p with
1 � p < ∞, then there exists r > 1 such that w ∈ R Hr . It follows from Hölder’s inequality that w ∈ R Hr implies w ∈ R Hs for
all 1 < s < r. Moreover, if w ∈ R Hr , r > 1, then we have w ∈ R Hr+ε for some ε > 0. We thus write rw ≡ sup{r > 1: w ∈ R Hr}
to denote the critical index of w for the reverse Hölder condition.

Given a ball B and λ > 0, λB denotes the ball with the same center as B whose radius is λ times that of B . For a
given weight function w , we denote the Lebesgue measure of B by |B| and the weighted measure of B by w(B), where
w(B) = ∫

B w(x)dx.
We give the following results that we will use in the sequel.

Lemma A. (See [5].) Let w ∈ A p, p � 1. Then, for any ball B, there exists an absolute constant C such that

w(2B) � C w(B).

In general, for any λ > 1, we have

w(λB) � C · λnp w(B),

where C does not depend on B nor on λ.

Lemma B. (See [5,6].) Let w ∈ A p ∩ R Hr , p � 1 and r > 1. Then there exist constants C1, C2 > 0 such that

C1

( |E|
|B|

)p

� w(E)

w(B)
� C2

( |E|
|B|

)(r−1)/r

for any measurable subset E of a ball B.

Lemma C. (See [5].) Let w ∈ Aq and q > 1. Then, for all r > 0, there exists a constant C independent of r such that∫
|x|>r

w(x)

|x|nq
dx � C · r−nq w

(
B(0, r)

)
.

Next we shall give the definitions of the weighted Herz space, weak weighted Herz space and weighted Herz-type Hardy
space. In 1964, Beurling [2] first introduced some fundamental form of Herz spaces to study convolution algebras. Later
Herz [7] gave versions of the spaces defined below in a slightly different setting. Since then, the theory of Herz spaces has
been significantly developed, and these spaces have turned out to be quite useful in harmonic analysis. For instance, they
were used by Baernstein and Sawyer [1] to characterize the multipliers on the classical Hardy spaces, and used by Lu and
Yang [16] in the study of partial differential equations.

On the other hand, a theory of Hardy spaces associated with Herz spaces has been developed in [4,14]. These new Hardy
spaces can be regarded as the local version at the origin of the classical Hardy spaces H p(Rn) and are good substitutes for



H. Wang / J. Math. Anal. Appl. 381 (2011) 134–145 137
H p(Rn) when we study the boundedness of non-translation invariant operators (see [15]). For the weighted case, in 1995, Lu
and Yang introduced the following weighted Herz-type Hardy spaces H K̇ α,p

q (w1, w2) (H K α,p
q (w1, w2)) and established their

atomic decompositions. In 2006, Lee gave the molecular characterizations of these spaces, he also obtained the boundedness
of the Hilbert transform and the Riesz transforms on H K̇ n(1/p−1/q),p

q (w, w) and H K n(1/p−1/q),p
q (w, w) for 0 < p � 1. For the

results mentioned above, we refer the readers to the book [18] and the papers [8,12,13,17] for further details.
Let Bk = {x ∈ Rn: |x| � 2k} and Ck = Bk\Bk−1 for k ∈ Z. Denote χk = χCk

for k ∈ Z, χ̃k = χk if k ∈ N and χ̃0 = χB0
, where

χCk
is the characteristic function of Ck . Given a weight function w on Rn , for 1 � p < ∞, we denote by L p

w(Rn) the space
of all functions satisfying

‖ f ‖L p
w (Rn) =

(∫
Rn

∣∣ f (x)
∣∣p

w(x)dx

)1/p

< ∞.

Definition 1. Let α ∈ R, 0 < p,q < ∞ and w1, w2 be two weight functions on Rn .

(i) The homogeneous weighted Herz space K̇ α,p
q (w1, w2) is defined by

K̇α,p
q (w1, w2) = {

f ∈ Lq
loc

(
Rn\{0}, w2

)
: ‖ f ‖K̇α,p

q (w1,w2) < ∞}
,

where

‖ f ‖K̇α,p
q (w1,w2) =

(∑
k∈Z

(
w1(Bk)

)αp/n‖ f χk‖p
Lq

w2

)1/p

.

(ii) The non-homogeneous weighted Herz space K α,p
q (w1, w2) is defined by

Kα,p
q (w1, w2) = {

f ∈ Lq
loc

(
Rn, w2

)
: ‖ f ‖Kα,p

q (w1,w2) < ∞}
,

where

‖ f ‖Kα,p
q (w1,w2) =

( ∞∑
k=0

(
w1(Bk)

)αp/n‖ f χ̃k‖p
Lq

w2

)1/p

.

For k ∈ Z and λ > 0, we set Ek(λ, f ) = |{x ∈ Ck: | f (x)| > λ}|. Let Ẽk(λ, f ) = Ek(λ, f ) for k ∈ N and Ẽ0(λ, f ) = |{x ∈
B(0,1): | f (x)| > λ}|.

Definition 2. Let α ∈ R, 0 < p,q < ∞ and w1, w2 be two weight functions on Rn .

(i) A measurable function f (x) on Rn is said to belong to the homogeneous weak weighted Herz spaces W K̇ α,p
q (w1, w2)

if

‖ f ‖W K̇α,p
q (w1,w2) = sup

λ>0
λ

(∑
k∈Z

w1(Bk)
αp/n w2

(
Ek(λ, f )

)p/q
)1/p

< ∞.

(ii) A measurable function f (x) on Rn is said to belong to the non-homogeneous weak weighted Herz spaces
W K α,p

q (w1, w2) if

‖ f ‖W Kα,p
q (w1,w2) = sup

λ>0
λ

( ∞∑
k=0

w1(Bk)
αp/n w2

(̃
Ek(λ, f )

)p/q

)1/p

< ∞.

Let S (Rn) be the class of Schwartz functions and let S ′(Rn) be its dual space. For f ∈ S ′(Rn), the grand maximal
function of f is defined by

G( f )(x) = sup
ϕ∈AN

sup
|y−x|<t

∣∣ϕt ∗ f (y)
∣∣,

where N > n + 1, AN = {ϕ ∈ S (Rn): sup|α|,|β|�N |xα Dβϕ(x)| � 1} and ϕt(x) = t−nϕ(x/t).
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Definition 3. Let 0 < α < ∞, 0 < p < ∞, 1 < q < ∞ and w1, w2 be two weight functions on Rn .

(i) The homogeneous weighted Herz-type Hardy space H K̇ α,p
q (w1, w2) associated with the space K̇ α,p

q (w1, w2) is defined
by

H K̇α,p
q (w1, w2) = {

f ∈ S ′(Rn): G( f ) ∈ K̇α,p
q (w1, w2)

}
and we define ‖ f ‖H K̇α,p

q (w1,w2) = ‖G( f )‖K̇α,p
q (w1,w2) .

(ii) The non-homogeneous weighted Herz-type Hardy space H K α,p
q (w1, w2) associated with the space K α,p

q (w1, w2) is
defined by

H Kα,p
q (w1, w2) = {

f ∈ S ′(Rn): G( f ) ∈ Kα,p
q (w1, w2)

}
and we define ‖ f ‖H Kα,p

q (w1,w2) = ‖G( f )‖Kα,p
q (w1,w2) .

3. The atomic decomposition and molecular characterization

In this article, we will use atomic and molecular decomposition theory for weighted Herz-type Hardy spaces in [8,12,13].
We first characterize weighted Herz-type Hardy spaces in terms of atoms in the following way.

Definition 4. Let 1 < q < ∞, n(1 − 1/q) � α < ∞ and s � [α + n(1/q − 1)].

(i) A function a(x) on Rn is called a central (α,q, s)-atom with respect to (w1, w2) (or a central (α,q, s; w1, w2)-atom), if
it satisfies:
(a) supp a ⊆ B(0, R) = {x ∈ Rn: |x| < R},
(b) ‖a‖Lq

w2
� w1(B(0, R))−α/n ,

(c)
∫

Rn a(x)xβ dx = 0 for every multi-index β with |β| � s.
(ii) A function a(x) on Rn is called a central (α,q, s)-atom of restricted type with respect to (w1, w2) (or a central

(α,q, s; w1, w2)-atom of restricted type), if it satisfies the conditions (b), (c) above and
(a′) supp a ⊆ B(0, R) for some R > 1.

It is worth pointing out that the difference between (a) and (a′) lies in the definitions of homogeneous and non-
homogeneous weighted Herz space.

Theorem D. Let w1, w2 ∈ A1 , 0 < p < ∞, 1 < q < ∞ and n(1 − 1/q) � α < ∞. Then we have:

(i) f ∈ H K̇ α,p
q (w1, w2) if and only if

f (x) =
∑
k∈Z

λkak(x), in the sense of S ′(Rn),
where

∑
k∈Z

|λk|p < ∞, each ak is a central (α,q, s; w1, w2)-atom. Moreover,

‖ f ‖H K̇α,p
q (w1,w2) ≈ inf

(∑
k∈Z

|λk|p
)1/p

,

where the infimum is taken over all the above decompositions of f .
(ii) f ∈ H K α,p

q (w1, w2) if and only if

f (x) =
∞∑

k=0

λkak(x), in the sense of S ′(Rn),
where

∑∞
k=0 |λk|p < ∞, each ak is a central (α,q, s; w1, w2)-atom of restricted type. Moreover,

‖ f ‖H Kα,p
q (w1,w2) ≈ inf

( ∞∑
k=0

|λk|p

)1/p

,

where the infimum is taken over all the above decompositions of f .

Next we give the definition of central molecule and the molecular characterization of H K̇ n(1/p−1/q),p
q (w, w)

(H K n(1/p−1/q),p
q (w, w)).
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Definition 5. For 0 < p � 1 < q < ∞, let w ∈ A1 with critical index rw for the reverse Hölder condition. Set s � [n(1/p − 1)],
ε > max{srw/n(rw − 1) + 1/(rw − 1),1/p − 1}, a = 1 − 1/p + ε and b = 1 − 1/q + ε.

(i) A central (p,q, s, ε)-molecule with respect to w (or a central w-(p,q, s, ε)-molecule) is a function M ∈ Lq
w(Rn) satisfy-

ing:
(a) M(x) · w(B(0, |x|))b ∈ Lq

w(Rn),
(b) ‖M‖a/b

Lq
w

· ‖M(·)w(B(0, | · |))b‖1−a/b

Lq
w

≡ N w(M) < ∞,

(c)
∫

Rn M(x)xγ dx = 0 for every multi-index γ with |γ | � s.
(ii) A function M ∈ Lq

w(Rn) is called a central (p,q, s, ε)-molecule of restricted type with respect to w (or a central w-
(p,q, s, ε)-molecule of restricted type) if it satisfies (a)–(c) and
(d) ‖M‖Lq

w
� w(B(0,1))1/q−1/p .

The above N w(M) is called the molecular norm of M with respect to w (or w-molecular norm of M).

Theorem E. Let (p,q, s, ε) be the quadruple in the definition of central w-molecule, let w ∈ A1 and α = n(1/p − 1/q).

(i) Every central (p,q, s, ε)-molecule M centered at the origin with respect to w belongs to H K̇ α,p
q (w, w) and ‖M‖H K̇α,p

q (w,w) �
C N w(M), where the constant C is independent of M.

(ii) Every central (p,q, s, ε)-molecule of restricted type M with respect to w belongs to H K α,p
q (w, w) and ‖M‖H Kα,p

q (w,w) �
C N w(M), where the constant C is independent of M.

Throughout this article, we will use C to denote a positive constant, which is independent of the main parameters and
not necessarily the same at each occurrence. By A ∼ B , we mean that there exists a constant C > 1 such that 1

C � A
B � C .

4. Proof of Theorem 1

The Bochner–Riesz operators can be expressed as convolution operators

T δ
R f (x) = ( f ∗ φ1/R)(x),

where φ(x) = [(1 − | · |2)δ+]^(x). It is well known that the kernel φ can be represented as (see [11,23])

φ(x) = π−δΓ (δ + 1)|x|−( n
2 +δ) J n

2 +δ

(
2π |x|),

where Jμ(t) is the Bessel function

Jμ(t) = ( t
2 )μ

Γ (μ + 1
2 )Γ ( 1

2 )

1∫
−1

eits(1 − s2)μ− 1
2 ds.

We shall need the following estimate which can be found in [20].

Lemma 4.1. Let 0 < p < 1 and δ = n/p − (n + 1)/2. Then the kernel φ satisfies the inequality

sup
x∈Rn

(
1 + |x|)n/p∣∣Dαφ(x)

∣∣ � C for all multi-indices α.

Proof of Theorem 1. First we observe that δ > n/p − (n + 1)/2, then we are able to choose a number 0 < p1 < p such
that δ = n/p1 − (n + 1)/2. Set s = [n(1/p1 − 1)]. For any central (α,q, s; w1, w2)-atom a with supp a ⊆ B(0, r), we are
going to prove that ‖T δ∗(a)‖K̇α,p

q (w1,w2) � C , where C > 0 is independent of the choice of a. For given r > 0, we can find an

appropriate number k0 ∈ Z satisfying 2k0−2 < r � 2k0−1. Write∥∥T δ∗(a)
∥∥p

K̇α,p
q (w1,w2)

=
∑
k∈Z

w1(Bk)
αp/n

∥∥T δ∗(a)χk
∥∥p

Lq
w2

=
k0∑

k=−∞
w1(Bk)

αp/n
∥∥T δ∗(a)χk

∥∥p
Lq

w2
+

∞∑
k=k0+1

w1(Bk)
αp/n

∥∥T δ∗(a)χk
∥∥p

Lq
w2

= I1 + I2.
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Note that 0 < p � 1, δ > n/p − (n + 1)/2, then δ > (n − 1)/2. In this case, it is well known that (see [11,23])

T δ∗(a)(x) � C · M(a)(x), (1)

where M denotes the Hardy–Littlewood maximal operator. The size condition of central atom a and the above inequality (1)
imply

I1 � C
k0∑

k=−∞
w1(Bk)

αp/n‖a‖p
Lq

w2

� C
k0∑

k=−∞
w1(Bk)

αp/n w1
(

B(0, r)
)−αp/n

.

Since w1 ∈ A1, then we know w ∈ R Hμ for some μ > 1. When k � k0, then Bk ⊆ Bk0 . By Lemma B, we have

w1(Bk) � C · w1(Bk0)|Bk|θ |Bk0 |−θ ,

where θ = (μ − 1)/μ > 0. Hence

I1 � C
k0∑

k=−∞

(
2(k−k0)αθ p w1(Bk0)

αp/n w1
(

B(0, r)
)−αp/n)

� C
k0∑

k=−∞
2(k−k0)αθ p

= C
0∑

k=−∞
2kαθ p

� C . (2)

We now turn to estimate I2. For any given central (α,q, s; w1, w2)-atom a with support contained in B(0, r), it is easy
to verify that

a1(x) = w
(

B(0, r)
)1/p−1/p1 · a(x)

is a central (α1,q, s; w1, w2)-atom which is supported in B(0, r), where α1 = n(1/p1 − 1/q). We now claim that for any
x ∈ Ck = Bk\Bk−1, the following inequality holds

T δ∗(a1)(x) � C · rn/p1

|x|n/p1
w1

(
B(0, r)

)−α1/n
w2

(
B(0, r)

)−1/q
. (3)

In fact, for any ε > 0, we write

a1 ∗ φε(x) = ε−n
∫

B(0,r)

φ

(
x − y

ε

)
a1(y)dy.

Let us consider the following two cases.
(i) 0 < ε � r. Note that δ = n/p1 − (n + 1)/2, then by Lemma 4.1, we have∣∣a1 ∗ φε(x)

∣∣ � C · εn/p1−n
∫

B(0,r)

|a1(y)|
|x − y|n/p1

dy.

Observe that when x ∈ Ck = Bk\Bk−1, k > k0, then we can easily get |x| � 2|y|, which implies |x − y| ∼ |x|. We also note
that 0 < p1 < 1, then n/p1 − n > 0. Thus∣∣a1 ∗ φε(x)

∣∣ � C · rn/p1−n 1

|x|n/p1

∫
B(0,r)

∣∣a1(y)
∣∣dy. (4)

Denote the conjugate exponent of q > 1 by q′ = q/(q − 1). Using Hölder’s inequality, Aq condition and the size condition
of a1, we can get∫

B(0,r)

∣∣a1(y)
∣∣dy �

( ∫
B(0,r)

∣∣a1(y)
∣∣q

w2(y)dy

)1/q( ∫
B(0,r)

(
w−1/q

2

)q′
dy

)1/q′

� C‖a1‖Lq
w2

∣∣B(0, r)
∣∣w2

(
B(0, r)

)−1/q

� C
∣∣B(0, r)

∣∣w1
(

B(0, r)
)−α1/n

w2
(

B(0, r)
)−1/q

. (5)
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Substituting the above inequality (5) into (4), we thus obtain∣∣a1 ∗ φε(x)
∣∣ � C · rn/p1

|x|n/p1
w1

(
B(0, r)

)−α1/n
w2

(
B(0, r)

)−1/q
. (6)

(ii) ε > r. Since 0 < p1 < 1, then we can find a non-negative integer N such that n
n+N+1 � p1 < n

n+N . It is easy to see that
this choice of N implies [n(1/p1 − 1)] � N . Using the vanishing moment condition of a, Taylor’s theorem and Lemma 4.1,
we can get∣∣a1 ∗ φε(x)

∣∣ = ε−n

∣∣∣∣ ∫
B(0,r)

[
φ

(
x − y

ε

)
−

∑
|γ |�N

Dγ φ( x
ε )

γ !
(

y

ε

)γ ]
a1(y)dy

∣∣∣∣
� ε−n ·

(
r

ε

)N+1 ∫
B(0,r)

∑
|γ |=N+1

∣∣∣∣ Dγ φ(
x−θ y

ε )

γ !
∣∣∣∣∣∣a1(y)

∣∣dy

� C · rN+1

εn+N+1

∫
B(0,r)

∣∣∣∣ x − θ y

ε

∣∣∣∣−n/p1 ∣∣a1(y)
∣∣dy,

where 0 < θ < 1. As in the first case (i), we have |x| � 2|y|, which implies |x − θ y| � 1
2 |x|. This together with the inequal-

ity (5) yield∣∣a1 ∗ φε(x)
∣∣ � C · rn+N+1

εn+N+1−n/p1

1

|x|n/p1
w1

(
B(0, r)

)−α1/n
w2

(
B(0, r)

)−1/q
.

Observe that n + N + 1 − n/p1 � 0, then for ε > r, we have εn+N+1−n/p1 � rn+N+1−n/p1 . Consequently∣∣a1 ∗ φε(x)
∣∣ � C · rn/p1

|x|n/p1
w1

(
B(0, r)

)−α1/n
w2

(
B(0, r)

)−1/q
. (7)

Summarizing the estimates (6) and (7) derived above and taking the supremum over all ε > 0, we obtain the desired
estimate (3). Note that α = n(1/p − 1/q) and α1 = n(1/p1 − 1/q). It follows from the inequality (3) that

I2 �
∞∑

k=k0+1

w1(Bk)
αp/n w1

(
B(0, r)

)p(1/p1−1/p)
( ∫

2k−1<|x|�2k

∣∣T δ∗(a1)(x)
∣∣q

w2(x)dx

)p/q

� C
∞∑

k=k0+1

rnp/p1 w1(Bk)
1−p/q w1

(
B(0, r)

)−(1−p/q)
w2

(
B(0, r)

)−p/q
( ∫

2k−1<|x|�2k

w2(x)

|x|nq/p1
dx

)p/q

� C
∞∑

k=k0+1

(
rnp/p1

2knp/p1

)(
w1(Bk)

w1(B(0, r))

)1−p/q( w2(Bk)

w2(B(0, r))

)p/q

.

When k > k0, then Bk ⊇ Bk0 . Using Lemma B again, we can get

wi(Bk) � C · wi(Bk0)|Bk||Bk0 |−1 for i = 1 or 2.

Therefore

I2 � C
∞∑

k=k0+1

(
2k0np/p1

2knp/p1

)(
2kn

2k0n

)1−p/q( 2kn

2k0n

)p/q

= C
∞∑

k=k0+1

1

2(k−k0)(np/p1−n)

= C
∞∑

k=1

1

2k(np/p1−n)

� C, (8)

where in the last inequality we have used the fact that np/p1 − n > 0. Combining the above estimate (8) with (2), we get
the desired result.
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We are now in a position to complete the proof of Theorem 1. For every f ∈ H K̇ α,p
q (w1, w2), then by Theorem D, we

have the decomposition f = ∑
j∈Z

λ ja j, where
∑

j∈Z
|λ j|p < ∞ and each a j is a central (α,q, s; w1, w2)-atom. Therefore

∥∥T δ∗( f )
∥∥p

K̇α,p
q (w1,w2)

� C
∑
k∈Z

w1(Bk)
αp/n

(∑
j∈Z

|λ j|
∥∥T δ∗(a j)χk

∥∥
Lq

w2

)p

� C
∑
k∈Z

w1(Bk)
αp/n

(∑
j∈Z

|λ j|p
∥∥T δ∗(a j)χk

∥∥p
Lq

w2

)
� C

∑
j∈Z

|λ j|p

� C‖ f ‖p
H K̇α,p

q (w1,w2)
. �

5. Proof of Theorem 2

Proof of Theorem 2. For every f ∈ H K̇ α,p
q (w1, w2), by Theorem D, we have the decomposition f = ∑

j∈Z
λ ja j, where∑

j∈Z
|λ j |p < ∞ and each a j is a central (α,q, [n(1/p − 1)]; w1, w2)-atom. Without loss of generality, we may assume that

supp a j ⊆ B(0, r j) and r j = 2 j . For any given σ > 0, we write

σ p ·
∑
k∈Z

w1(Bk)
αp/n w2

({
x ∈ Ck:

∣∣T δ∗ f (x)
∣∣ > σ

})p/q

� σ p ·
∑
k∈Z

w1(Bk)
αp/n w2

({
x ∈ Ck:

∞∑
j=k−1

|λ j|
∣∣T δ∗a j(x)

∣∣ > σ/2

})p/q

+ σ p ·
∑
k∈Z

w1(Bk)
αp/n w2

({
x ∈ Ck:

k−2∑
j=−∞

|λ j|
∣∣T δ∗a j(x)

∣∣ > σ/2

})p/q

= J1 + J2.

Observe that 0 < p < 1 and δ = n/p − (n + 1)/2, then δ > (n − 1)/2. It follows from Chebyshev’s inequality and the inequal-
ity (1) that

J1 � 2p
∑
k∈Z

w1(Bk)
αp/n

( ∞∑
j=k−1

|λ j|
∥∥T δ∗(a j)χk

∥∥
Lq

w2

)p

� 2p
∑
k∈Z

w1(Bk)
αp/n

( ∞∑
j=k−1

|λ j|p
∥∥T δ∗(a j)

∥∥p
Lq

w2

)

� C
∑
k∈Z

w1(Bk)
αp/n

( ∞∑
j=k−1

|λ j|p‖a j‖p
Lq

w2

)
.

Changing the order of summation gives

J1 � C
∑
j∈Z

|λ j|p

( j+1∑
k=−∞

w1(Bk)
αp/n w1(B j)

−αp/n

)
.

Note that when k � j + 1, then Bk−1 ⊆ B j . Let θ be the same as in Theorem 1, then by Lemma B, we can get

w1(Bk−1)

w1(B j)
� C

( |Bk−1|
|B j|

)θ

. (9)

It follows from Lemma A and the above inequality (9) that

j+1∑
k=−∞

w1(Bk)
αp/n w1(B j)

−αp/n � C
j+1∑

k=−∞
2(k− j−1)αθ p

� C .
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Hence

J1 � C
∑
j∈Z

|λ j|p � C‖ f ‖p
H K̇α,p

q (w1,w2)
. (10)

We now turn to deal with J2. Note that j � k − 2, then for any y ∈ B j and x ∈ Ck = Bk\Bk−1, we have |x| � 2|y|. By
using the same arguments as in the proof of Theorem 1, we can get

T δ∗(a j)(x) � C ·
(

2 j

|x|
)n/p

w1(B j)
−α/n w2(B j)

−1/q.

Since B j ⊆ Bk−2, then by using Lemma B, we obtain

wi(B j) � C · wi(Bk−2)|B j||Bk−2|−1 for i = 1 or 2.

It follows immediately from our assumption α = n(1/p − 1/q) that

T δ∗(a j)(x) � C ·
(

2 j

2k−2

)n/p−α−n/q

w1(Bk−2)
−α/n w2(Bk−2)

−1/q

� C · w1(Bk−2)
−α/n w2(Bk−2)

−1/q. (11)

Set Ak = w1(Bk−2)
−α/n w2(Bk−2)

−1/q .
If {x ∈ Ck:

∑k−2
j=−∞ |λ j||T δ∗a j(x)| > σ/2} = ∅, then the inequality

J2 � C‖ f ‖p
H K̇α,p

q (w1,w2)

holds trivially.
If {x ∈ Ck:

∑k−2
j=−∞ |λ j||T δ∗a j(x)| > σ/2} �= ∅, then by the inequality (11), we have

σ < C · Ak

(∑
j∈Z

|λ j|
)

� C · Ak

(∑
j∈Z

|λ j|p
)1/p

� C · Ak‖ f ‖H K̇α,p
q (w1,w2).

Obviously, limk→∞ Ak = 0. Then for any fixed σ > 0, we are able to find a maximal positive integer kσ such that

σ < C · Akσ ‖ f ‖H K̇α,p
q (w1,w2).

Therefore

J2 � σ p ·
kσ∑

k=−∞
w1(Bk)

αp/n w2(Bk)
p/q

� C‖ f ‖p
H K̇α,p

q (w1,w2)

kσ∑
k=−∞

(
w1(Bk)

w1(Bkσ −2)

)αp/n( w2(Bk)

w2(Bkσ −2)

)p/q

.

Since Bk−2 ⊆ Bkσ −2, then by using Lemma B again, we have

wi(Bk−2)

wi(Bkσ −2)
� C

( |Bk−2|
|Bkσ −2|

)θ

for i = 1 or 2. (12)

Applying Lemma A and the above inequality (12), we finally get

J2 � C‖ f ‖p
H K̇α,p

q (w1,w2)

kσ∑
k=−∞

1

2(kσ −k)nθ
� C‖ f ‖p

H K̇α,p
q (w1,w2)

. (13)

Combining the above estimate (13) with (10) and taking the supremum over all σ > 0, we complete the proof of Theo-
rem 2. �
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6. Proof of Theorem 3

Proof of Theorem 3. As in Theorem 1, we first choose a number 0 < p1 < p such that δ = n/p1 − (n + 1)/2. Set s =
[n(1/p1 − 1)] and N = [n(1/p − 1)]. By using Theorem D and Theorem E, it suffices to show that for every central
(α,q, s; w, w)-atom f with supp f ⊆ B(0, r), then T δ

R f is a central w-(p,q, N, ε)-molecule. Moreover, its w-molecular norm
is uniformly bounded; that is

N w
(
T δ

R f
)
� C,

where the constant C is independent of f and R .
Observe that δ > [n/p]rw/(rw − 1) − (n + 1)/2, then a simple calculation shows that Nrw/n(rw − 1) + 1/(rw − 1) <

1/p1 − 1, thus we can choose a suitable number ε > 0 satisfying max{Nrw/n(rw − 1)+ 1/(rw − 1),1/p − 1} < ε < 1/p1 − 1.
Let a = 1 − 1/p + ε and b = 1 − 1/q + ε.

The size condition of central atom f and the inequality (1) imply∥∥T δ
R( f )

∥∥
Lq

w
�

∥∥T δ∗( f )
∥∥

Lq
w

� C‖ f ‖Lq
w

� C · w
(

B(0, r)
)a−b

. (14)

On the other hand,∥∥T δ
R( f )w

(
B
(
0, | · |))b∥∥q

Lq
w

=
∫

|x|�2r

∣∣T δ
R f (x)

∣∣q
w

(
B
(
0, |x|))bq

w(x)dx +
∫

|x|>2r

∣∣T δ
R f (x)

∣∣q
w

(
B
(
0, |x|))bq

w(x)dx

= K1 + K2.

Using Lemma A, the inequality (1) and the size condition of f , we obtain

K1 � w
(

B(0,2r)
)bq∥∥T δ∗( f )

∥∥q
Lq

w

� C · w
(

B(0, r)
)bq‖ f ‖q

Lq
w

� C · w
(

B(0, r)
)bq+1−q/p

= C · w
(

B(0, r)
)aq

. (15)

Note that when |x| > 2r, y ∈ B(0, r), then we have |x| > 2|y|. By using the same arguments as that of Theorem 1 (w1 =
w2 = w), we can deduce

T δ∗ f (x) � C · rn/p1

|x|n/p1
w

(
B(0, r)

)−1/p
. (16)

If |x| > 2r, then B(0,2r) ⊆ B(0, |x|), by Lemma B, we get

w
(

B
(
0, |x|)) � C · |x|n

(2r)n
w

(
B(0,2r)

)
. (17)

It follows from the inequalities (16) and (17) that

K2 � C

∫
|x|>2r

rnq/p1

|x|nq/p1
w

(
B(0, r)

)−q/p · |x|nbq

(2r)nbq
w

(
B(0,2r)

)bq
w(x)dx

� C · rnq(1/p1−b)w
(

B(0, r)
)−q/p+bq

∫
|x|>2r

w(x)

|x|nq(1/p1−b)
dx.

Observe that ε < 1/p1 − 1, then we have 1/p1 − b > 1/q, which is equivalent to q(1/p1 − b) > 1. Since w ∈ A1, then
w ∈ Aq(1/p1−b) . Consequently, by Lemma C, we deduce

K2 � C · w
(

B(0, r)
)−q/p+bq+1 = C · w

(
B(0, r)

)aq
. (18)

Hence, by the inequalities (14), (15) and (18), we obtain

N w
(
T δ

R f
) = ∥∥T δ

R( f )
∥∥a/b

Lq
w

· ∥∥T δ
R( f )w

(
B
(
0, | · |))b∥∥1−a/b

Lq
w

� C · w
(

B(0, r)
)(a−b)a/b

w
(

B(0, r)
)(1−a/b)a

� C .
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It remains to verify the vanishing moments of T δ
R f (x). Note that s � N . Therefore, for every multi-index γ with |γ | � N ,

we have∫
Rn

T δ
R f (x)xγ dx = (

T δ
R f (x)xγ

)
^(0)

= C · Dγ
(
T̂ δ

R f
)
(0)

= C · Dγ (φ̂1/R · f̂ )(0)

= C ·
∑

|α|+|β|=|γ |

(
Dαφ̂1/R

)
(0)

(
Dβ f̂

)
(0)

= 0.

This completes the proof of Theorem 3. �
Remark. The corresponding results for non-homogeneous weighted Herz-type Hardy spaces can also be proved by atomic
and molecular decomposition theory. The arguments are similar, so the details are omitted here.
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