J. Math. Anal. Appl. 388 (2012) 952-963

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Green’s function for first-order multipoint boundary value problems and
applications to the existence of solutions with constant sign

Juan J. Nieto, Rosana Rodriguez-L6pez *

Departamento de Andlisis Matemadtico, Facultad de Matemdticas, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain

ARTICLE INFO ABSTRACT
Arfic{e history: We consider a first-order linear differential equation subject to boundary value conditions
Received 28 March 2011 which take into account the values of the function at multiple points in the interval of

Available online 21 October 2011

; : A interest. For this problem, we calculate the Green’s function which allows to express in
Submitted by T. Witelski

integral form the exact expression of the unique solution to the multipoint boundary
value problem under the appropriate conditions. From this study, some results are derived

Keywords: . ; : ; : - ¢
First-order differential equations concerning the existence of solutions with a constant sign (that is, some comparison results
Linear differential equations for first-order multipoint boundary value problems).

Boundary value problems © 2011 Elsevier Inc. All rights reserved.

Existence of solution
Uniqueness of solution
Explicit solution
Green'’s function
Positive solutions

1. Introduction

In this paper, we study a class of linear differential equations subject to multipoint boundary value conditions, whose
solution (under conditions guaranteeing existence and uniqueness) is calculated explicitly by means of the Green’s function.
The analysis of the sign of the Green’s function allows to deduce sufficient conditions for the existence of solutions with
a constant sign to the multipoint boundary value problem.

Ref. [8] is related to the study of periodicity of solutions to differential equations with sublinear impulses. On the other
hand, in [7], B. Liu proves existence and uniqueness results for first-order multipoint boundary value problems. The work [1]
is focused on the approximation of solutions to m-point nonlocal boundary value problems for second-order differential
equations, while three-point boundary value problems are considered in [5] via the monotone method [4]. Other references
devoted to multipoint boundary value problems for second-order functional differential equations are [10,11], and a class of
nonlocal boundary value problems for impulsive second-order differential equations on an infinite interval is studied in [12].
In [2,6,9], we find multipoint boundary value problems for higher-order ordinary differential equations. Finally, for the study
of differential equations with nonlinear multipoint boundary conditions, we refer to [3].

2. Problem of interest and expression of the exact solution

In this paper, we consider the multipoint boundary value problem for first-order linear differential equations
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u' () +au)=o(), te]=I0,T],

S (1)
u(ro) =Y Au(ri).
i=1
wherem>1, A, Aq,...,Am€R,a,0:[0,T] > R,and 0<rg<r; <--- <1y < T (hence T > 0). We denote Ao = —A, in order
to unify the notation in the multipoint boundary condition, obtaining
u'(O) +a®u®)=o(t), te]=[0,T],
m
2
> u(ry) =0. (2)
i=0

Definition 2.1. A solution to problem (2) is a function u € C1(J) satisfying the conditions in (2).

Next, we calculate the Green’s function to obtain the exact expression of the solution to the multipoint boundary value
problem for first-order linear differential equations (2), under certain restrictions on the constants. This type of results are
useful to study the behavior of the solutions to related nonlinear differential equations.

First, we consider the case where rg > 0, that is, the multipoint boundary condition does not consider the value of the
function at the starting point. In our notation, the sums corresponding to an upper limit less than the lower limit are
considered to be null.

Theorem 2.2. et ] =[0,T],m>1,A, A1,...,.Am€R,a,0 €C(J),0<rg<r] <---<ry < T and denote
m
Him 3 he o
i=0
If H # 0, there exists a unique solution to (2) given by
T

u(t) = / G(t,s)o (s)ds,
0

where

Ty N . .
(F 0L hie™ A0 M e elo a0 s € (1, 1y ], s<E (=1, k),
%Z'Iﬂ:jﬂ)ﬁe—f;m(u)du’ ifse(@j,rjiz1l, s>t (j=k,...,p),

fort e (rg, rgq1], withk=—1, ..., p, whererp 1 = T. Note that, in (3), j may also take the values —1, ..., p.
On the other hand, if H = 0, problem (2) is solvable only for

m m
2 H f o (s)e st gs o,
i=0

in which case, there is an infinite number of solutions.

G(t,s) = e Joawadu 3)

Proof. Using that the solution to the initial value problem

v'(@t)+at)vt)=a(t), te],
{ (4)
v(0) = vo,
is
t
V() = voeJoawdu / o (s)e— Js awdu gg. (5)
0

we get

v(r,-):voe’foi”(“)d“ +/a(s)e’fs awduge i —0,...,m.
0
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Hence, the boundary condition Z?]:o Aiv(ri) =0 is written as
m T
i=0 0
which implies
T

m
a(u)du Zki/U(S)e_fsla(U)du ds
i=0

0

_ -1
RE—
> iz Aie”Jo

1o, f

- _F Z)»i/a(S)e‘(/'s” aw)du g

i=0

Vo

provided that H # 0, hence the solution sought is

t

m i
u(t) = %1 Z)Ll. / o‘(s)e*fsri a(u)du dse*fota(“)d” + / O.(s)effsta(u)du ds
i=0

0
1 i—1 M o t
- Ty i ot gt
— - ZM(Z f o(s)e‘fs a@u)du g¢ + / o(s)e Jita(u)du ds)e Joa@)du + / a(s)e Js a)du ds,
i=0  \1=0 0 0

where the sums corresponding to an upper limit less than the lower limit are null. Denoting by r_; =0, we get

m i—1 T4+1 t

u(t) = %1 Zki Z /U(S)e_fsri a)du g o= Jgatu) du —I—/G(S)e‘fst“(”)d” ds

i=0  I=—17, o

iyt t
m—1 Jj+
-1

m
= — / o (s) 2 : )»,-e*fsri a@)du gg o= fpa)du + / G(s)e—f;a(u)du ds.
H . K

j=-1 T i=j+1 0

For t € (rg, 1k1], —1<k<m—-1ifrp=T,and -1 <k<mif rp <T, then

£ k=1 "1 t
t t t
[a(s)e‘fs a(u)du ds — Z / G(S)e_f5 a(u)du ds + / (T(S)e_fs a(u)du ds.
0 I=—1 T Tk

Therefore, for t € (ry, 1441], —1<k<m—-1ifrp,=T,and -1 <k<mifry <T,

k—1 i1 m
u(t) = Z / G(”(% Z )\iE*fSri a(u)dueff(fa(u)du +efsta(u)du> ds

=17, i=j+1
¢ m
* / MS)(%] > e~ 5 AW dug—fga@du e‘fst“(”)d”) ds
B i=k+1
Tkt 1 m—1 i1 1
n / 0'(5)% Z )Lie_fsri a(u)due—féa(u)du ds + Z G(S)% Z )Lie_fsri a(u)due—fota(u)du ds.
t i=k+1 J=k+1 7 i=j+1
that is,
ket B 1 & ' . :
u(t) = Z / U(S)(F Z )\ie_fsl a(u)du + efO a(u)du)e—f0 a@du 4o
=17 i=j+1

t

m
+/U(S)<_H] Z Aie—fsfia(u)du_l_efosa(u)du)e—féa(u)duds

i i=k+1
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Tk+1 1 m m—1 Tt 1 m
+ / a(s)% Z )\ie—fsr"a(u)due—féa(u)duds+ Z /G(S)% Z }Lie_/sri“(”)d”e_féa(”)d”ds
. i=k+1 j=kA1 7 i=j+1
'm
:/G(t, s)o (s)ds,

0

where G is given in (3). Note that, if ro > 0, it is obvious that, for t € [0, ro],

¢ o
1< - s 1 -
u() = f o(s)(g Y hie s a<”>d”+e-fo“<U>du)e—féa<U>duds+ / o ()~ D hie ks a(w)dug— Jo a@)du gg
4 i=0 . i=0
m—1 "+ 1 .
- o~ Jlau)du ,— fgau)du
+ o (s) 0 Z Arje e Jo ds,

j=0 rj i=j+1

which coincides with the previous expression with k = —1.
Summarizing, if r, =T (p =m — 1), then

I s

Gt.s) JE awdu (%1 Z?;J'H )\ie*fsza(u)du _i_efoa(u)du)’ ifserjrinl. j=—1.....k s<t,
t,s)=e " Jo )

%Z?;j+1)\ie*fsr'”(“)d”, ifsejrjigl, j=k...,m—1, s>t

for t € (rg, re411, with k= —1,...,m — 1, which coincides with expression in (3). Note that, for k = —1, we get t € [0, 1]
and
—15m 4~ [lia)du [$ a(u) du .
G(t,s) — o~ Joawdu (7 Lizorie ks +e’o ), ifs<t,
; .
_Fl Z?;j“ )\ie_fsl awdu - jfs s ¢,

On the other hand, if r; < T (p =m) then we have to study the value of the solution for t € (ry, rm+1] = (rm, T]. For
t < rm, the Green’s function coincides with the expression previously obtained, and, for t € (r;, T], we have

t

m—1 i1 m
uity= >y / U(S)<_—1 > AjeJstatwdu +e-lga(”)d“)e‘-lga(”)d”ds+/a(s)e‘-/§[“(”)d” ds

j=—1 7 H i=j+1 'm
"'m+1
= / G(t,s)o (s)ds,
0
where, for t € (ry, T],
(%l Z?:]'Jrl )»ieffsri awdu 4 efosa(”)d”)e_f‘;a(u)du, ifse(jrjpl, j=-1.....m—1
Git.s) = (obviously s < t),

e Jsawadu ifs e (g,
0, ifse(t,T],

which coincides with expression (3) taking k =m, since 1", | Aie*fsri awdu — g,
Finally, if H =0, problem (2) is solvable for

m T
Z Ai f o(s)e s awdugs o
i=0

in which case, there is an infinite number of solutions given by (5) for any value of vo e R. O

Remark 2.3. The solution to (2) written in integral form is equal to u(t) = Orm G(t,s)o(s)ds, if r, =T, and hence p=m—1
in Theorem 2.2. On the other hand, it is equal to u(t) = for”'“ G(t,s)o(s)ds, if r; < T, so that p =m in the statement of
Theorem 2.2.
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Remark 2.4. Despite the definition of G(t,s) is not needed for t =0, it is clear from the procedure followed that G(0, s) =
G(01,s), for every s, that is, the expression obtained for t € (0, 9] (k= —1) is also valid for t = 0.

Next, we consider the case where ro = 0. Revising the proof of Theorem 2.2, we easily deduce the expression of the
Green’s function, since r_; =9 = 0 reduces to consider nonnegative values of k and j.

Theorem 2.5. et | = [0, T, m>1, A,A,...,.Am € R, a,0 € C(J),0=r9g <11 <--- <1y <T and denote H := 1y +
>r, Aje‘fori awdu yf py £ 0, there exists a unique solution to (2) given by
T
u(t):/G(t, s)o (s)ds,
0

where

(T 0T 4y die [ awdu  fgeduy ©ifs e (], s<E(i=0..... k),
Tj . .

FY e WA i e (rj rja) s>t (j=k,....p),

fort e (rg, rk1], withk =0, ..., p, where rp.1 = T, and the expression obtained for t € (0,r1] (k = 0) is also valid for t = 0. Note
that, in (3), j may also take the values 0, ..., p.
On the other hand, if H = 0, problem (2) is solvable only for

G(t,s) = e Joawadu (6)

Ti

m
i
Z/\,- / o (s)e”s'awduge o
i=1
in which case, there is an infinite number of solutions.

Remark 2.6. Using a unified notation, in Theorems 2.2 and 2.5, function G can be written as

eli awdu Z{:()Me*foi awdu - ifs e (rj,ripl, s<E(G=q,...,k),

G(t,s) = (7)

-
H —er-":jﬂ kie’fola(”)d”, ifse(rj,riyl, s>t (j=k,...,p),

for t € (ry, k1], with k=gq, ..., p, whererg=0and rp41 =T.
Following the unified notation of Remark 2.6, we have the following corollary for a(t) = M constant.

Corollary 2.7. Let ] =[0, T, m>1, A, A1,...,Am€R, 0 €C(]),0<rg<r; <--- <1y < T and denote H := Z?;OAie‘Mri. If
H = 0, there exists a unique solution to problem (8):

u'(t) +Mu(t)=o(t), te]=[0,T],

> hiu(r) =0, 8)
i=0

given by u(t) = fOT G(t,s)o(s)ds, where

eM(s—t) { S orie™Mi ifse (rj,ripl, s<t(j=q,....k),

G(t,s) =
H - 2?1:]41 re ™M ifse (rjrjpal, s>t (j=k,...,p),

(9)

fort e (rg, rg4ql, withk=gq, ..., p, whererg =0 and rp41 = T. Note that, in (9), j may also take the values q, . .., p.
On the other hand, if H = 0, problem (8) is solvable only for

m 1
Z Ai / o (s)e MIi=9) gg — 0,
i=0
in which case, there is an infinite number of solutions.

3. Existence of solutions with a constant sign

In this section, we start analyzing the sign of the Green’s function G obtained in Theorems 2.2 and 2.5.
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Theorem3.1.Let | =[0,Tl,m>1,A,A1,...,Ame€R,acC(J)),0=r9 <1 <--- <I'm < T and denote H := Z}":O)Lie*foi“(“)d“ =
Ao+ Y, ajeJo adu — 5 4 S g ie= o' A du gypnose that one of the following assertions holds:

. i = d
(I) H>0(thatis, . < Y™, xe~ o' @@ duy gng Y he Iy a0 du

() H <0 (thatis, A > YT, e~ Jo e duy gng Y rie

<O0forevery j=0,...,m—1;o0r

Ti d
i 1 u}Oforeveryj:O,...,m—l.

Then G(t,s) >0, for (t,s) € [0, T] x [0, T].

Proof. It is easy to check that

1 & [T aqu)du 1 & —frr?+1 a(u)du _fsrjﬂ awdu
EZ rje " Js _EZ rie e S
i=j+1 i=j+1
for all s € (rj,rj+11, and j=0,...,m — 1. Hence

-1 ,
Y he K@ >0 s e (rjrjal, Vi=0,...m— 1.
i=j+1

o . - du , : . L
Note that the condition on the sign of Z;":H] Arie f'l“ atw du is only checked for j=0,...,m—1 even if r;;, < T, since it is
trivially satisfied for j =m (it is equal to zero). The proof is complete. O

Remark 3.2. Note that Theorem 3.1 makes no sense for the case ro > 0, since, in this case, it would be necessary to prove
the nonpositivity of

1 « — [lia(u)du
o D ke k
i=j+1
for s € (rj, rj41], also for j = —1. However, it is impossible that % > )\ie*fsria(”)d” is nonpositive on (0, rg], since at s =0

it is equal to 1.

r
7fr)¥+1 a(u)du

Remark 3.3. Taking into account expression (7), the study of the sign of the expressions Z;":]- 11 Ai€ in condi-

tions (I) and (II) in Theorem 3.1 can be replaced by the study of the sign of the expressions Z'i“:jﬂ A,-e*fori atdu

Theorem 3.4 (Sign of the solution forro =0). Let ] =[0, T, m>1, A, A1,...,Am€R, a,0 € C(J),0=rg<ri <---<rp <T,

denote H := Ao + Z:n:] Aie_foi awdu qnd consider the Green'’s function G given in Theorem 2.5. Assume that one of the conditions (I)
or (I) in Theorem 3.1 holds.

e Ifo > 0, then the solution to (2) is nonnegative.
e Ifo <0, then the solution to (2) is nonpositive.

Remark 3.5. For rp =0, we study the implications of condition (I) in Theorem 3.1. We study the validity of

m — [l a(u)du
> e i <0
i=j+1
for j =m — 1, which is reduced to A, <O0. For j =m — 2, it is reduced to

™m
Dot < — e Jrma 2009,

for j=m—3 to

Az < —Am_je” Fma dwdn =i, awdu

m—2

m 'm—
= (_)\m—l — Ame_ffmfl a(u)du)e_frm 1a(u)du’

and so on (while j > 0).
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—fh

rin a(u)du

On the other hand, for condition (II) included in Theorem 3.1, we study the validity of ZE":]-H Arie >0 for

every j=0,...,m— 1. This is reduced, for j=m —1, to A;; > 0. For j =m — 2, it is reduced to

_ [Tm
Dt = e 20,

for j=m—3to

'm—1 _rm
Am—2 = —Am—1€ Jrm—p adu _ Ame Jm-2 a(u)du7

and so on (while j > 0).

Example 3.6. For 0 =rg <ry =T, and the boundary condition —Aqu(0) = A1u(T), we get H := Ao + )Lle*fOT awdu — _) 4
T
)qe_fo awdu - conditions for the nonnegative character of G given by Theorem 3.1 are H > 0 and A; <0, or H <0 and

A =0.
In other words, we can consider
Al
—— <0 (10)

Ao +)L1€_JO a(u)du
If A1 # 0 (otherwise we have an initial value problem), this inequality is equivalent to

@ + e’fOT a(u)du <0,

Al
that is,

A T

/\—Z’ < —eJo awau, (11)
The Green'’s function in this case is given by

-1 — ST a(u)du Joa(u)du ;
t (=Ar1e7 s +elo ), ifo<s<t<T,
G(t,s)ze_'/0a(u)du H O bx (12)

T
%Aw‘fs awdu - ifo<t<s<T.

On the other hand, if A1 =0, the inequality (10) is trivially satisfied if Ag # 0 (H # 0), in which case, we may derive
results on the existence of solutions with constant sign for the initial value problem associated. Note that, if H =0 (19 = 0),
there is an infinite number of solutions.

Consider the linear equation u’(t) + Mu(t) = o (t), t € [0, T], that is, a is a constant function, hence, for A; # 0, the
condition for the nonnegative character of the Green’s function is

A

—MT
—>e .
A -

For instance, for equation u’(t) + Mu(t) = o (t), t € [0, T], and the boundary conditions Au(0) = eMTu(T), where A > 1, or
Au(0) = —eMTy(T), where A < —1, then G > 0.

2
On the other hand, if a(t) =¢t, t € [0, T], (11) is written as % > e 7. Therefore, for equation u/(t) + tu(t) = o (t),

t € [0, 1], and the boundary conditions Au(0) = +/eu(1) with A > 1, or Au(0) = —+/eu(1) with A < —1, then G > 0. In the
more general case a(t) = Mt + N, t € [0, T], (11) is reduced to % > e TUF+N)

Ifat)=t",t[0,11 (T =1),(11)is AAT > e~ . For equation u’(t) +t"u(t) = o (t), t € [0, 1], and the boundary conditions

Au(0) =enl?u(1) where A > 1, or Au(0) = —en%u(l) where A < —1, then G > 0.
Finally, if a(t) = sin(xtt), t € [0, T], (11) is written as % > ex (s@D-1),

Example 3.7. For 0 =r9 <r; <rp =T, and the boundary condition —Agu(0) = Aqu(r;) (here p = m = 1), the value of

H:=Xo+ Ae~ Jo' ewdu s similar to that in Example 3.6, except that T is replaced by ry. It is clear that the condition for
the nonnegative character of G (see also Theorem 3.1) is % < 0. In this case, function G is given by

(Frage~ [ awdu efgaduy it e 0, T], se[0.r1]. s<t,

T .
%Aw*fs] awdu o<t <s<ry,

G(t,s) = e Joawdu (13)

elfawan it

<s<t<T,
<T.

s
0, ifri<t<s<T
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As a particular case, if a(t) =M, t € [0,T], and A1 # 0, we check % > e M for the nonnegative character of G. In

this case, for equation u’(t) + Mu(t) = o (t), t € [0, T], and the boundary conditions Au(0) = eMu(T) where 1 > 1, or
Au(0) = —eMry(T) where A < —1, then G > 0.

Ifat)=t te[0,1](T=1)and ry = 4 we check % > %. Therefore, for equation u’(t) + tu(t) = o (t), t € [0, 1], and
the boundary conditions Au(0) = %u(@) where A > 1, or Au(0) = —(‘/Eu(@) where A < —1, then G > 0.

N B
If ait) =t", t €[0,1] (T=1) and r; = ? we check % >e 20D2a+) | Hence, for equation u’(t) + t"u(t) = o (t),
S T S B

t €[0,1], and the boundary conditions Au(0) = e2‘”+“/2<ﬂ+1)u(§) where A > 1, or Au(0) = —e2‘”“’/2<n+1>u(4) where

A< —1,then G > 0.

Example 3.8. If we consider 0 =19 <r; <ry < T, and the boundary condition —Agu(0) = Aqu(ry) + Ayu(ry) (here m = 2),
hence the condition for the nonnegative character of G is, according to the proof of Theorem 3.1,

2
1 —[li d .
= 3 me T <o, wi=o1, (14)
i=j+1
where H:= —A + )qe‘for1 a@)du 4 Aze‘fgz a@w)du That js, we have to check conditions
— [M2 q(u)du

Y A+ dge

gz <0, and 21772 0 <0, (15)
both if r, < T or r; =T (since for r; < T and j =2 condition (14) is trivially satisfied). Condition (15) is translated into

_[n r T

M <0, A dage FTUWE gy el dwdu | e o awdu o

or
"2 a(u)du

W20, A+ Age >0, k4 re holewdu ;0= ffawdu _ g
For a(t) = M, t € [0, T], these are rewritten as
12<0, A< —hgeME2mr) 5 glemMN g e MR
or
20, A= —rge M@2mrD oy s aiemMN g e M2

On the other hand, if a(t) =t, t€[0,T],and O0=rg <r; <12 < T, we get

2 2 2 2
12<0, < —he tE, d<ie T e F,
or
2 2 2 2
A2 >0, M= —re 27, A>Ae 2 +he 7.
For r1 =1 and r; = 2, the conditions are
3 1
A2 <0, A< —AzeT2, A <hrreT? 4rze
or
3 1
A2>0, Ar=—ie 2,  A>Ae 24 e .
For a(t) =Mt + N, t € [0, T], (15) is written as
MM —Nry+Nr
A2 A+ Ape V2T T N2TA
m <0, and q <0, (16)
2 2
where H:= —) + Aje M2 N1 4 ), e~M5—Nrz
Finally, for a(t) = sin(srt), t € [0, T], (15) is written as
1
A A4 A e;(cosnrz—cosnrl)
ﬁzgo, and 1772 - <0, (17)

where H := —A + Ajex (€STn—1 4 3 o7 (costr—1)
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Example 3.9. Analogously, if 0 =19 <11 <1 <r3 < T, and the boundary condition is —Agu(0) = A1u(ry) + Aau(r2) + A3u(rs)

T T T
(here m = 3), we have H := —A + Aje—Jo' aWdu 5 o= fo?awdu 4 5 0= Jo’ aWdu ang the conditions for the nonnegative
character of G are

— /3 a(u)du — [T2a(u)du — [T a(u)du
A3 Ay + Aze 2 A+ Axe N + Aze N
m <0, q <0, and q <0. (18)
Ifa(t)=M, t €[0, T], then H := —A +A1e M 4 rye M2 4 33e~M"3 and sufficient conditions for the nonnegative character
of G are
A Ay 4 Age~M@3—r2) A 4 Ape M2=r1) 4 Je=M(r3—r1)
ﬁgo, % <0, and LT72 - 3 <O0. (19)

Next, we show a result on the nonpositive character of the function G.
Theorem 3.10.Let | = [0, T, m>1, A, Aq,...,.Am€R,aeC(J),and0<rg<r; <---<rp=T.
() If
Yilin rje~ o' aw du
=
Yo hie” o' atwd

(where the denominator is non-null), then G(t, s) <0, for (t,s) € [0, T] x [0, T].
(ii) If the following assertion holds

>1, foreveryj=0,....,m—1

Z{*O )\.iei‘/lori a(u)du

il rje™ o' awdu

<0, foreveryj=0,...,m—1,

where the denominators are non-null, then G(t, s) <0, for (t,s) € [0, T] x [0, T].

Proof. To check the nonpositivity of G, since
1 & T 1 & ;
=1 Z Aie‘fsr’ awydu y ofgadu _ 2 Z )H.e—f;r awdu,
H i=j+1 H i=j+1
where H:= Y s~ o awdu — _y | §°m 0= fo'awdu it suffices to prove that
J3a(u)du 1« — [lia(u)du .
e’o gﬁ Zk,-e s , forallse (rj,rjt1], and j=-1,...,m—1,
i=j+1
that is,
[
L

>ito Aje Jo' awdu

—

forall j=-1,...,m—1,

which is trivially satisfied for j=—1.
On the other hand, if Z;n:j+‘1 rje~Jo adu £ o the previous inequalities can be written as

m = [Ma@u)du

.. e fo 1

- Xrl_:'*hq ! = = - = >1, forallj=-1,....m—1,
ZiJ:O Ai€7f0 a(u)du + Z;n:j+l )Lieffo a(u)du - {:0 Aie_fO a(u)du

-
Yilin e Jo awdu

which coincide with condition in (ii) (it is trivially fulfilled for j = —1).
Note that

j ) —fri a(u)du

L Aje Jo .
Lizohi _ <0, foreveryj=0,...,m—1,
Y Aje™ Jo'awdu
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is equivalent to

. i
Zg—o k;e_ffo a(u)du ‘
= Trawd <0, foreveryj=0,...,m—1. O
Sy hie o T

Remark 3.11. Conditions (i), (ii) in Theorem 3.10 are only checked for j=0,...,m —1, even if rg > 0, since they are trivially
satisfied for j = —1.

Remark 3.12. Note that, in the statement of Theorem 3.10, it is not possible to consider r,;, < T, since, in such a case, we

o
m = Jotadu
Disji1Aie 70

should prove the inequality in (i) >1 also for j =m, which is not true.

.r,’
Yo nie~ o adu

Corollary 3.13. Assume that | =[0,T],m>1, A, A1,...,Am€R,ae C(J),and0<rg <ry <--- <rym = T. If one of the following
conditions holds:

>, Aie‘fori awdu - 0 and Z{ZO A,'e‘fori awdu < 0, forevery j=0,...,m—1, or
o > hie” Jo' awdu <0and Z,j:o A,-e‘forl awdu > 0, forevery j=0,...,m—1,
then G(t,s) <0, for (t,s) € [0,T] x [0, T].

Proof. Derived directly from condition (i) in Theorem 3.10. O

Remark 3.14. In these conditions, the lower limit of the integral can be equivalently chosen as rg instead of 0.

Theorem 3.15 (Sign of the solution forr,;, =T). Let ] =[0, T, m>1, A, A1,...,.AmeR,a,0 €C(]),0<rg<ri <---<rpm=T,

i
denote H := Ao+ Y 1t 4 )»,-e‘fo awdu qnd consider the Green’s function G given in Theorems 2.2 and 2.5 (with p = m — 1). Assume
that one of the conditions (i) or (ii) in Theorem 3.10 holds (or any in Corollary 3.13). Under these hypotheses:

e Ifo >0, then the solution to (2) is nonpositive.
e If o <0, then the solution to (2) is nonnegative.

Example 3.16. For 0 <19 <r; =T, and the boundary condition —Agu(rg) = A1u(T) (here m = 1), we get that the nonposi-
tivity conditions for G are (see Corollary 3.13)

_ M
e Ao+ Arie Jrg ) du >0 and A9 <0, or
_ M
e Ao+ Arie 'Irﬂ a(u)du<0and Xo = 0.
. oy Y e’fgoa(”m"’ 2o o Jr1a(u)du Y Lo
According to (ii) in Theorem 3.10, the condition is 0'71”4 = ﬁe o <0, that is, ﬁ < 0. The Green'’s function is
)»167‘0 a(u)du

given in this case by (3) or (6), where m=1, p =0, and r; = T. For instance, if ryp > 0, G has expression
(5 (g™ Ko awadu 4y o= [ awduy 4 gfsaduy g ¢ [0, ro], s <t

T
(Fme e awdu g elyatoduy s ¢ (rg, T), s <t

G(t,s) = e Joawadu (20)

T T

_Wl(koe_fsoa(”)d” + aqeJs awduy - ifc e 0 r0], s> ¢,
T

’Wl)qe*fs awdu - ifs e (rg, T], s > ¢,

where H := hge~Jo" aWdu 4 ;o= Jg atwydu,

Example 3.17. For 0 <rg <ry <r; =T, and the boundary condition —Xou(rg) = Aqu(r1) + Aou(T) (here m = 2), the condi-
tions for nonpositivity of G are, according to Corollary 3.13,

M _ ("2 —_ M
ho+aae o (N e AWM S0 <0, ag 4 ae o M <o,
or
_ M _ [ _ M
o4 Aje o dWd o mlgadn g 3050, ag+ e Jo i@ 5o
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On the other hand, by condition (ii) in Theorem 3.10, other conditions for the nonpositivity of G are

)»oe_jgo a(u)du

T T <
re” Jo'awydu Aze_fﬂz awdu

and
)»oe_foro aydu A]G_IOT] a(u)du 0
)»26_-[(;2 a(u)du =
that is,
k1€7frrg a(u)du n )\zeifrroz awdu kzeifrzlz a(u)du

assuming that the denominators are non-null.
The Green'’s function is given by (3) or (6), where m =2, p =1, and r, = T. For instance, if 1o =0, G has expression

(Y2 aem JsTawdu  glgatoduy g s ¢ g 1y, s <t
-1 — [T2a(u)du J5 au)du :
¢ (Frae™Js +elo ), ifse (1, T], s<t,
G(t,s) =e Joawdu :I ) o 21)
32 e Ka@dnifs e [rg, 1], s> t,
%Aze_fsrz awdu - fse (1, T], s > ¢,

where H := Age—Jo" 0w du  y o= Jo' awdu 4 3 o= awdu_gp the other hand, if ry > 0, we have to add to (21) the definition
of G(t,s), for t € [0, rp], that is,

G(t,s) = e~ Joatwdu (T X7 g hie™ i awdu eloatduy *ifs € [0, 1], s <t, o)
%1 Z,-zzo A,-e‘fsri awydu  f s € [0, 1], S > t.

Example 3.18. For 0 <rg <r; <ry <r3 =T, and the boundary condition —Agu(rg) = Aqu(ry) + Apu(ry) + Aszu(T) (here
m = 3), the conditions for nonpositivity of G are, according to Corollary 3.13, one of the following choices

ikiefffroi au)du -0, 2o < 0. o+ kleffrg a(u)du <o, o +)\1e7frr(J] au)du +)\.2€7frr02 au)du <0
i=0
or
3 - " i T2
Z)»ie_jr‘; a(u)du <0, 2o >0, o+ Me_f'o a(u)du >0 o+ )qe_jro a(u)du i )Lze_jrﬂ a(u)du >0
i=0

and the Green’s function can be obtained similarly to previous examples.
4. Conclusion

In this paper, we have obtained the exact expression of the solution to a first-order linear differential equation with
multipoint boundary value conditions by the calculus of the associated Green’s function G. We have also deduced, from the
study of the sign of G, the existence of solutions with a constant sign, showing some particular cases. These results are
helpful to study some related nonlinear problems [4].
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