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We consider a first-order linear differential equation subject to boundary value conditions
which take into account the values of the function at multiple points in the interval of
interest. For this problem, we calculate the Green’s function which allows to express in
integral form the exact expression of the unique solution to the multipoint boundary
value problem under the appropriate conditions. From this study, some results are derived
concerning the existence of solutions with a constant sign (that is, some comparison results
for first-order multipoint boundary value problems).
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1. Introduction

In this paper, we study a class of linear differential equations subject to multipoint boundary value conditions, whose
solution (under conditions guaranteeing existence and uniqueness) is calculated explicitly by means of the Green’s function.
The analysis of the sign of the Green’s function allows to deduce sufficient conditions for the existence of solutions with
a constant sign to the multipoint boundary value problem.

Ref. [8] is related to the study of periodicity of solutions to differential equations with sublinear impulses. On the other
hand, in [7], B. Liu proves existence and uniqueness results for first-order multipoint boundary value problems. The work [1]
is focused on the approximation of solutions to m-point nonlocal boundary value problems for second-order differential
equations, while three-point boundary value problems are considered in [5] via the monotone method [4]. Other references
devoted to multipoint boundary value problems for second-order functional differential equations are [10,11], and a class of
nonlocal boundary value problems for impulsive second-order differential equations on an infinite interval is studied in [12].
In [2,6,9], we find multipoint boundary value problems for higher-order ordinary differential equations. Finally, for the study
of differential equations with nonlinear multipoint boundary conditions, we refer to [3].

2. Problem of interest and expression of the exact solution

In this paper, we consider the multipoint boundary value problem for first-order linear differential equations
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⎧⎪⎨
⎪⎩

u′(t) + a(t)u(t) = σ(t), t ∈ J = [0, T ],

λu(r0) =
m∑

i=1

λiu(ri),
(1)

where m � 1, λ,λ1, . . . , λm ∈ R, a, σ : [0, T ] → R, and 0 � r0 < r1 < · · · < rm � T (hence T > 0). We denote λ0 = −λ, in order
to unify the notation in the multipoint boundary condition, obtaining⎧⎪⎨

⎪⎩
u′(t) + a(t)u(t) = σ(t), t ∈ J = [0, T ],

m∑
i=0

λiu(ri) = 0.
(2)

Definition 2.1. A solution to problem (2) is a function u ∈ C1( J ) satisfying the conditions in (2).

Next, we calculate the Green’s function to obtain the exact expression of the solution to the multipoint boundary value
problem for first-order linear differential equations (2), under certain restrictions on the constants. This type of results are
useful to study the behavior of the solutions to related nonlinear differential equations.

First, we consider the case where r0 > 0, that is, the multipoint boundary condition does not consider the value of the
function at the starting point. In our notation, the sums corresponding to an upper limit less than the lower limit are
considered to be null.

Theorem 2.2. Let J = [0, T ], m � 1, λ,λ1, . . . , λm ∈ R, a, σ ∈ C( J ), 0 < r0 < r1 < · · · < rm � T and denote

H :=
m∑

i=0

λie
− ∫ ri

0 a(u)du .

If H �= 0, there exists a unique solution to (2) given by

u(t) =
T∫

0

G(t, s)σ (s)ds,

where

G(t, s) = e− ∫ t
0 a(u)du

⎧⎨
⎩

(−1
H

∑m
i= j+1 λie− ∫ ri

s a(u)du + e
∫ s

0 a(u)du), if s ∈ (r j, r j+1], s � t ( j = −1, . . . ,k),

−1
H

∑m
i= j+1 λie− ∫ ri

s a(u)du, if s ∈ (r j, r j+1], s > t ( j = k, . . . , p),
(3)

for t ∈ (rk, rk+1], with k = −1, . . . , p, where rp+1 = T . Note that, in (3), j may also take the values −1, . . . , p.
On the other hand, if H = 0, problem (2) is solvable only for

m∑
i=0

λi

ri∫
0

σ(s)e− ∫ ri
s a(u)du ds = 0,

in which case, there is an infinite number of solutions.

Proof. Using that the solution to the initial value problem{
v ′(t) + a(t)v(t) = σ(t), t ∈ J ,

v(0) = v0,
(4)

is

v(t) = v0e− ∫ t
0 a(u)du +

t∫
0

σ(s)e− ∫ t
s a(u)du ds, (5)

we get

v(ri) = v0e− ∫ ri
0 a(u)du +

ri∫
σ(s)e− ∫ ri

s a(u)du ds, i = 0, . . . ,m.
0



954 J.J. Nieto, R. Rodríguez-López / J. Math. Anal. Appl. 388 (2012) 952–963
Hence, the boundary condition
∑m

i=0 λi v(ri) = 0 is written as

m∑
i=0

λi

(
v0e− ∫ ri

0 a(u)du +
ri∫

0

σ(s)e− ∫ ri
s a(u)du ds

)
= 0,

which implies

v0 = −1∑m
i=0 λie

− ∫ ri
0 a(u)du

m∑
i=0

λi

ri∫
0

σ(s)e− ∫ ri
s a(u)du ds

= −1

H

m∑
i=0

λi

ri∫
0

σ(s)e− ∫ ri
s a(u)du ds,

provided that H �= 0, hence the solution sought is

u(t) = −1

H

m∑
i=0

λi

ri∫
0

σ(s)e− ∫ ri
s a(u)du ds e− ∫ t

0 a(u)du +
t∫

0

σ(s)e− ∫ t
s a(u)du ds

= −1

H

m∑
i=0

λi

(
i−1∑
l=0

rl+1∫
rl

σ(s)e− ∫ ri
s a(u)du ds +

r0∫
0

σ(s)e− ∫ ri
s a(u)du ds

)
e− ∫ t

0 a(u)du +
t∫

0

σ(s)e− ∫ t
s a(u)du ds,

where the sums corresponding to an upper limit less than the lower limit are null. Denoting by r−1 = 0, we get

u(t) = −1

H

m∑
i=0

λi

i−1∑
l=−1

rl+1∫
rl

σ(s)e− ∫ ri
s a(u)du ds e− ∫ t

0 a(u)du +
t∫

0

σ(s)e− ∫ t
s a(u)du ds

= −1

H

m−1∑
j=−1

r j+1∫
r j

σ(s)
m∑

i= j+1

λie
− ∫ ri

s a(u)du ds e− ∫ t
0 a(u)du +

t∫
0

σ(s)e− ∫ t
s a(u)du ds.

For t ∈ (rk, rk+1], −1 � k � m − 1 if rm = T , and −1 � k � m if rm < T , then

t∫
0

σ(s)e− ∫ t
s a(u)du ds =

k−1∑
l=−1

rl+1∫
rl

σ(s)e− ∫ t
s a(u)du ds +

t∫
rk

σ(s)e− ∫ t
s a(u)du ds.

Therefore, for t ∈ (rk, rk+1], −1 � k � m − 1 if rm = T , and −1 � k � m if rm < T ,

u(t) =
k−1∑
j=−1

r j+1∫
r j

σ(s)

(
−1

H

m∑
i= j+1

λie
− ∫ ri

s a(u)due− ∫ t
0 a(u)du + e− ∫ t

s a(u)du

)
ds

+
t∫

rk

σ(s)

(
−1

H

m∑
i=k+1

λie
− ∫ ri

s a(u)due− ∫ t
0 a(u)du + e− ∫ t

s a(u)du

)
ds

+
rk+1∫
t

σ(s)
−1

H

m∑
i=k+1

λie
− ∫ ri

s a(u)due− ∫ t
0 a(u)du ds +

m−1∑
j=k+1

r j+1∫
r j

σ(s)
−1

H

m∑
i= j+1

λie
− ∫ ri

s a(u)due− ∫ t
0 a(u)du ds,

that is,

u(t) =
k−1∑
j=−1

r j+1∫
r j

σ(s)

(
−1

H

m∑
i= j+1

λie
− ∫ ri

s a(u)du + e
∫ s

0 a(u)du

)
e− ∫ t

0 a(u)du ds

+
t∫
σ(s)

(
−1

H

m∑
i=k+1

λie
− ∫ ri

s a(u)du + e
∫ s

0 a(u)du

)
e− ∫ t

0 a(u)du ds
rk
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+
rk+1∫
t

σ(s)
−1

H

m∑
i=k+1

λie
− ∫ ri

s a(u)due− ∫ t
0 a(u)du ds +

m−1∑
j=k+1

r j+1∫
r j

σ(s)
−1

H

m∑
i= j+1

λie
− ∫ ri

s a(u)due− ∫ t
0 a(u)du ds

=
rm∫

0

G(t, s)σ (s)ds,

where G is given in (3). Note that, if r0 > 0, it is obvious that, for t ∈ [0, r0],

u(t) =
t∫

0

σ(s)

(
−1

H

m∑
i=0

λie
− ∫ ri

s a(u)du + e
∫ s

0 a(u)du

)
e− ∫ t

0 a(u)du ds +
r0∫

t

σ(s)
−1

H

m∑
i=0

λie
− ∫ ri

s a(u)due− ∫ t
0 a(u)du ds

+
m−1∑
j=0

r j+1∫
r j

σ(s)
−1

H

m∑
i= j+1

λie
− ∫ ri

s a(u)due− ∫ t
0 a(u)du ds,

which coincides with the previous expression with k = −1.
Summarizing, if rm = T (p = m − 1), then

G(t, s) = e− ∫ t
0 a(u)du

⎧⎨
⎩

(−1
H

∑m
i= j+1 λie− ∫ ri

s a(u)du + e
∫ s

0 a(u)du), if s ∈ (r j, r j+1], j = −1, . . . ,k, s � t,

−1
H

∑m
i= j+1 λie− ∫ ri

s a(u)du, if s ∈ (r j, r j+1], j = k, . . . ,m − 1, s > t

for t ∈ (rk, rk+1], with k = −1, . . . ,m − 1, which coincides with expression in (3). Note that, for k = −1, we get t ∈ [0, r0]
and

G(t, s) = e− ∫ t
0 a(u)du

⎧⎨
⎩

(−1
H

∑m
i=0 λie− ∫ ri

s a(u)du + e
∫ s

0 a(u)du), if s � t,

−1
H

∑m
i= j+1 λie− ∫ ri

s a(u)du, if s > t.

On the other hand, if rm < T (p = m) then we have to study the value of the solution for t ∈ (rm, rm+1] = (rm, T ]. For
t � rm , the Green’s function coincides with the expression previously obtained, and, for t ∈ (rm, T ], we have

u(t) =
m−1∑
j=−1

r j+1∫
r j

σ(s)

(
−1

H

m∑
i= j+1

λie
− ∫ ri

s a(u)du + e
∫ s

0 a(u)du

)
e− ∫ t

0 a(u)du ds +
t∫

rm

σ(s)e− ∫ t
s a(u)du ds

=
rm+1∫
0

G(t, s)σ (s)ds,

where, for t ∈ (rm, T ],

G(t, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1
H

∑m
i= j+1 λie− ∫ ri

s a(u)du + e
∫ s

0 a(u)du)e− ∫ t
0 a(u)du, if s ∈ (r j, r j+1], j = −1, . . . ,m − 1

(obviously s � t),

e− ∫ t
s a(u)du, if s ∈ (rm, t],

0, if s ∈ (t, T ],
which coincides with expression (3) taking k = m, since

∑m
i=m+1 λie− ∫ ri

s a(u)du = 0.
Finally, if H = 0, problem (2) is solvable for

m∑
i=0

λi

ri∫
0

σ(s)e− ∫ ri
s a(u)du ds = 0,

in which case, there is an infinite number of solutions given by (5) for any value of v0 ∈ R. �
Remark 2.3. The solution to (2) written in integral form is equal to u(t) = ∫ rm

0 G(t, s)σ (s)ds, if rm = T , and hence p = m − 1
in Theorem 2.2. On the other hand, it is equal to u(t) = ∫ rm+1

0 G(t, s)σ (s)ds, if rm < T , so that p = m in the statement of
Theorem 2.2.
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Remark 2.4. Despite the definition of G(t, s) is not needed for t = 0, it is clear from the procedure followed that G(0, s) =
G(0+, s), for every s, that is, the expression obtained for t ∈ (0, r0] (k = −1) is also valid for t = 0.

Next, we consider the case where r0 = 0. Revising the proof of Theorem 2.2, we easily deduce the expression of the
Green’s function, since r−1 = r0 = 0 reduces to consider nonnegative values of k and j.

Theorem 2.5. Let J = [0, T ], m � 1, λ,λ1, . . . , λm ∈ R, a, σ ∈ C( J ), 0 = r0 < r1 < · · · < rm � T and denote H := λ0 +∑m
i=1 λie

− ∫ ri
0 a(u)du . If H �= 0, there exists a unique solution to (2) given by

u(t) =
T∫

0

G(t, s)σ (s)ds,

where

G(t, s) = e− ∫ t
0 a(u)du

⎧⎨
⎩

(−1
H

∑m
i= j+1 λie− ∫ ri

s a(u)du + e
∫ s

0 a(u)du), if s ∈ (r j, r j+1], s � t ( j = 0, . . . ,k),

−1
H

∑m
i= j+1 λie− ∫ ri

s a(u)du, if s ∈ (r j, r j+1], s > t ( j = k, . . . , p),
(6)

for t ∈ (rk, rk+1], with k = 0, . . . , p, where rp+1 = T , and the expression obtained for t ∈ (0, r1] (k = 0) is also valid for t = 0. Note
that, in (3), j may also take the values 0, . . . , p.

On the other hand, if H = 0, problem (2) is solvable only for

m∑
i=1

λi

ri∫
0

σ(s)e− ∫ ri
s a(u)du ds = 0,

in which case, there is an infinite number of solutions.

Remark 2.6. Using a unified notation, in Theorems 2.2 and 2.5, function G can be written as

G(t, s) = e
∫ s

t a(u)du

H

⎧⎨
⎩

∑ j
i=0 λie

− ∫ ri
0 a(u)du, if s ∈ (r j, r j+1], s � t ( j = q, . . . ,k),

−∑m
i= j+1 λie

− ∫ ri
0 a(u)du, if s ∈ (r j, r j+1], s > t ( j = k, . . . , p),

(7)

for t ∈ (rk, rk+1], with k = q, . . . , p, where rq = 0 and rp+1 = T .

Following the unified notation of Remark 2.6, we have the following corollary for a(t) = M constant.

Corollary 2.7. Let J = [0, T ], m � 1, λ,λ1, . . . , λm ∈ R, σ ∈ C( J ), 0 � r0 < r1 < · · · < rm � T and denote H := ∑m
i=0 λie−Mri . If

H �= 0, there exists a unique solution to problem (8):⎧⎪⎨
⎪⎩

u′(t) + Mu(t) = σ(t), t ∈ J = [0, T ],
m∑

i=0

λiu(ri) = 0,
(8)

given by u(t) = ∫ T
0 G(t, s)σ (s)ds, where

G(t, s) = eM(s−t)

H

{∑ j
i=0 λie−Mri , if s ∈ (r j, r j+1], s � t ( j = q, . . . ,k),

−∑m
i= j+1 λie−Mri , if s ∈ (r j, r j+1], s > t ( j = k, . . . , p),

(9)

for t ∈ (rk, rk+1], with k = q, . . . , p, where rq = 0 and rp+1 = T . Note that, in (9), j may also take the values q, . . . , p.
On the other hand, if H = 0, problem (8) is solvable only for

m∑
i=0

λi

ri∫
0

σ(s)e−M(ri−s) ds = 0,

in which case, there is an infinite number of solutions.

3. Existence of solutions with a constant sign

In this section, we start analyzing the sign of the Green’s function G obtained in Theorems 2.2 and 2.5.
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Theorem 3.1. Let J = [0, T ], m � 1, λ,λ1, . . . , λm ∈ R, a ∈ C( J ), 0 = r0 < r1 < · · · < rm � T and denote H := ∑m
i=0 λie

− ∫ ri
0 a(u)du =

λ0 + ∑m
i=1 λie

− ∫ ri
0 a(u)du = −λ + ∑m

i=1 λie
− ∫ ri

0 a(u)du . Suppose that one of the following assertions holds:

(I) H > 0 (that is, λ <
∑m

i=1 λie
− ∫ ri

0 a(u)du) and
∑m

i= j+1 λie
− ∫ ri

r j+1
a(u)du � 0 for every j = 0, . . . ,m − 1; or

(II) H < 0 (that is, λ >
∑m

i=1 λie
− ∫ ri

0 a(u)du) and
∑m

i= j+1 λie
− ∫ ri

r j+1
a(u)du � 0 for every j = 0, . . . ,m − 1.

Then G(t, s) � 0, for (t, s) ∈ [0, T ] × [0, T ].

Proof. It is easy to check that

1

H

m∑
i= j+1

λie
− ∫ ri

s a(u)du = 1

H

m∑
i= j+1

λie
− ∫ ri

r j+1
a(u)du

e− ∫ r j+1
s a(u)du � 0,

for all s ∈ (r j, r j+1], and j = 0, . . . ,m − 1. Hence

−1

H

m∑
i= j+1

λie
− ∫ ri

s a(u)du � 0, ∀s ∈ (r j, r j+1], ∀ j = 0, . . . ,m − 1.

Note that the condition on the sign of
∑m

i= j+1 λie
− ∫ ri

r j+1
a(u)du

is only checked for j = 0, . . . ,m − 1 even if rm < T , since it is
trivially satisfied for j = m (it is equal to zero). The proof is complete. �
Remark 3.2. Note that Theorem 3.1 makes no sense for the case r0 > 0, since, in this case, it would be necessary to prove
the nonpositivity of

1

H

m∑
i= j+1

λie
− ∫ ri

s a(u)du

for s ∈ (r j, r j+1], also for j = −1. However, it is impossible that 1
H

∑m
i=0 λie− ∫ ri

s a(u)du is nonpositive on (0, r0], since at s = 0
it is equal to 1.

Remark 3.3. Taking into account expression (7), the study of the sign of the expressions
∑m

i= j+1 λie
− ∫ ri

r j+1
a(u)du

in condi-

tions (I) and (II) in Theorem 3.1 can be replaced by the study of the sign of the expressions
∑m

i= j+1 λie
− ∫ ri

0 a(u)du .

Theorem 3.4 (Sign of the solution for r0 = 0). Let J = [0, T ], m � 1, λ,λ1, . . . , λm ∈ R, a, σ ∈ C( J ), 0 = r0 < r1 < · · · < rm � T ,

denote H := λ0 +∑m
i=1 λie

− ∫ ri
0 a(u)du , and consider the Green’s function G given in Theorem 2.5. Assume that one of the conditions (I)

or (II) in Theorem 3.1 holds.

• If σ � 0, then the solution to (2) is nonnegative.
• If σ � 0, then the solution to (2) is nonpositive.

Remark 3.5. For r0 = 0, we study the implications of condition (I) in Theorem 3.1. We study the validity of

m∑
i= j+1

λie
− ∫ ri

r j+1
a(u)du � 0

for j = m − 1, which is reduced to λm � 0. For j = m − 2, it is reduced to

λm−1 � −λme
− ∫ rm

rm−1
a(u)du

,

for j = m − 3 to

λm−2 � −λm−1e− ∫ rm−1
rm−2

a(u)du − λme
− ∫ rm

rm−2
a(u)du

= (−λm−1 − λme
− ∫ rm

rm−1
a(u)du)

e− ∫ rm−1
rm−2

a(u)du
,

and so on (while j � 0).
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On the other hand, for condition (II) included in Theorem 3.1, we study the validity of
∑m

i= j+1 λie
− ∫ ri

r j+1
a(u)du � 0 for

every j = 0, . . . ,m − 1. This is reduced, for j = m − 1, to λm � 0. For j = m − 2, it is reduced to

λm−1 � −λme
− ∫ rm

rm−1
a(u)du

,

for j = m − 3 to

λm−2 � −λm−1e− ∫ rm−1
rm−2

a(u)du − λme
− ∫ rm

rm−2
a(u)du

,

and so on (while j � 0).

Example 3.6. For 0 = r0 < r1 = T , and the boundary condition −λ0u(0) = λ1u(T ), we get H := λ0 + λ1e− ∫ T
0 a(u)du = −λ +

λ1e− ∫ T
0 a(u)du . Conditions for the nonnegative character of G given by Theorem 3.1 are H > 0 and λ1 � 0, or H < 0 and

λ1 � 0.
In other words, we can consider

λ1

λ0 + λ1e− ∫ T
0 a(u)du

� 0. (10)

If λ1 �= 0 (otherwise we have an initial value problem), this inequality is equivalent to

λ0

λ1
+ e− ∫ T

0 a(u)du � 0,

that is,

λ0

λ1
� −e− ∫ T

0 a(u)du. (11)

The Green’s function in this case is given by

G(t, s) = e− ∫ t
0 a(u)du

⎧⎨
⎩ (−1

H λ1e− ∫ T
s a(u)du + e

∫ s
0 a(u)du), if 0 � s � t � T ,

−1
H λ1e− ∫ T

s a(u)du, if 0 � t < s � T .

(12)

On the other hand, if λ1 = 0, the inequality (10) is trivially satisfied if λ0 �= 0 (H �= 0), in which case, we may derive
results on the existence of solutions with constant sign for the initial value problem associated. Note that, if H = 0 (λ0 = 0),
there is an infinite number of solutions.

Consider the linear equation u′(t) + Mu(t) = σ(t), t ∈ [0, T ], that is, a is a constant function, hence, for λ1 �= 0, the
condition for the nonnegative character of the Green’s function is

λ

λ1
� e−MT .

For instance, for equation u′(t) + Mu(t) = σ(t), t ∈ [0, T ], and the boundary conditions λu(0) = eMT u(T ), where λ � 1, or
λu(0) = −eMT u(T ), where λ � −1, then G � 0.

On the other hand, if a(t) = t , t ∈ [0, T ], (11) is written as λ
λ1

� e− T 2
2 . Therefore, for equation u′(t) + tu(t) = σ(t),

t ∈ [0,1], and the boundary conditions λu(0) = √
eu(1) with λ � 1, or λu(0) = −√

eu(1) with λ � −1, then G � 0. In the

more general case a(t) = Mt + N , t ∈ [0, T ], (11) is reduced to λ
λ1

� e−T ( MT
2 +N).

If a(t) = tn , t ∈ [0,1] (T = 1), (11) is λ
λ1

� e− 1
n+1 . For equation u′(t)+tnu(t) = σ(t), t ∈ [0,1], and the boundary conditions

λu(0) = e
1

n+1 u(1) where λ � 1, or λu(0) = −e
1

n+1 u(1) where λ � −1, then G � 0.

Finally, if a(t) = sin(πt), t ∈ [0, T ], (11) is written as λ
λ1

� e
1
π (cos(π T )−1) .

Example 3.7. For 0 = r0 < r1 < r2 = T , and the boundary condition −λ0u(0) = λ1u(r1) (here p = m = 1), the value of

H := λ0 + λ1e− ∫ r1
0 a(u)du is similar to that in Example 3.6, except that T is replaced by r1. It is clear that the condition for

the nonnegative character of G (see also Theorem 3.1) is λ1
H � 0. In this case, function G is given by

G(t, s) = e− ∫ t
0 a(u)du

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−1
H λ1e− ∫ r1

s a(u)du + e
∫ s

0 a(u)du), if t ∈ [0, T ], s ∈ [0, r1], s � t,

−1
H λ1e− ∫ r1

s a(u)du, if 0 � t < s � r1,

e
∫ s

0 a(u)du, if r1 � s � t � T ,

(13)
0, if r1 � t < s � T .
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As a particular case, if a(t) = M , t ∈ [0, T ], and λ1 �= 0, we check λ
λ1

� e−Mr1 for the nonnegative character of G . In

this case, for equation u′(t) + Mu(t) = σ(t), t ∈ [0, T ], and the boundary conditions λu(0) = eMr1 u(T ) where λ � 1, or
λu(0) = −eMr1 u(T ) where λ � −1, then G � 0.

If a(t) = t , t ∈ [0,1] (T = 1) and r1 =
√

2
2 , we check λ

λ1
� 1

4√e
. Therefore, for equation u′(t) + tu(t) = σ(t), t ∈ [0,1], and

the boundary conditions λu(0) = 4
√

eu(
√

2
2 ) where λ � 1, or λu(0) = − 4

√
eu(

√
2

2 ) where λ � −1, then G � 0.

If a(t) = tn , t ∈ [0,1] (T = 1) and r1 =
√

2
2 , we check λ

λ1
� e

− 1
2(n+1)/2(n+1) . Hence, for equation u′(t) + tnu(t) = σ(t),

t ∈ [0,1], and the boundary conditions λu(0) = e
1

2(n+1)/2(n+1) u(
√

2
2 ) where λ � 1, or λu(0) = −e

1
2(n+1)/2(n+1) u(

√
2

2 ) where
λ � −1, then G � 0.

Example 3.8. If we consider 0 = r0 < r1 < r2 � T , and the boundary condition −λ0u(0) = λ1u(r1) + λ2u(r2) (here m = 2),
hence the condition for the nonnegative character of G is, according to the proof of Theorem 3.1,

1

H

2∑
i= j+1

λie
− ∫ ri

r j+1
a(u)du � 0, ∀ j = 0,1, (14)

where H := −λ + λ1e− ∫ r1
0 a(u)du + λ2e− ∫ r2

0 a(u)du . That is, we have to check conditions

λ2

H
� 0, and

λ1 + λ2e
− ∫ r2

r1
a(u)du

H
� 0, (15)

both if r2 < T or r2 = T (since for r2 < T and j = 2 condition (14) is trivially satisfied). Condition (15) is translated into

λ2 � 0, λ1 + λ2e
− ∫ r2

r1
a(u)du � 0, −λ + λ1e− ∫ r1

0 a(u)du + λ2e− ∫ r2
0 a(u)du > 0,

or

λ2 � 0, λ1 + λ2e
− ∫ r2

r1
a(u)du � 0, −λ + λ1e− ∫ r1

0 a(u)du + λ2e− ∫ r2
0 a(u)du < 0.

For a(t) = M , t ∈ [0, T ], these are rewritten as

λ2 � 0, λ1 � −λ2e−M(r2−r1), λ < λ1e−Mr1 + λ2e−Mr2 ,

or

λ2 � 0, λ1 � −λ2e−M(r2−r1), λ > λ1e−Mr1 + λ2e−Mr2 .

On the other hand, if a(t) = t , t ∈ [0, T ], and 0 = r0 < r1 < r2 � T , we get

λ2 � 0, λ1 � −λ2e− r2
2
2 + r2

1
2 , λ < λ1e− r2

1
2 + λ2e− r2

2
2 ,

or

λ2 � 0, λ1 � −λ2e− r2
2
2 + r2

1
2 , λ > λ1e− r2

1
2 + λ2e− r2

2
2 .

For r1 = 1 and r2 = 2, the conditions are

λ2 � 0, λ1 � −λ2e− 3
2 , λ < λ1e− 1

2 + λ2e−2,

or

λ2 � 0, λ1 � −λ2e− 3
2 , λ > λ1e− 1

2 + λ2e−2.

For a(t) = Mt + N , t ∈ [0, T ], (15) is written as

λ2

H
� 0, and

λ1 + λ2e−M
r2
2
2 +M

r2
1
2 −Nr2+Nr1

H
� 0, (16)

where H := −λ + λ1e−M
r2
1
2 −Nr1 + λ2e−M

r2
2
2 −Nr2 .

Finally, for a(t) = sin(πt), t ∈ [0, T ], (15) is written as

λ2

H
� 0, and

λ1 + λ2e
1
π (cosπr2−cosπr1)

H
� 0, (17)

where H := −λ + λ1e
1
π (cosπr1−1) + λ2e

1
π (cosπr2−1) .
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Example 3.9. Analogously, if 0 = r0 < r1 < r2 < r3 � T , and the boundary condition is −λ0u(0) = λ1u(r1)+λ2u(r2)+λ3u(r3)

(here m = 3), we have H := −λ + λ1e− ∫ r1
0 a(u)du + λ2e− ∫ r2

0 a(u)du + λ3e− ∫ r3
0 a(u)du and the conditions for the nonnegative

character of G are

λ3

H
� 0,

λ2 + λ3e
− ∫ r3

r2
a(u)du

H
� 0, and

λ1 + λ2e
− ∫ r2

r1
a(u)du + λ3e

− ∫ r3
r1

a(u)du

H
� 0. (18)

If a(t) = M , t ∈ [0, T ], then H := −λ + λ1e−Mr1 + λ2e−Mr2 + λ3e−Mr3 , and sufficient conditions for the nonnegative character
of G are

λ3

H
� 0,

λ2 + λ3e−M(r3−r2)

H
� 0, and

λ1 + λ2e−M(r2−r1) + λ3e−M(r3−r1)

H
� 0. (19)

Next, we show a result on the nonpositive character of the function G .

Theorem 3.10. Let J = [0, T ], m � 1, λ,λ1, . . . , λm ∈ R, a ∈ C( J ), and 0 � r0 < r1 < · · · < rm = T .

(i) If ∑m
i= j+1 λie

− ∫ ri
0 a(u)du

∑m
i=0 λie

− ∫ ri
0 a(u)du

� 1, for every j = 0, . . . ,m − 1

(where the denominator is non-null), then G(t, s) � 0, for (t, s) ∈ [0, T ] × [0, T ].
(ii) If the following assertion holds∑ j

i=0 λie
− ∫ ri

0 a(u)du∑m
i= j+1 λie

− ∫ ri
0 a(u)du

� 0, for every j = 0, . . . ,m − 1,

where the denominators are non-null, then G(t, s) � 0, for (t, s) ∈ [0, T ] × [0, T ].

Proof. To check the nonpositivity of G , since

−1

H

m∑
i= j+1

λie
− ∫ ri

s a(u)du + e
∫ s

0 a(u)du >
−1

H

m∑
i= j+1

λie
− ∫ ri

s a(u)du,

where H := ∑m
i=0 λie

− ∫ ri
0 a(u)du = −λ + ∑m

i=1 λie
− ∫ ri

0 a(u)du , it suffices to prove that

e
∫ s

0 a(u)du � 1

H

m∑
i= j+1

λie
− ∫ ri

s a(u)du, for all s ∈ (r j, r j+1], and j = −1, . . . ,m − 1,

that is,∑m
i= j+1 λie

− ∫ ri
0 a(u)du

∑m
i=0 λie

− ∫ ri
0 a(u)du

� 1, for all j = −1, . . . ,m − 1,

which is trivially satisfied for j = −1.

On the other hand, if
∑m

i= j+1 λie
− ∫ ri

0 a(u)du �= 0, the previous inequalities can be written as

∑m
i= j+1 λie

− ∫ ri
0 a(u)du

∑ j
i=0 λie

− ∫ ri
0 a(u)du + ∑m

i= j+1 λie
− ∫ ri

0 a(u)du
= 1

1 +
∑ j

i=0 λi e
− ∫ ri

0 a(u)du

∑m
i= j+1 λi e

− ∫ ri
0 a(u)du

� 1, for all j = −1, . . . ,m − 1,

which coincide with condition in (ii) (it is trivially fulfilled for j = −1).
Note that∑ j

i=0 λie
− ∫ ri

0 a(u)du∑m
λ e− ∫ ri

0 a(u)du
� 0, for every j = 0, . . . ,m − 1,
i= j+1 i
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is equivalent to∑ j
i=0 λie

− ∫ ri
r0

a(u)du

∑m
i= j+1 λie

− ∫ ri
r0

a(u)du
� 0, for every j = 0, . . . ,m − 1. �

Remark 3.11. Conditions (i), (ii) in Theorem 3.10 are only checked for j = 0, . . . ,m − 1, even if r0 > 0, since they are trivially
satisfied for j = −1.

Remark 3.12. Note that, in the statement of Theorem 3.10, it is not possible to consider rm < T , since, in such a case, we

should prove the inequality in (i)
∑m

i= j+1 λi e
− ∫ ri

0 a(u)du

∑m
i=0 λi e

− ∫ ri
0 a(u)du

� 1 also for j = m, which is not true.

Corollary 3.13. Assume that J = [0, T ], m � 1, λ,λ1, . . . , λm ∈ R, a ∈ C( J ), and 0 � r0 < r1 < · · · < rm = T . If one of the following
conditions holds:

• ∑m
i=0 λie

− ∫ ri
0 a(u)du > 0 and

∑ j
i=0 λie

− ∫ ri
0 a(u)du � 0, for every j = 0, . . . ,m − 1, or

• ∑m
i=0 λie

− ∫ ri
0 a(u)du < 0 and

∑ j
i=0 λie

− ∫ ri
0 a(u)du � 0, for every j = 0, . . . ,m − 1,

then G(t, s) � 0, for (t, s) ∈ [0, T ] × [0, T ].

Proof. Derived directly from condition (i) in Theorem 3.10. �
Remark 3.14. In these conditions, the lower limit of the integral can be equivalently chosen as r0 instead of 0.

Theorem 3.15 (Sign of the solution for rm = T ). Let J = [0, T ], m � 1, λ,λ1, . . . , λm ∈ R, a, σ ∈ C( J ), 0 � r0 < r1 < · · · < rm = T ,

denote H := λ0 + ∑m
i=1 λie

− ∫ ri
0 a(u)du , and consider the Green’s function G given in Theorems 2.2 and 2.5 (with p = m − 1). Assume

that one of the conditions (i) or (ii) in Theorem 3.10 holds (or any in Corollary 3.13). Under these hypotheses:

• If σ � 0, then the solution to (2) is nonpositive.
• If σ � 0, then the solution to (2) is nonnegative.

Example 3.16. For 0 � r0 < r1 = T , and the boundary condition −λ0u(r0) = λ1u(T ) (here m = 1), we get that the nonposi-
tivity conditions for G are (see Corollary 3.13)

• λ0 + λ1e
− ∫ r1

r0
a(u)du

> 0 and λ0 � 0, or

• λ0 + λ1e
− ∫ r1

r0
a(u)du

< 0 and λ0 � 0.

According to (ii) in Theorem 3.10, the condition is λ0e− ∫ r0
0 a(u)du

λ1e− ∫ r1
0 a(u)du

= λ0
λ1

e
∫ r1

r0
a(u)du � 0, that is, λ0

λ1
� 0. The Green’s function is

given in this case by (3) or (6), where m = 1, p = 0, and r1 = T . For instance, if r0 > 0, G has expression

G(t, s) = e− ∫ t
0 a(u)du

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−1
H (λ0e− ∫ r0

s a(u)du + λ1e− ∫ T
s a(u)du) + e

∫ s
0 a(u)du), if s ∈ [0, r0], s � t,

(−1
H λ1e− ∫ T

s a(u)du + e
∫ s

0 a(u)du), if s ∈ (r0, T ], s � t,

−1
H (λ0e− ∫ r0

s a(u)du + λ1e− ∫ T
s a(u)du), if s ∈ [0, r0], s > t,

−1
H λ1e− ∫ T

s a(u)du, if s ∈ (r0, T ], s > t,

(20)

where H := λ0e− ∫ r0
0 a(u)du + λ1e− ∫ T

0 a(u)du .

Example 3.17. For 0 � r0 < r1 < r2 = T , and the boundary condition −λ0u(r0) = λ1u(r1) + λ2u(T ) (here m = 2), the condi-
tions for nonpositivity of G are, according to Corollary 3.13,

λ0 + λ1e
− ∫ r1

r0
a(u)du + λ2e

− ∫ r2
r0

a(u)du
> 0, λ0 � 0, λ0 + λ1e

− ∫ r1
r0

a(u)du � 0,

or

λ0 + λ1e
− ∫ r1

r0
a(u)du + λ2e

− ∫ r2
r0

a(u)du
< 0, λ0 � 0, λ0 + λ1e

− ∫ r1
r0

a(u)du � 0.
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On the other hand, by condition (ii) in Theorem 3.10, other conditions for the nonpositivity of G are

λ0e− ∫ r0
0 a(u)du

λ1e− ∫ r1
0 a(u)du + λ2e− ∫ r2

0 a(u)du
� 0,

and

λ0e− ∫ r0
0 a(u)du + λ1e− ∫ r1

0 a(u)du

λ2e− ∫ r2
0 a(u)du

� 0,

that is,

λ0

λ1e
− ∫ r1

r0
a(u)du + λ2e

− ∫ r2
r0

a(u)du
� 0,

λ0 + λ1e
− ∫ r1

r0
a(u)du

λ2e
− ∫ r2

r0
a(u)du

� 0

assuming that the denominators are non-null.
The Green’s function is given by (3) or (6), where m = 2, p = 1, and r2 = T . For instance, if r0 = 0, G has expression

G(t, s) = e− ∫ t
0 a(u)du

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−1
H

∑2
i=1 λie− ∫ ri

s a(u)du + e
∫ s

0 a(u)du), if s ∈ [r0, r1], s � t,

(−1
H λ2e− ∫ r2

s a(u)du + e
∫ s

0 a(u)du), if s ∈ (r1, T ], s � t,

−1
H

∑2
i=1 λie− ∫ ri

s a(u)du, if s ∈ [r0, r1], s > t,

−1
H λ2e− ∫ r2

s a(u)du, if s ∈ (r1, T ], s > t,

(21)

where H := λ0e− ∫ r0
0 a(u)du +λ1e− ∫ r1

0 a(u)du +λ2e− ∫ r2
0 a(u)du . On the other hand, if r0 > 0, we have to add to (21) the definition

of G(t, s), for t ∈ [0, r0], that is,

G(t, s) = e− ∫ t
0 a(u)du

⎧⎨
⎩

(−1
H

∑2
i=0 λie− ∫ ri

s a(u)du + e
∫ s

0 a(u)du), if s ∈ [0, r0], s � t,

−1
H

∑2
i=0 λie− ∫ ri

s a(u)du, if s ∈ [0, r0], s > t.
(22)

Example 3.18. For 0 � r0 < r1 < r2 < r3 = T , and the boundary condition −λ0u(r0) = λ1u(r1) + λ2u(r2) + λ3u(T ) (here
m = 3), the conditions for nonpositivity of G are, according to Corollary 3.13, one of the following choices

3∑
i=0

λie
− ∫ ri

r0
a(u)du

> 0, λ0 � 0, λ0 + λ1e
− ∫ r1

r0
a(u)du � 0, λ0 + λ1e

− ∫ r1
r0

a(u)du + λ2e
− ∫ r2

r0
a(u)du � 0,

or

3∑
i=0

λie
− ∫ ri

r0
a(u)du

< 0, λ0 � 0, λ0 + λ1e
− ∫ r1

r0
a(u)du � 0, λ0 + λ1e

− ∫ r1
r0

a(u)du + λ2e
− ∫ r2

r0
a(u)du � 0,

and the Green’s function can be obtained similarly to previous examples.

4. Conclusion

In this paper, we have obtained the exact expression of the solution to a first-order linear differential equation with
multipoint boundary value conditions by the calculus of the associated Green’s function G . We have also deduced, from the
study of the sign of G , the existence of solutions with a constant sign, showing some particular cases. These results are
helpful to study some related nonlinear problems [4].
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