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a b s t r a c t

We study a quasilinear elliptic problem depending on a parameter λ of the form

−∆pu = λf (u) in Ω, u = 0 on ∂Ω.

We present a novel variational approach that allows us to obtain multiplicity, regularity
and a priori estimate of solutions by assuming certain growth and sign conditions on f
prescribed only near zero. More precisely, we describe an interval of parameters λ for
which the problem under consideration admits at least three nontrivial solutions: two
extremal constant-sign solutions and one sign-changing solution. Our approach is based
on an abstract localization principle of critical points of functionals of the form E =

Φ − λΨ on open sublevels Φ−1(] − ∞, r[), combined with comparison principles and
the sub-supersolution method. Moreover, variational and topological arguments, such as
the mountain pass theorem, in conjunction with truncation techniques are the main tools
for the proof of sign-changing solutions.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω ⊂ RN (N ≥ 1) be a bounded domain with a C2-boundary ∂Ω , and let W 1,p
0 (Ω) denote the usual Sobolev space of

functions with generalized homogeneous boundary values endowed with the norm

∥u∥ :=


Ω

|∇u(x)|p dx
1/p

. (1)

Throughout this paper we assume p > N , which implies that W 1,p
0 (Ω) is compactly embedded into C0(Ω) with the norm

of the embedding operator denoted by c and given by

c := sup
u∈W1,p

0 (Ω), u≠0

∥u∥C0(Ω)

∥u∥
< +∞. (2)

In this paper we consider the following parameter-dependent quasilinear elliptic boundary value problem
−∆pu = λf (u) in Ω

u = 0 on ∂Ω,
(3)

where ∆pu := div(|∇u|p−2
∇u) is the p-Laplace operator, f : R → R is a continuous function, and λ is a positive parameter.
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The main goal of this paper is to show that there are finite open intervals Λk ⊂ R+, k = 1, 2, such that for any λ ∈ Λ1,
problem (3) admits at least two nontrivial solutions of constant sign, while for λ ∈ Λ2 ⊂ Λ1, there exist at least three
nontrivial solutions with two of them of constant sign and a third one that is sign-changing. It should be noted that in recent
years a number of papers have been published dealing with multiple solutions, and, in particular, with multiple constant-
sign and sign-changing solutions; see, e.g., [1–11], and the references therein. In order to show the existence of multiple
solutions, usually certain growth conditions of different nature on the nonlinearity s → f (s) are required.

Unlike in the above references, the novelty of this paper is to show the existence of multiple solutions in the case that
s → f (s) satisfies certain growth condition only in some neighborhood of s = 0. More precisely, let λk, k = 1, 2, denote the
first and second eigenvalue of (−∆p,W

1,p
0 (Ω)), and let F : R → R denote the primitive of f given by

F(s) :=

 s

0
f (t) dt, ∀ s ∈ R,

then we make the following assumptions on f near zero: (for a, b ∈ R ∪ {±∞} we denote by ]a, b[ the open interval in R)

(f1) limt→0
f (t)

|t|p−2t
= L ∈]0, +∞[.

(f2,λk) There exists a positive number ρ0 such that

max
|s|≤ρ0

F(s)

ρ
p
0

<
1

cpλk|Ω|
lim
s→0

F(s)
|s|p

, (4)

where |Ω| stands for the Lebesgue measure of Ω .

Remark 1.1. In viewof assumption (f1), it is easy to verify that lims→0
F(s)
|s|p =

L
p . Moreover, to show that the class of functions

satisfying (f1) and (f2,λk) is non empty, consider the case N = 1, p = 2, Ω =]0, 1[, f : R → R defined by

f (t) =
t

1 + t + t2

for every t ∈ R, and recall that c2 ≤ 1/4, while λk = k2π2, with k = 1, 2.

As will be seen in Section 2, a crucial role in the existence proof of constant-sign solutions, i.e., a positive and a negative
solution of problem (3), is played by the following version of an abstract critical point theorem obtained in [12, Theorem
1.1] which we recall for convenience.

Theorem 1.1. Let X be a reflexive Banach space, Φ : X → R and Ψ : X → R two continuously Gâteaux differentiable
functionals such that Φ is coercive, continuous and sequentially weakly lower semicontinuous (w.l.s.c.), while Ψ is sequentially
weakly upper semicontinuous. Let r > infX Φ and put

ϕ(r) := inf
v∈Φ−1(]−∞,r[)

sup
u∈Φ−1(]−∞,r[)

Ψ (u) − Ψ (v)

r − Φ(v)
.

Then, for every λ ∈


0, 1

ϕ(r)


the functional E := Φ − λΨ has a critical point uλ ∈ Φ−1(] − ∞, r[) such that E(uλ) ≤ E(v) for

every v ∈ Φ−1(] − ∞, r[).

2. Nontrivial constant-sign solutions

Let us recall that a solution of (3) is any function u ∈ W 1,p
0 (Ω) satisfying

Ω

|∇u(x)|p−2
∇u(x) · ∇ϕ(x) dx = λ


Ω

f (u(x))ϕ(x) dx, ∀ϕ ∈ W 1,p
0 (Ω). (5)

Thanks to (2) and the continuity of f , if u ∈ W 1,p
0 (Ω) is a solution of (3), then ∆pu ∈ L∞(Ω) and the nonlinear regularity

theory [13, Theorem 1.5.6] assures that u ∈ C1,γ (Ω) for some γ ∈]0, 1[ and u ∈ C1
0 (Ω). In addition, if u is nonnegative,

then from (f1), follows that there exists a constant c̃λ > 0 such that ∆pu ≤ c̃λup−1. Hence, applying Vázquez’s strong
maximum principle [14], one has that if u ≠ 0 then u ∈ int(C1

0 (Ω)+), that is the interior of the positive cone C1
0 (Ω)+ :=

{u ∈ C1
0 (Ω) : u(x) ≥ 0, ∀x ∈ Ω}, with respect to the Banach space C1

0 (Ω) := {u ∈ C1(Ω) : u(x) = 0, ∀x ∈ ∂Ω}. In
particular, it is well known that

int(C1
0 (Ω)+) =


u ∈ C1

0 (Ω) : u(x) > 0 ∀x ∈ Ω, and
∂u
∂n

(x) < 0 ∀x ∈ ∂Ω


,

where n = n(x) is the outer unit normal at x ∈ ∂Ω .
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Inequality (4) of (f2,λk) gives rise to the definition of the following intervals

Λk =

 λk

p lim
s→0

F(s)
|s|p

,
ρ
p
0

pcp|Ω| max
|s|≤ρ0

F(s)

 . (6)

The existence of positive and negative solutions is given by the following.

Theorem 2.1. Assume hypotheses (f1) and (f2,λ1). Then, for every λ ∈ Λ1, problem (3) admits at least one solution v+ ∈

int(C1
0 (Ω)+) and one solution v− ∈ −int(C1

0 (Ω)+) such that ∥v±∥C0(Ω) < ρ0.

Proof. Put X := W 1,p
0 (Ω) and

f̃ (t) :=


f (t) if t ≥ 0
0 if t < 0, F̃(s) :=

 s

0
f̃ (t) dt, ∀s ∈ R,

Φ(u) :=
1
p
∥u∥p, Ψ (u) :=


Ω

F̃(u(x)) dx, E(u) := Φ − λΨ (u)

for every u ∈ X and λ > 0. In view of (2), for r :=
ρ
p
0

pcp one has

Φ−1(] − ∞, r[) ⊆

u ∈ C0(Ω) : ∥u∥C0(Ω) < ρ0


. (7)

From this, we obtain the following estimate

ϕ(r) ≤

sup
u∈Φ−1(]−∞,r[)

Ψ (u)

r
≤ pcp|Ω|

max
|s|≤ρ0

F̃(s)

ρ
p
0

≤ pcp|Ω|

max
|s|≤ρ0

F(s)

ρ
p
0

,

which implies Λ1 ⊆


0, 1

ϕ(r)


. Fix λ ∈ Λ1 and apply Theorem 1.1 to conclude the existence of a v+ ∈ Φ−1(] − ∞, r[)

such that E(v+) ≤ E(u) for every u ∈ Φ−1(] − ∞, r[), that is, v+ is a local minimum of E, and due to (7), we see that
∥v+∥C0(Ω) < ρ0. We claim that v+ ≠ 0. By assumption (f1) and Remark 1.1, we readily see that for any λ ∈ Λ1 the
inequality L

λ1
> 1

λ
holds true, and thus there are two positive numbers δ and α such that

f (t)
|t|p−2t

> L − α >
λ1

λ
, ∀t ∈] − δ, δ[\{0}. (8)

Let ϕ1 denote the positive eigenfunction, related to the first eigenvalue λ1, such that ∥ϕ1∥p = 1. It is well known that
ϕ1 ∈ int(C1

0 (Ω)+). Thus, for ε > 0 small enough one gets ∥εϕ1∥C0(Ω) < δ which in view of (8) yields

E(v+) ≤ E(εϕ1) <
εp

p
[λ1 − λ(L − α)] < 0 = E(0), (9)

namely 0 is not a local minimum of E, and v+ ≠ 0 solves the problem

−∆pu = λf̃ (u) in Ω, u = 0 on ∂Ω.

Note that

f̃ (v+(x)) =


f (v+(x)) if v+(x) ≥ 0
0 if v+(x) < 0, (10)

and ∥v+∥C0(Ω) < ρ0. Since v+ is a (weak) solution of the above problem,
Ω

|∇v+|
p−2

∇v+ · ∇ϕ dx = λ


Ω

f̃ (v+)ϕ dx, ∀ ϕ ∈ W 1,p
0 (Ω).

Put s+ = max{s, 0}, s− = max{−s, 0} and ϕ = v−

+ , we obtain ∥v−

+∥ = 0, and thus v+ ≥ 0, which by (10) shows that v+ is
a solution of (3).

Reasoning in a similar way, the existence of a negative solution v−, with ∥v−∥C0(Ω) < ρ0 can be obtained too. Finally,
v+ ∈ int(C1

0 (Ω)+) and v− ∈ −int(C1
0 (Ω)+), as pointed out at the beginning of this section. �
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Remark 2.1. Themere existence of v+ and v− can still be assured if assumption (f1) is replaced by the slightly more general
condition

lim inf
s→0

F(s)
|s|p

> 0.

Moreover, bearing in mind [15, formula (6b)], it is possible to obtain a precise estimate of the intervals Λk, k = 1, 2.

3. Extremal constant-sign solutions

In this section we are going to prove that for each λ ∈ Λ1 there are a smallest positive and a greatest negative solution
of (3).

Theorem 3.1. Under the assumptions of Theorem 2.1, for every λ ∈ Λ1, problem (3) admits the smallest positive solution
u+ = u+(λ) ∈ int(C1

0 (Ω)+) within [0, v+] and the greatest negative solution u− = u−(λ) ∈ −int(C1
0 (Ω)+) within [v−, 0],

such that ∥u±∥C0(Ω̄) < ρ0.

Proof. Fix λ ∈ Λ1, and let v+ and v− be the positive and negative solutions of (3), respectively, as obtained in Theorem 2.1.
Since v+, ϕ1 ∈ int(C1

0 (Ω)+), for ε > 0 small enoughwe can obtain εϕ1 ≤ v+. Arguing as in (8), and choosing ε even smaller
if needed such that ε ∈]0, δ/∥ϕ1∥C0(Ω)[, we obtain

−∆p(εϕ1) − λf (εϕ1) = λ1(εϕ1)
p−1

− λ
f (εϕ1)

(εϕ1)p−1
(εϕ1)

p−1

≤ λ1(εϕ1)
p−1

− λ(L − α)(εϕ1)
p−1

≤ 0,

which proves that εϕ1 is a subsolution of (3), and thus εϕ1, v+ form an ordered pair of sub-supersolution. Applying
[16, Theorem 3.22], (see also [17]) there exists a smallest and a greatest solution of (3) within the ordered interval [εϕ1, v+].
Apparently v+ is the greatest solution. We denote by uε ∈ int(C1

0 (Ω)+) the smallest solution of (3) within [εϕ1, v+]. Let
{εn} be a decreasing sequence of positive numbers such that ε1 = ε, εn ↓ 0+, and denote by un ∈ int(C1

0 (Ω)+) the smallest
solution of (3) within the interval [εnϕ1, v+]. Since {un(x)} is non increasing, we can define

u+(x) := lim
n→+∞

un(x) for every x ∈ Ω. (11)

It is obvious that 0 ≤ u+ ≤ v+. Let us verify that

u+ is a non zero solution of problem (3). (12)

Since every un is a solution of (3), one has
Ω

|∇un(x)|p−2
∇un(x) · ∇ϕ(x) dx = λ


Ω

f (un(x))ϕ(x) dx, ∀ϕ ∈ W 1,p
0 (Ω). (13)

Testing (13) with ϕ = un one readily gets ∥∇un∥
p
p ≤ λρ0|Ω|maxt∈[0,ρ0] f (t), i.e., {un} is bounded in W 1,p

0 (Ω). In view of
(11), and becauseW 1,p

0 (Ω) ↩→↩→ C0(Ω), we see that

un ⇀ u+ inW 1,p
0 (Ω), un → u+ in C0(Ω). (14)

Taking the test function ϕ = un − u+ in (13), we get

lim
n→+∞


Ω

|∇un(x)|p−2
∇un(x) · ∇(un − u+)(x) dx = 0,

which, together with (14) and the S+-property of −∆p, yields

un → u+ strongly inW 1,p
0 (Ω). (15)

From (15), (14), passing to the limit in (13), one has that u+ solves (3).
By contradiction, assume that u+ = 0. Put ũn := un/∥∇un∥p for every n ∈ N. Obviously, ũn ∈ W 1,p

0 (Ω) and ∥ũn∥ = 1.
Passing to a subsequence if necessary (still denoted by ũn), there exists some ũ ∈ W 1,p

0 (Ω) such that

ũn ⇀ ũ in W 1,p
0 (Ω), ũn → ũ in C0(Ω). (16)

Dividing by ∥∇un∥
p−1
p in (13) one gets

Ω

|∇ũn(x)|p−2
∇ũn(x) · ∇ϕ(x) dx = λ


Ω

f (un(x))

up−1
n (x)

ũp−1
n (x)ϕ(x) dx, (17)
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for every ϕ ∈ W 1,p
0 (Ω). In particular, for ϕ = ũn − ũ we obtain

Ω

|∇ũn(x)|p−2
∇ũn(x) · ∇(ũn − ũ)(x) dx = λ


Ω

f (un(x))

up−1
n (x)

ũp−1
n (x)(ũn − ũ)(x) dx. (18)

Applying (14), (16), (f1), and the assumption u+ = 0, the right-hand side of (18) tends to zero. Hence, again by the
S+-property of −∆p and (16), it follows that ũn → ũ in W 1,p

0 (Ω), so that ∥ũ∥ = 1, and thus ũ ≠ 0. Passing to the limit
in (17), in view of (f1), we obtain, for every ϕ ∈ W 1,p

0 (Ω),
Ω

|∇ũ(x)|p−2
∇ũ(x) · ∇ϕ(x) dx = λL


Ω

ũp−1(x)ϕ(x) dx.

This implies that ũ is a non-trivial eigenfunction of (−∆p,W
1,p
0 (Ω)) related to the eigenvalue λL > λ1. Hence, ũ must

change sign (see [18]), against the fact that it is the limit of nonnegative functions. This proves (12). The arguments given at
the beginning of Section 2 assure that u+ ∈ int(C1

0 (Ω)+).
Finally, let us verify that u+ is in fact the smallest positive solution of (3)within [0, v+]. Indeed, if u is any positive solution

of (3) such that 0 ≤ u ≤ v+, then u ∈ int(C1
0 (Ω)+) and, for some n ∈ N one has that εnϕ1 ≤ u ≤ v+. Recalling (11) and that

un was constructed as the smallest solution of (3) within [εnϕ1, v+], one has that u+ ≤ un ≤ u and the proof is complete for
the part regarding u+. Similar arguments show the existence of u− ∈ −int(C1

0 (Ω)+), being the greatest negative solution
of (3) within [v−, 0]. �

Remark 3.1. We point out that Theorem 3.1 gives a more precise additional extremality information with respect to the
conclusion of Theorem 2.1.

4. Variational characterization of the extremal solutions

In this section we are going to variationally characterize the extremal constant-sign solutions u+ and u− obtained in
Theorem 3.1. For this purpose we introduce the following truncation functions

τ+(x, s) :=


0 if s ∈] − ∞, 0]
s if s ∈]0, u+(x)]
u+(x) if s ∈ [u+(x), +∞[

τ−(x, s) :=


u−(x) if s ∈] − ∞, u−(x)]
s if s ∈]u−(x), 0[
0 if s ∈ [0, +∞[

τ0(x, s) :=


u−(x) if s ∈] − ∞, u−(x)]
s if s ∈]u−(x), u+(x)[
u+(x) if s ∈ [u+(x), +∞[,

and, for every λ > 0, the associated truncated functionals onW 1,p
0 (Ω)

E±(u) :=
1
p
∥∇u∥p

p − λ


Ω

(F ◦ τ±)(x, u(x)) dx,

E0(u) :=
1
p
∥∇u∥p

p − λ


Ω

(F ◦ τ0)(x, u(x)) dx.

Our main goal here is to show that u+ and u− are local minimizers of E0.

Lemma 4.1. Assume that the assumptions of Theorem 3.1 hold. Then, for every λ ∈ Λ1, the function u+ = u+(λ) is a global
minimizer of E+ and a local minimizer of E0, and u− = u−(λ) is a global minimizer of E− and a local minimizer of E0.

Proof. Let us begin by observing that

if v is a critical point of E+, then 0 ≤ v ≤ u+ (19)

which, by the definition of τ+, implies that any critical point of E+ is a solution of (3) that belongs to [0, u+]. To prove (19),
let v ∈ W 1,p

0 (Ω) be a critical point of E+, i.e., v satisfies
Ω

|∇v|
p−2

∇v · ∇ϕ dx = λ


Ω

f (τ+(x, v))ϕ dx, ∀ ϕ ∈ W 1,p
0 (Ω). (20)
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Since u+ is a positive solution of (3), by using (20) and the special test function ϕ = (v − u+)+ as well as the definition of
E+ and τ+, one has

Ω

[|∇v(x)|p−2
∇v(x) − |∇u+(x)|p−2

∇u+(x)] · ∇(v − u+)+(x) dx

= λ


{v>u+}

[f (τ+(x, v(x))) − f (u+(x))](v − u+)(x) dx = 0.

Hence, ∇(v − u+) = 0 a.e. in {v > u+}, i.e. ∇(v − u+)+ = 0 a.e. in Ω and ∥(v − u+)+∥ = 0, which implies v ≤ u+. Testing
(20) with ϕ = −v−, one gets


Ω

|∇v−
|
p dx = 0, and thus v−

= 0, which proves (19).
Since E+ is coercive and w.l.s.c., it has a global minimizer z+ ∈ W 1,p

0 (Ω), i.e.,

E+(z+) = inf
W1,p

0 (Ω)

E+. (21)

Thus, z+ is a critical point of E+ and, by (19), 0 ≤ z+ ≤ u+. Because u+ ∈ int(C1
0 (Ω)+), for σ > 0 small enough one

gets σϕ1 ≤ u+ and, reasoning as in (8) and (9), E+(σϕ1) < 0, that is z+ ≠ 0 is a nontrivial solution of (3), belonging
to [0, u+], which by the minimality property of u+ assures that z+ = u+, that is, u+ is a global minimum of E+. Since
u+ ∈ int(C1

0 (Ω)+), there exists a neighborhood U of u+ with respect to the topology of C1
0 (Ω) such that U ⊂ C1

0 (Ω)+ and
E0(u+) = E+(u+) ≤ E+(u) = E0(u), for every u ∈ U . In other words, u+ is a local minimum of E0 with respect to the
topology of C1

0 (Ω) and, bearing in mind [13, p. 655–656] (see also [19]), it turns out to be a W 1,p
0 (Ω)-local minimum. The

assertion for u− can be obtained analogously. �

5. Sign-changing solution

In this section we will see that by restricting the parameter range for λ to Λ2 (note Λ2 ⊂ Λ1), a sign-changing solution
also exists.

Theorem 5.1. Assume hypotheses (f1) and (f2,λ2). Then, for every λ ∈ Λ2 problem (3) has a solution u+ = u+(λ) ∈ int
(C1

0 (Ω)+), a solution u− = u−(λ) ∈ −int(C1
0 (Ω)+) and a nontrivial sign-changing solution u0 = u0(λ) ∈ C1

0 (Ω), whose
norms in C0 are less than ρ0.

Proof. Let us fix λ ∈ Λ2 ⊂ Λ1 and consider u+ ∈ int(C1
0 (Ω)+) and u− ∈ −int(C1

0 (Ω)+) given by Theorem 3.1. Arguing as
in (19), one has that

if v is a critical point of E0, then u− ≤ v ≤ u+. (22)

Hence, every critical point of E0 is a solution of (3) that belongs to the interval [u−, u+]. It is easy to verify that E0 is coercive
and w.l.s.c., with infW1,p

0 (Ω)
E0 < 0. Thus, there exists z0 ∈ W 1,p

0 (Ω) such that z0 ≠ 0 and E0(z0) = infW1,p
0 (Ω)

E0, that is z0
is a critical point of E0, and thus z0 is a solution of (3) with z0 ∈ [u−, u+]. Now, distinguish two cases:

(A) z0 ≠ u− and z0 ≠ u+. Then, z0 ∈]u−, u+[\{0} is a critical point of E0. In view of (22) and the extremality properties
of u− and u+, z0 must be sign-changing and we conclude taking u0 = z0.

(B) Either z0 = u− or z0 = u+. Let, for instance, z0 = u+. Thus, u+ is a global minimum of E0, while u− is a local minimum
for the same functional (see Lemma 4.1). If u− is a non-strict local minimum the proof is done because then E0 admits
infinitely many local minima at the level E0(u−) that, by (22) and the extremality properties of u− and u+, must be sign-
changing solutions. Therefore, wemay assume that u− is a strict local minimizer. In this case, there exists ρ ∈]0, ∥u− −u+∥[

such that

E0(u+) ≤ E0(u−) < inf
∥u−u−∥=ρ

E0(u). (23)

Obviously, E0 satisfies the Palais–Smale condition and, applying the mountain pass theorem [20], it has a third critical point
u0 ∈ W 1,p

0 (Ω) such that

inf
∥u−u−∥=ρ

E0(u) ≤ E0(u0) = inf
γ∈Γ

max
t∈[−1,1]

E0(γ (t)), (24)

where Γ = {γ ∈ C([−1, 1],W 1,p
0 (Ω)) : γ (−1) = u−, γ (1) = u+}. In order to exclude that u0 = 0 we will prove that

E0(u0) < 0. (25)

For this goal, we will use the variational characterization of λ2 (see [21])

λ2 = inf
γ∈Γ0

max
t∈[−1,1]

∥∇γ (t)∥p
p, (26)
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where Γ0 = {γ ∈ C0([−1, 1], S) : γ (−1) = −ϕ1, γ (1) = ϕ1}, while S = W 1,p
0 (Ω) ∩ ∂BLp(Ω)

1 , being ∂BLp(Ω)
1 = {u ∈

Lp(Ω) : ∥u∥p = 1}, is considered with theW 1,p
0 (Ω)-topology.

Since λ ∈ Λ2, in particular, λ > λ2/L and there exist β, δ > 0 such that

f (t)
|t|p−2t

> L − β >
λ2

λ
∀t ∈] − δ, δ[\{0}. (27)

By (26), for β ′
∈]0, λ(L − β) − λ2[, there exists γ ∈ Γ0 such that

max
t∈[−1,1]

∥∇γ (t)∥p
p < λ2 +

β ′

2
. (28)

Let SC = S ∩ C1
0 (Ω) be endowed with the C1

0 (Ω̄)-topology and Γ0,C = {γ ∈ C0([−1, 1], SC ) : γ (−1) = −ϕ1, γ (1) = ϕ1}.
Because SC is dense in S, Γ0,C is dense in Γ0, and for 0 < r ≤ (λ2 + β ′)1/p − (λ2 +

β ′

2 )1/p there exists γ0 ∈ Γ0,C such that
maxt∈[−1,1] ∥∇γ (t) − ∇γ0(t)∥p < r , and

max
t∈[−1,1]

∥∇γ0(t)∥p
p < λ2 + β ′. (29)

Moreover, since u+, −u− ∈ int(C1
0 (Ω)+), there exists δ′ > 0 such that

u+ + B
C1
0 (Ω)

δ′ ⊂ int(C1
0 (Ω)+), −u− + B

C1
0 (Ω)

δ′ ⊂ int(C1
0 (Ω)+), (30)

where B
C1
0 (Ω)

δ′ = {u ∈ C1
0 (Ω) : ∥u∥C1

0 (Ω) ≤ δ′
}. Obviously γ0 : [−1, 1] → C1

0 (Ω̄) is continuous and there exists M > 0 with

maxt∈[−1,1] ∥γ0(t)∥C1(Ω) ≤ M . Fix ε1 ∈

0,min


δ/M, δ′/M


and pick ε ∈]0, ε1[. Then, εγ0 is a path in C1

0 (Ω) joining−εϕ1
and εϕ1. Moreover, for every t ∈ [−1, 1] one has

ε|γ0(t)(x)| ≤ ε∥γ0(t)∥C1
0 (Ω) ≤ ε1M < δ, ∀x ∈ Ω, (31)

as well as ε∥γ0(t)∥C1
0 (Ω) ≤ ε1M < δ′, that is ±εγ0(t) ∈ B

C1
0 (Ω)

δ′ . By (30) it follows that u+ − εγ0(t), −u− + εγ0(t) ∈

int(C1
0 (Ω)+), and thus

u− ≤ εγ0(t) ≤ u+. (32)

Hence, putting together (29), (32), (31), (27) and recalling that γ0([−1, 1]) ⊂ ∂BLp(Ω)
1 , one has

E0(εγ0(t)) =
εp

p
∥∇γ0(t)∥p

p − λ


Ω

F(τ0(x, εγ0(t)(x))) dx

≤
εp

p
[λ2 + β ′

− λ(L − β)] < 0 ∀t ∈ [−1, 1]. (33)

Now set

c+ = E+(εϕ1), m+ = E+(u+) Ec+
+ = {u ∈ W 1,p

0 (Ω) : E+(u) ≤ c+}.

Since u+ − εϕ1 ∈ int(C1
0 (Ω)+) and u+ is the smallest positive solution of (3), εϕ1 is not a critical point of E+ and

m+ < c+. For every µ ∈]m+, c+] one has that µ is not a critical value of E+. In fact, by contradiction, if w+ ∈ W 1,p
0 (Ω)

is a critical point of E+ with E+(w+) = µ ∈]m+, c+], then, due to (19), 0 ≤ w+ ≤ u+ and w+ ≠ 0 because c+ =

E+(εϕ1) = E0(εϕ1) = E0(εγ0(1)) < 0, in view of (33). Hence w+ = u+ and µ = m+ that is a contradiction. It is simple
to verify that E+ satisfies the Palais–Smale condition, so that we can apply the second deformation lemma [13, p. 366] to
the C1 function E+, and obtain η ∈ C0([0, 1] × Ec+

+ , Ec+
+ ) such that η(0, u) = u and η(1, u) = u+ for every u ∈ Ec+

+ , as
well as E+(η(t, u)) ≤ E+(u) for every t ∈ [0, 1] and u ∈ Ec+

+ . Let us define the path γ+ : [0, 1] → W 1,p
0 (Ω) by putting

γ+(t) := η(t, εϕ1)
+

= max{η(t, εϕ1), 0} for every t ∈ [0, 1]. Clearly γ+ ∈ C0([0, 1],W 1,p
0 (Ω)) joining εϕ1 and u+.

Moreover, for every t ∈ [0, 1] one has

E0(γ+(t)) =
1
p


{η(t,εϕ1)>0}

|∇η(t, εϕ1)(x)|p dx − λ


{η(t,εϕ1)>0}

F(τ+(x, η(t, εϕ1)(x))) dx

≤ E+(η(t, εϕ1)) ≤ E+(εϕ1) < 0, (34)

where we use the definitions of E0, τ0, τ+ and E+ as well the properties of η. Reasoning in the samewaywith the functional
E− it is possible to construct a continuous path γ− : [0, 1] → W 1,p

0 (Ω) joining −εϕ1 and u− such that

E0(γ−(t)) < 0, ∀t ∈ [0, 1]. (35)
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The union of γ−, εγ0 and γ+ produces a path γ ∈ Γ such that, because of (35), (33) and (34) and the continuity of
E0,maxt∈[−1,1] E0(γ (t)) < 0, which proves (25). Keeping in mind that u0 is a nontrivial solution of (3), distinct from u−

and u+ such that, by (22), u− ≤ u0 ≤ u+, the extremality properties of u− and u+ assures that u0 must change sign.
Moreover, the regularity theory implies that u0 ∈ C1

0 (Ω), which completes the proof. �

Example 5.1. For every λ ∈


4π2, π4

1−exp(−π4/4)


the following Dirichlet problem−u′′

= λu exp


u4

π4
− u2


in ]0, 1[

u(0) = u(1) = 0
(36)

satisfies the conclusion of Theorem 5.1 with ρ0 = π2.

Corollary 5.1. Assume (f1) and the following condition:

lim
ρ→+∞

max
|s|≤ρ

F(s)

ρp
= 0. (37)

Then, for every λ > λ2/L problem (3) has a solution u+ = u+(λ) ∈ int(C1
0 (Ω)+), a solution u− = u−(λ) ∈ −int(C1

0 (Ω)+) and
a nontrivial sign-changing solution u0 = u0(λ) ∈ C1

0 (Ω).

Proof. Fix λ > λ2/L. From (37) there exists ρ0 = ρ0(λ) > 0 such that λ2
L < λ <

ρ
p
0

pcp|Ω|max|s|≤ρ0 F(s) and the conclusion
follows at once by Theorem 5.1, if we observe that λ ∈ Λ2. �
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