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a b s t r a c t

We reveal a connection between operator monotone functions and orthogonal polynomi-
als. Especially, we express an operatormonotone functionwith a Jacobi operator, and show
that it is a limit of rational operator monotone functions. Further we prove that the ‘prin-
cipal inverse’ of an orthogonal polynomial is operator monotone and hence it has a holo-
morphic extension to the open upper half plane, namely a Pick function (or Nevanlinna
function).
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1. Introduction

A real continuous function f (t) defined on an interval I is called an operator monotone function on I and denoted by
f ∈ P(I) if for bounded selfadjoint operators A, Bwhose spectra lie in I , A 5 B implies f (A) 5 f (B). It is fundamental that

−
1
t

∈ P(−∞, 0) ∩ P(0, ∞). (1)

The fact ta ∈ P[0, ∞) for 0 < a 5 1 is called the Löwner–Heinz inequality. It is also known that log t ∈ P(0, ∞) and
tan t ∈ P(−π

2 , π
2 ). We [14] have recently shown that the ‘principal inverse’ of the gamma function is operator monotone.

If f ∈ P(I) and f is continuous on the closure I of I , then f (t) ∈ P(I). From now on, we therefore constrain I to be an open
interval and assume f ∈ P(I). The following theorem is due to Löwner [11].
Let f (t) be a non-constant function defined on I . Then f (t) ∈ P(I) if and only if f (t) has a holomorphic extension f (z) to the open
upper half plane Π+ so that f (Π+) j Π+.
Recall that a holomorphic function h(z) on Π+ with the range in Π+ is called a Pick function or a Nevanlinna function. By
Herglotz’s theorem and Nevanlinna’s theorem, a Pick function h(z) admits a unique representation

h(z) = α + βz +


∞

−∞


1

λ − z
−

λ

1 + λ2


dσ(λ) (z ∈ Π+), (2)

where α is real, β = 0 and σ is a Borel measure induced by a right continuous non-decreasing function such that
∞

−∞

1
1 + λ2

dσ(λ) < ∞.
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Thus f (t) ∈ P(I) has a holomorphic extension f (z) on Π+ which admits a unique representation (2). Since σ(I) = 0
arises from the Stieltjes inversion formula, f (t) therefore admits a unique representation

f (t) = α + βt +


∞

−∞


1

λ − t
−

λ

1 + λ2


dσ(λ) (t ∈ I),

where


∞

−∞

1
1+λ2

dσ(λ) < ∞ and σ(I) = 0.
This indicates that f (t) ∈ P(−∞, ∞) if and only if f (t) = α + βt . It is evident that f (t) ∈ P(a, b) if and only if
f ( b−a

2 t +
b+a
2 ) ∈ P(−1, 1) and that f (t) ∈ P(a, ∞) if and only if f (− 2

t−1 − 1 + a) ∈ P(−1, 1). So we further constrain I to
be (−1, 1). Refer to [1,5,12] for details on operator monotone functions.

Tridiagonal matrices

J∞ =


b0 a0 0 · · ·

a0 b1 a1

0 a1 b2
. . .

...
. . .

. . .

 , Jn =



b0 a0 0 · · · 0

a0 b1 a1
...

0 a1 b2
. . .

...
. . .

. . . an−1
0 · · · an−1 bn

 , (3)

where aj > 0, bj ∈ R, are called a Jacobi operator and Jacobi matrix, respectively. In this paper we denote both of them by J
for simplicity. {ek}∞k=0 and {ek}nk=0 stand for the conventional orthonormal bases in ℓ2 and Cn+1 respectively. For a bounded
selfadjoint operator T and a vector x, it is known [4,5] that ⟨(T − z)−1x, x⟩ is a Pick function, where ⟨, ⟩ is the inner product.
The connection between a Jacobi operator and orthonormal polynomials {pn}∞n=0 is well-known (e.g. [4,13]). The objective
of this paper is to reveal a connection among operator monotone functions, Jacobi operators and orthonormal polynomials:
in particular, we show that f (t) ∈ P(−1, 1) if and only if there is a contractive Jacobi operator J such that

f (t) = f (0) + f ′(0)⟨t(1 − tJ)−1e0, e0⟩ (|t| < 1).
This result naturally provides that a bounded selfadjoint operator with a cyclic vector is unitarily equivalent to a Jacobi
operator. It also leads to the fact that an operator monotone function is a limit of a sequence of rational operator monotone
functions. We finally show that the ‘‘principal inverse’’ of pn(t) is operator monotone and hence its holomorphic extension
to Π+ is a univalent Pick function.

2. Jacobi operators

The objective of this section is to express an operator monotone function with a Jacobi operator. While the following fact
has been shown in [7] (cf. [1]), we derive it simply from (2).

Lemma 1. f (t) ∈ P(−1, 1) admits a unique representation

f (t) = f (0) +

 1

−1

t
1 − λt

dσ(λ), (4)

where σ is a finite Borel measure on [−1, 1]. Conversely any function of this form is in P(−1, 1).
Proof. By the Löwner theorem, f (t) has a holomorphic extension f (z) that is a Pick function. Since f (t) is real valued, by
reflection f (z) is holomorphically extendable to Π+ ∪ Π− ∪ (−1, 1), where Π− is the open lower half plane. Therefore
−f ( 1

z ) is holomorphic on C \ [−1, 1], and it is a Pick function. By (2) we obtain

−f

1
z


= α + βz +


∞

−∞


1

λ − z
−

λ

1 + λ2


dσ(λ)

for z ∈ Π+. Since the Stieltjes inversion formula gives σ(−∞, −1) = σ(1, ∞) = 0, we get

−f

1
z


= α + βz +

 1

−1


1

λ − z
−

λ

1 + λ2


dσ(λ).

Tending z to the real axis yields

−f

1
t


= α + βt +

 1

−1


1

λ − t
−

λ

1 + λ2


dσ(λ)

for t ∈ (−∞, −1) ∪ (1, ∞). Since f ( 1
t ) → f (0) and

 1
−1

1
λ−t dσ(λ) → 0 as t → ∞, we have

β = 0, −f (0) = α −

 1

−1

λ

1 + λ2
dσ(λ).
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We therefore obtain

−f

1
t


= −f (0) +

 1

−1

1
λ − t

dσ(λ) (t ∈ (−∞, −1) ∪ (1, ∞)).

By replacing 1/t with t we get

f (t) = f (0) +

 1

−1

t
1 − λt

dσ(λ) (−1 < t < 1),

because this equality is valid for t = 0 as well. Conversely suppose f (t) is expressed as (4). Then the integrand is in P(−1, 1)
for each λ; indeed, for λ ≠ 0, from (1) it follows that

t
1 − λt

= −
1
λ

+
1
λ2

1
1
λ

− t
∈ P(−1, 1).

For a selfadjoint operator A, by the Fubini theorem, we get

f (A) = f (0)I +

 1

−1
A(1 − λA)−1σ(λ).

This entails f (A) 5 f (B) for A 5 B, that is to say f (t) ∈ P(−1, 1). �

Let σ be a finite Borel measure on [−1, 1], and construct orthonormal polynomials {pn(t)}∞n=0 with positive leading
coefficients {αn} by the Gram–Schmidt method. Then the three-term recurrence formula

tpn(t) = anpn+1(t) + bnpn(t) + an−1pn−1(t) (n = 1, 2, . . .) (5)
tp0(t) = a0p1(t) + b0p0(t)

holds, where

0 <
αn

αn+1
= an =

 1

−1
tpn(t)pn+1(t)dσ(t), bn =

 1

−1
tpn(t)2dσ(t). (6)

Let us consider the Jacobi operator (3) associated to these {an} and {bn}. By (3) and (5)

(Jn − t)


p0(t)
p1(t)

...
pn(t)

 =


0
...
0

−anpn+1(t)

 , (7)

fromwhich it follows that the eigenvalues of Jn are coincidentwith the zeros of pn+1(t), because p0(t) is a non-zero constant.
Moreover, it is well-known that zeros of pn(t) are in [−1, 1] and simple, and that zeros of pn(t) and pn+1(t) interlace each
other.
From (6), by the Schwarz inequality, it follows that |an| 5 1 and |bn| 5 1. For any x = (x0, x1, . . .) ∈ ℓ2 we have

∥Jx∥2
=


|anxn+1 + bnxn + an−1xn−1|

2 5 9∥x∥2.

Hence J is bounded, namely ∥J∥ 5 3. This result is known (e.g., see p. 22 of [4]). We now give a more precise estimate.

Lemma 2. Let J be a Jacobi operator corresponding to a finite Borel measure on [−1, 1]. Then ∥J∥ 5 1.

Proof. Assume J = Jn. Then it is clear that ∥J∥ 5 1, for Jn is a Hermitian matrix with all eigenvalues in [−1, 1]. Assume next
J = J∞. Consider a bounded selfadjoint operator

J̃n =


Jn 0
0 0


on ℓ2 for each n. Since ∥J̃n∥ 5 1 and

∥Jx − J̃nx∥2
= |anxn+1|

2
+

∞
k=n+1

|akxk+1 + bkxk + ak−1xk−1|
2

5 3
∞
k=n

(|xk+1|
2
+ |xk|2 + |xk−1|

2) → 0 as n → ∞,

we obtain ∥J∥ 5 1. �
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Lemma 3. Let T be a contractive selfadjoint operator on Hilbert space. Then for any vector x

⟨t(1 − tT )−1x, x⟩ ∈ P(−1, 1). (8)

Proof. Let T =
 1
−1 λdEλ be the spectral decomposition of T . Then

⟨t(1 − tT )−1x, x⟩ =

∞
n=0

⟨T nx, x⟩tn+1
=

∞
n=0

 1

−1
λnd⟨Eλx, x⟩


tn+1

=

 1

−1

t
1 − tλ

d⟨Eλx, x⟩ (|t| < 1).

By the second statement of Lemma 1 we get (8). �

While the following is known (e.g., see p. 19 of [4]), for completeness we give another simple proof.

Lemma 4. Let J and J̃ be Jacobi operators on ℓ2 as (3). Then J = J̃ if

⟨Jne0, e0⟩ = ⟨J̃ne0, e0⟩ (n = 1, 2, . . .). (9)

Proof. From (9) it follows that
n

k=0

ckJke0,
n

k=0

dkJke0


=


n

k=0

ck J̃ke0,
n

k=0

dk J̃ke0


for ck, dk ∈ C. Since e0 is cyclic, this induces a unitary operator U on ℓ2 such that U

n
k=0 ckJ

ke0 =
n

k=0 ck J̃
ke0. This implies

UCn+1
= Cn+1, because {

n
k=0 ckJ

ke0 : ck ∈ C} = Cn+1, where Cn is embedded in ℓ2. Observe that U∗e0 = e0 follows from
Ue0 = e0. This implies that C1 reduces U . Similarly we can inductively verify that Uen = λnen for |λn| = 1, namely U is a
diagonal operator. Since UJ = J̃U , putting

J =


b0 a0 0 · · ·

a0 b1 a1

0 a1 b2
. . .

...
. . .

. . .

 , J̃ =


b̃0 ã0 0 · · ·

ã0 b̃1 ã1

0 ã1 b̃2
. . .

...
. . .

. . .

 ,

we have

UJ =


b0 a0 0 · · ·

λ1a0 λ1b1 λ1a1

0 λ2a1 λ2b2
. . .

...
. . .

. . .

 , J̃U =


b̃0 ã0λ1 0 · · ·

ã0 b̃1λ1 ã1λ2

0 ã1λ1 b̃2λ2
. . .

...
. . .

. . .

 .

This yields

b0 = b̃0, . . . , λkbk = b̃kλk, . . .

a0 = ã0λ1, λ1a1 = ã1λ2, . . . , λkak = ãkλk+1, . . . .

In view of ak > 0, ãk > 0 and |λk| = 1, we get ak = ãk, λk = 1, and bk = b̃k. We hence get J = J̃ and U = I . �

Now we are ready to show the following.

Theorem 1. f (t) ∈ P(−1, 1) if and only if there is a contractive Jacobi operator J on ℓ2 or Cn such that

f (t) = f (0) + f ′(0)⟨t(1 − tJ)−1e0, e0⟩, (10)

where e0 = (1, 0, . . .) is a unit vector in ℓ2 or Cn. Moreover, J is uniquely determined if f (t) is not constant.

Proof. Assume f (t) ∈ P(−1, 1). If f is constant, then (10) is valid for every J . Suppose f is non-constant, and represent it as
(4). Then f ′(0) =

 1
−1 dσ(λ) > 0. Construct the orthonormal polynomials {pn(t)} associated to σ and then Jacobi operator J

with {an}, {bn} in (5). Notice that p0(t)2 =
1

f ′(0) . Two cases occur: J = J∞ or J = Jn. But it is legitimate for us to assume J = J∞.
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Let U : ℓ2
→ L2(σ ) be a unitary operator defined by Uen = pn(t). By (3) and (5) we get UJ = MU , where (Mh)(λ) = λh(λ)

on L2(σ ) (cf. [4]). Since ∥J∥ 5 1, we have

Ut(1 − tJ)−1
= t(1 − tM)−1U (|t| < 1),

which yields

⟨t(1 − tJ)−1e0, e0⟩ = ⟨t(1 − tM)−1p0, p0⟩ =
1

f ′(0)

 1

−1

t
1 − tλ

dσ(λ).

We consequently get (10). By Lemma 3 the right hand side of (10) is operator monotone. It remains to show the uniqueness
of J . Assume J and J̃ satisfy (10). Then

⟨t(1 − tJ)−1e0, e0⟩ = ⟨t(1 − t J̃)−1e0, e0⟩ (|t| < 1).

This implies
∞
n=0

tn+1
⟨Jne0, e0⟩ =

∞
n=0

tn+1
⟨J̃ne0, e0⟩

and hence

⟨Jne0, e0⟩ = ⟨J̃ne0, e0⟩ for n = 1, 2, . . . .

By Lemma 4 we get J = J̃ . �

The following fact is known (e.g., see p. 86 of [13]), but we have never seen the proof so far. So we give a proof here.

Corollary 1. A bounded selfadjoint operator T with a cyclic vector is unitarily equivalent to a Jacobi operator.

Proof. Wemay assume that ∥T∥ 5 1. By Lemma 3 h(t) := ⟨t(1 − tT )−1x0, x0⟩ ∈ p(−1, 1), where x0 is a cyclic vector for T
with ∥x0∥ = 1. Since h(0) = 0 and h′(0) = 1, by Theorem 1, there is a Jacobi operator J such that

⟨t(1 − tJ)−1e0, e0⟩ = h(t) = ⟨t(1 − tT )−1x0, x0⟩ (|t| < 1).

This gives

⟨Jne0, e0⟩ = ⟨T nx0, x0⟩ (n = 0, 1, 2, . . .)

and hence ∥


ciJ ie0∥2
= ∥


ciT ix0∥2 for every finite set of ci. Thus U :


ciT ix0 →


ciJ ie0 is unitary and UT = JU . �

Theorem 2. For every open interval I and for every f (t) ∈ P(I), there is a sequence of rational functions fn(t) such that
fn(t) ∈ P(I) and

lim
n→∞

fn(t) = f (t).

Moreover the convergence is uniform on every compact subset of I.

Proof. We first show the case I = (−1, 1). In the proof of Lemma 2 we have seen that J̃n converges strongly to J; hence so
does t(1 − t J̃n)−1 to t(1 − tJ)−1 for each −1 < t < 1. We therefore need to show ⟨t(1 − t J̃n)−1e0, e0⟩ is rational. Observe
that it is equal to ⟨t(1 − tJn)−1e0, e0⟩. Denote the zeros of pn+1(t) by c0 < c1 < · · · < cn. By (7) they are eigenvalues of Jn,
and

xi :=
1

n
k=0

|pk(ci)|2
1/2 (p0, p1(ci), . . . , pn(ci))

is a unit eigenvector corresponding to ci. This deduces that

⟨t(1 − tJn)−1e0, e0⟩ =

n
i=0

⟨t(1 − tJn)−1e0, xi⟩⟨xi, e0⟩

=

n
i=0

t
1 − cit

⟨e0, xi⟩⟨xi, e0⟩ =

n
i=0

t
1 − cit

p20
n

k=0
|pk(ci)|2

.

Since this is rational and operatormonotone on (−1, 1), the desired result holds in the case of I = (−1, 1). If I = (−∞, ∞),
f (t) is just an affine function as mentioned in the Introduction, so we have only to put fn(t) = f (t). As we also mentioned in
the Introduction we can reduce other cases to the case of I = (−1, 1). So we can obtain the first statement. Since f (t) and
fn(t) are both continuous and non-decreasing, the second statement is a fundamental fact. �
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3. Principal inverse and the Löwner kernel

In this section we analyze ‘general’ orthogonal polynomials {pn} from the perspective of operator monotonicity; here,
‘general’ means that the support of the measure corresponding to {pn} is not necessarily in a finite interval.

Recall that a kernel function K(t, s) is said to be positive semi-definite on I × I if the associative matrices (K(ti, tj))i,j are
positive semi-definite, namely

n
i,j=1

K(ti, tj)zizj = 0 (11)

for each n, for all n points ti ∈ I and for all n complex numbers zi. Let h(t) be a bijection from J to I . Then K(t, s) is positive
semi-definite on I × I if and only if K(h(t), h(s)) is positive semi-definite on J × J . We invoke the next Schur theorem
(e.g., p. 457 of [9]).

If K1(t, s) and K2(t, s) are both positive semi-definite kernel functions on I × I , then so is the Schur product K1(t, s) · K2(t, s).

K(t, s) is said to be conditionally (or almost) positive semi-definite if (11) holds for each n, for all n points ti ∈ I and for all
n complex numbers zi such that

n
i=1 zi = 0. If −K(t, s) is conditionally positive semi-definite, then K(t, s) is said to be

conditionally negative semi-definite. For instance,

K(t, s) = t + s + constant

is not only conditionally positive semi-definite but also conditionally negative semi-definite. Suppose K(t, s) = 0 for every
s, t in I . Then K(t, s) is said to be infinitely divisible if K(t, s)a is positive semi-definite for every a > 0. The following lemma
is known (e.g., p. 152 of [5,6,8]), but for completeness we give a proof, for we often make use of it.

Lemma 5. Let K(t, s) > 0 for t, s ∈ I . If K(t, s) is conditionally negative semi-definite on I × I , then the reciprocal function
1

K(t,s) is infinitely divisible there.

Proof. Take ti ∈ I (i = 1, 2, . . . , n) and put aij = K(ti, tj). Define bij by

bij = aij − ain − anj + ann (1 5 i, j 5 n).

Since −aij = −K(ti, tj) satisfies (11) for


zi = 0, the matrix (−bij) is positive semi-definite (see p. 134 of [5]). By the Schur
theorem the matrix (e−bij) is positive semi-definite too. Since

e−aij = e−ain+
ann
2 e−bije−anj+

ann
2 ,

thematrix

exp(−aij)


is positive semi-definite aswell. The kernel function exp(−K(t, s)) is therefore positive semi-definite.

We note that exp(−λK(t, s)) is also positive semi-definite for λ > 0 since λK(t, s) is conditionally negative semi-definite
too. By making use of

Γ (a) = ka


∞

0
e−kλλa−1dλ (a > 0)

we get

K(t, s)−a
=

1
Γ (a)


∞

0
exp(−λK(t, s))λa−1dλ,

which is positive semi-definite. This implies 1/K(t, s) is infinitely divisible. �

We remark that the next lemma is not about orthogonal polynomials.

Lemma 6. For non-decreasing sequence {cn} define a polynomial hk(x) by hk(x) = (x − c1) · · · (x − ck) for each k and denote
the maximal zero of h′

k(x) by dk. Then the kernel function

Km
n (x, y) :=


hm(x) − hm(y)
hn(x) − hn(y)

(x ≠ y)

h′
m(x)
h′
n(x)

(x = y)
(12)

is infinitely divisible on (dn, ∞) × (dn, ∞), provided 1 5 m 5 n.
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Proof. We first show that K n−1
n (x, y) is infinitely divisible for every n. Since K 1

2 (x, y) =
1

x+y−(c1+c2)
, the matrices associated

with this kernel function is the Cauchy matrices. Hence it is an infinitely divisible kernel function on (d2, ∞) × (d2, ∞),
where d2 =

c1+c2
2 (see [2,3]). Assume that K k−1

k (x, y) is infinitely divisible on (dk∞) × (dk, ∞). We show that K k
k+1(x, y) is

also infinitely divisible on (dk+1, ∞) × (dk+1, ∞). For x ≠ y

1
K k
k+1(x, y)

=
hk+1(x) − hk+1(y)

hk(x) − hk(y)

=
hk(x)(x − ck+1) − hk(y)(y − ck+1)

hk(x) − hk(y)

= −ck − ck+1 + (x + y) +
(x − ck)hk(y) − (y − ck)hk(x)

hk(x) − hk(y)

= −ck − ck+1 + (x + y) − (y − ck)
hk−1(x) − hk−1(y)

hk(x) − hk(y)
(x − ck)

= −ck − ck+1 + (x + y) − (y − ck)K k−1
k (x, y)(x − ck).

One can see that the first side equals the last side even for x = y. By the assumption, this is a conditionally negative semi-
definite kernel function on (dk∞) × (dk, ∞). Since K k

k+1(x, y) > 0 on (dk+1, ∞) × (dk+1, ∞), by Lemma 5 K k
k+1(x, y) is

infinitely divisible. We next show Km
n is infinitely divisible. It is evident that K n

n (x, y) = 1 is infinitely divisible. Suppose
m < n. Then, since

Km
n (x, y) = K n−1

n (x, y)K n−2
n−1 (x, y) · · · Km

m+1(x, y),

by the Schur theorem, Km
n (x, y) is infinitely divisible. �

Let f (t) be a real C1 function on an interval I . Then the kernel function

Kf (t, s) :=

 f (t) − f (s)
t − s

(t ≠ s)

f ′(t) (t = s)
(13)

is called a Löwner kernel of f (t). The following theorem is also due to Löwner [11] (cf. [10,5]):
f (t) ∈ P(I) if and only if Kf (t, s) is positive semi-definite on I × I .
Now we go back to orthonormal polynomials {pn}∞n=0 with positive leading coefficients αn.

Definition 1. Let dn be the maximal zero of p′
n(t). Then the restriction of pn(t) to [dn, ∞) is increasing. We call its inverse

function the principal inverse of pn(t) and write p−1
n (t).

We note that pn(dn) < 0. The following lemma guarantees that the composite pn−1 ◦ p−1
n is increasing on [pn(dn), ∞).

Lemma 7. dn−1 < dn for n = 2.

Proof. Assume dn−1 = dn. Then p′
n(dn−1) = 0. By substituting dn−1 for t in the Christoffel–Darboux formula

n−1
k=0

pk(t)2 =
αn−1

αn+1
(p′

n(t)pn−1(t) − p′

n−1(t)pn(t)),

we get 0 < p′
n(dn−1)pn−1(dn−1) since p′

n−1(dn−1) = 0. But this contradicts pn−1(dn−1) < 0, so we obtain the required
inequality. �

We are ready to show the main theorem of this section.

Theorem 3. Let {pn}∞n=0 be orthonormal polynomials with positive leading coefficients αn and p−1
n the principal inverse of pn(t).

Then

p−1
n ∈ P(pn(dn), ∞), (14)

where dn is the maximal zero of p′
n(t). Moreover, p−1

n (t) has a univalent holomorphic extension p−1
n (z) to C\ (−∞, pn(dn)] such

that it is a Pick function and satisfies

pn(p−1
n (z)) = z on C \ (−∞, pn(dn)].

Further,

pm ◦ p−1
n ∈ P(pn(dn), ∞) for m = 1, . . . , n − 1. (15)
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Proof. To see (15) we show that the Löwner kernel Kpm◦p−1
n

(t, s) is positive semi-definite on (pn(dn), ∞) × (pn(dn), ∞).
Since pn is increasing on (dn, ∞), it is sufficient to show that

Kpm◦p−1
n

(pn(t), pn(s))

is positive semi-definite on (dn, ∞) × (dn, ∞). We observe that

Kpm◦p−1
n

(pn(t), pn(s)) =


pm(t) − pm(s)
pn(t) − pn(s)

(t ≠ s)

p′
m(t)
p′
n(t)

(t = s).

We first show the casem = n − 1 by induction for n. For simplicity we put

Hk(t, s) := Kpk−1◦p
−1
k

(pk(t), pk(s)).

In virtue of

p1(t) − p1(s) = α1(t − s), p2(t) − p2(s) = α2(t − s)(t + s − 2d2),

we get

H2(t, s) =


α1

α2

1
t + s − 2d2

(t ≠ s)

α1

α2

1
2(t − d2)

(t = s).

The matrices associated with this Kernel function is the Cauchy matrices. Hence it is an infinitely divisible kernel function
on (d2, ∞) × (d2, ∞). Assume that Hk(t, s) is an infinitely divisible kernel function on (dk, ∞) × (dk, ∞). Notice that
Hk+1(t, s) > 0 for t, s > dk+1. By (5)

ak
Hk+1(t, s)

=
tpk(t) − spk(s)
pk(t) − pk(s)

− bk − ak−1Hk(t, s)

= (t + s) +
tpk(s) − spk(t)
pk(t) − pk(s)

− bk − ak−1Hk(t, s). (16)

Let pk(t) = αk(t − c1) · · · (t − ck) be the factorization of pk(t). Then we have

tpk(s) − spk(t)
pk(t) − pk(s)

= (t − ck)
pk(s)
s−ck

−
pk(t)
t−ck

pk(t) − pk(s)
(s − ck) − ck

= −(t − ck)K k−1
k (t, s)(s − ck) − ck,

where K k−1
k (t, s) is given in (12). By Lemma 6 the above kernel function is a conditionally negative definite kernel on

(dk, ∞) × (dk, ∞). From (16) it follows that 1
Hk+1(t,s)

is conditionally negative definite. Hk+1(t, s) is therefore infinitely
divisible. Thus we have shown that Hk(t, s) is infinitely divisible on (dk, ∞) × (dk, ∞) for every k = 2. Hence it turn out
that the Schur product

Kpm◦p−1
n

(pn(t), pn(s)) = Hm(t, s)Hm+1(t, s) · · ·Hn(t, s)

is infinitely divisible on (dn, ∞)×(dn, ∞); of course it is positive semi-definite. This indicates (15). Since p1(t) = α1t+const ,
the case of m = 1 deduces (14). Consequently p−1

n (z) is holomorphic on C \ (−∞, pn(dn)], and it is a Pick function. Since
the composite pn(p−1

n (z)) is holomorphic on the domain and coincides with z on the real interval (pn(dn), ∞), we get
pn(p−1

n (z)) = z on the domain. From this formula it follows that p−1
n (z) is univalent. �

In [15,16], we have shown the following.
Let cn be the maximal zero of pn(t) and put pn+(t) = pn(t)|(cn,∞); then

pm ◦ p−1
n+ ∈ P(0, ∞) (m = 1, . . . , n − 1).

At first sight, Theorem 3 seems to be just a slight extension of this result, but the proof is completely different andwe cannot
extend the domain of p−1

n in Theorem 3 anymore; so we may say that Theorem 3 is an essential extension of it.
Observe that Theorem 3 implies that for A, B = dn

pn(A) 5 pn(B) ⇒ pn−1(A) 5 pn−1(B) ⇒ · · · ⇒ A 5 B,

because p1(A) = α1A + constant. By using the notation introduced in [17,18] we can express this as follows:

t ≼ p2(t) ≼ · · · ≼ pn−1(t) ≼ pn(t) on [dn, ∞).
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