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1. Introduction

A real continuous function f(t) defined on an interval I is called an operator monotone function on I and denoted by
f € P() if for bounded selfadjoint operators A, B whose spectra lie in I, A < B implies f (A) < f(B). It is fundamental that

— % € P(—o00, 0) N P(0, 00). (1)

The fact t* € P[0, 00) for 0 < a < 1 is called the Lowner-Heinz inequality. It is also known that logt € P(0, co) and

tant € P(— % %). We [14] have recently shown that the ‘principal inverse’ of the gamma function is operator monotone.

If f € P(I) and f is continuous on the closure I of I, then f(t) € P(I). From now on, we therefore constrain I to be an open
interval and assume f € P(I). The following theorem is due to Léwner [11].

Let f (t) be a non-constant function defined on 1. Then f (t) € P(I) if and only if f (t) has a holomorphic extension f (z) to the open
upper half plane I, so that f (I1}) C I1;.

Recall that a holomorphic function h(z) on I7, with the range in I1, is called a Pick function or a Nevanlinna function. By
Herglotz’s theorem and Nevanlinna’s theorem, a Pick function h(z) admits a unique representation

*© 1 A
h(z)=a+ﬁz+/,w<k—2_1+12>d0(k) (z e ), (2)

where « isreal, 8 = 0 and o is a Borel measure induced by a right continuous non-decreasing function such that

o 1
/;00 Wdo(k) < 00.
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Thus f(t) € P(I) has a holomorphic extension f(z) on [T, which admits a unique representation (2). Since 6 (I) = 0
arises from the Stieltjes inversion formula, f (t) therefore admits a unique representation

f(t)=a+;3t+/ <L ’\ )do(x) (t €,

o \A—t 1422
where [ 1+]xl do (L) < ooando(l) = 0.
This indicates that f(t) € P(—o0, 00) if and only if f(t) = o + Bt. It is evident that f(t) € P(a, b) if and only if
F(55% + 22 € P(—1, 1) and that f () € P(a, 00) if and only if f (— 25 — 1+ a) € P(—1, 1). So we further constrain I to
be (—1, 1). Refer to [1,5,12] for details on operator monotone functions.
Tridiagonal matrices

bo dg 0 s 0
bo (¢1)) 0
[¢N) bl aq Qo b] aq
JOO = 0 a bz - Jn = 0 aq bz ’ (3)
. T an—1
o --. An_1 bn

where a; > 0, b; € R, are called a Jacobi operator and Jacobi matrix, respectively. In this paper we denote both of them by |
for simplicity. {e,};°, and {e};_, stand for the conventional orthonormal bases in £% and C"*1 respectively. For a bounded
selfadjoint operator T and a vector X, it is known [4,5] that ((T — z) ™', X) is a Pick function, where (, ) is the inner product.
The connection between a Jacobi operator and orthonormal polynomials {p,};2, is well-known (e.g. [4,13]). The objective
of this paper is to reveal a connection among operator monotone functions, Jacobi operators and orthonormal polynomials:
in particular, we show that f (t) € P(—1, 1) if and only if there is a contractive Jacobi operator J such that

F(&) =FO) +f0)(t(1 — 1)) "eq. €0) (|t < 1).
This result naturally provides that a bounded selfadjoint operator with a cyclic vector is unitarily equivalent to a Jacobi
operator. It also leads to the fact that an operator monotone function is a limit of a sequence of rational operator monotone
functions. We finally show that the “principal inverse” of p, (t) is operator monotone and hence its holomorphic extension
to 1, is a univalent Pick function.

2. Jacobi operators

The objective of this section is to express an operator monotone function with a Jacobi operator. While the following fact
has been shown in [7] (cf. [1]), we derive it simply from (2).

Lemma 1. f(t) € P(—1, 1) admits a unique representation

1

ﬂ0=ﬂ®+/‘ do (), @

1— At
-1
where o is a finite Borel measure on [—1, 1]. Conversely any function of this form is in P(—1, 1).

Proof. By the Lowner theorem, f(t) has a holomorphic extension f(z) that is a Pick function. Since f (t) is real valued, by
reflection f(z) is holomorphically extendable to /7, U IT_ U (—1, 1), where I7_ is the open lower half plane. Therefore
—f(%) is holomorphic on C \ [—1, 1], and it is a Pick function. By (2) we obtain

1\ o0 1 A do G
_f(z)_oH—’BZ—i_/oo(A—z_H—kZ) e

for z € IT,. Since the Stieltjes inversion formula gives o (—o0, —1) = o (1, 00) = 0, we get

7 (2 +8 +/1 : ") dow
—fl-)=«a z ——— )do(}).
z 1\ —z 1422
Tending z to the real axis yields
1 VAR A
—fl-)= t — — —— | do (A
f<t> “+h +/,1<A—t 1+AZ) o™

fort € (—oo, —1) U (1, 00). Since f () — f(0) and j_ll =do (1) — Oast — oo, we have

LY
p=0. -%®=a—[ﬁiﬁway
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We therefore obtain
1 L
—f <?> = —f(0) +/ 740 (t e (=00, ~DU (1, 00)).
7‘1 -
By replacing 1/t with t we get
1

f() =) —l—/ do(d) (—1<t<1,

11—t
because this equality is valid for t = 0 as well. Conversely suppose f (t) is expressed as (4). Then the integrand is in P(—1, 1)
for each A; indeed, for A # 0, from (1) it follows that

t 1 1

1
=——4+ =——€P(-1,1).
1— At L ( )

For a selfadjoint operator A, by the Fubini theorem, we get

1

F@A) =) +/ A(1—2A) o ().
1

This entails f(A) < f(B) forA < B, thatistosay f(t) e P(—1,1). O

Let o be a finite Borel measure on [—1, 1], and construct orthonormal polynomials {p,(t)}.2, with positive leading
coefficients {o,} by the Gram-Schmidt method. Then the three-term recurrence formula

tpn(t) = UnPn+1 (t) + bnpn(t) + an71pn71(t) (n =1,2,.. ) (5)
tpo(t) = aop1(t) + bopo(t)
holds, where

1 1
0= —a,= [ Opsto©. b= [ 5@, (6)
Qnt1 -1 -1
Let us consider the Jacobi operator (3) associated to these {a,} and {b,}. By (3) and (5)
Po(t) 0
pl(t) :
=0 . |= : , (7)
: 0
Pa(t) —AnPp11(t)

from which it follows that the eigenvalues of J, are coincident with the zeros of p,1(t), because po(t) is a non-zero constant.
Moreover, it is well-known that zeros of p,(t) are in [—1, 1] and simple, and that zeros of p,(t) and p,+1(t) interlace each
other.

From (6), by the Schwarz inequality, it follows that |a,| < 1and |b,| < 1.Forany x = (xg, X1, ...) € £2> we have
X% = 1@nXns1 + baXn + an1Xa-1]* < 9)IXII%.
Hence J is bounded, namely ||J|| < 3. This result is known (e.g., see p. 22 of [4]). We now give a more precise estimate.

Lemma 2. Let ] be a Jacobi operator corresponding to a finite Borel measure on [—1, 1]. Then ||J|| < 1.

Proof. Assume ] = J,. Then it is clear that ||J|| < 1, forJ, is a Hermitian matrix with all eigenvalues in [—1, 1]. Assume next
J = J~. Consider a bounded selfadjoint operator

~ 0
]n = (5 0)
on ¢2 for each n. Since ||fn|| < 1land

oo
5 2 2
Ux — JuXI© = lanXn1l” + Z | X1 + DXy + Gr—1Xk—1
k=n+1

[ee)
2 2 2
3 E (X117 =+ Xk + 1Xk=11°) = 0 asn — oo,
k=n

A

weobtain [[J|| £1. O
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Lemma 3. Let T be a contractive selfadjoint operator on Hilbert space. Then for any vector x

(t(1 —T)7'x, x) € P(—1, 1). (8)

Proof. LetT = f_11 MdE;, be the spectral decomposition of T. Then

(o] 00 1
(1 —tD)7'xx) = Y (Tx, X" =" ([ A"d(E; X, x)) ¢t
—1

n=0 n=0

1
t
= —d(E t 1).
f_n—m (Ex,x) (It < 1)

By the second statement of Lemma 1 we get (8). O

While the following is known (e.g., see p. 19 of [4]), for completeness we give another simple proof.
Lemma 4. Let ] andj be Jacobi operators on £2 as (3). Then J :j if
("eo. €0) = ("eo, €0) (M=1,2,...). 9

Proof. From (9) it follows that

n

n n n

<Z i eo, Z lekeo> = <Z cf e, Z dljkeo>
k=0 k=0 k=0 k=0

for ¢y, di € C. Since ey is cyclic, this induces a unitary operator U on £2 such that U ZZ:o cf¥ey = ZZ:O C,J key. This implies

UC™! = "1, because {Y ;_, c/ep : cx € C} = €1, where C" is embedded in ¢2. Observe that U*ey = e, follows from

Uey = eg. This implies that C! reduces U. Similarly we can inductively verify that Ue, = A,e, for [A,] = 1, namely U is a

diagonal operator. Since UJ :]U, putting

bo Ay o --- BO aO 0
a b m 5 a b1 @
I= 0 ai by .| = 0 o EZ ol
we have
bo o 0 --- bo @oAs 0
AMdy  Abr Aqag Go bir ik
U = . U = ~ =~
‘] 0 )\.2[11 )\.zbz ] 0 Cll)\.] b2)‘42
This yields

bo = by, ..., Axbx = by, . ..
dg = ao)q, Aa; = 511)»2, ey Akak = ak)\.[<+], e

Inview of @, > 0, @, > Oand |A;| = 1, we get a, = Gy, A, = 1,and b, = b. We hence get] :]and U=I1 O

Now we are ready to show the following.

Theorem 1. f(t) € P(—1, 1) ifand only if there is a contractive Jacobi operator ] on £2 or C" such that

F() =F0) +f(0)(t(1 — 1) "o, e), (10)
where ey = (1, 0, ...) is a unit vector in £ or C". Moreover, ] is uniquely determined if f(t) is not constant.
Proof. Assume f(t) € P(—1, 1).If f is constant, then (10) is valid for every J. Suppose f is non-constant, and represent it as

(4). Then f'(0) = f_ll do (A) > 0. Construct the orthonormal polynomials {p;, (t)} associated to o and then Jacobi operator |

with {a,}, {b,} in (5). Notice that py(t)? = f,(LO).Two cases occur: | = J, or] = J,.Butitis legitimate for us to assume ] = J..
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Let U : £ — [?(o) be a unitary operator defined by Ue,, = p,(t). By (3) and (5) we get Ul = MU, where (Mh)(%) = Ah())
on L?(o) (cf. [4]). Since ||]|| < 1, we have

U —tH'=t1—tM~U (t| < 1),
which yields

(1= 1) e, ) = {e(1 = M) o po) = o [ QLI

fr0 J 11—t

We consequently get (10). By Lemma 3 the right hand side of (10) is operator monotone. It remains to show the uniqueness
of J. Assume J and ] satisfy (10). Then

(t(1—t) eo, €0) = (t(1 —t))'e, €0) (It < 1).
This implies

o0 o0 _
Z t"t1(J"eg, €g) = Z t"t1(J"eo, €o)
n=0 n=0

and hence
(J"eo, €g) = (i"eo,eo) forn=1,2,....
By Lemma 4 we get | = j O

The following fact is known (e.g., see p. 86 of [13]), but we have never seen the proof so far. So we give a proof here.

Corollary 1. A bounded selfadjoint operator T with a cyclic vector is unitarily equivalent to a Jacobi operator.

Proof. We may assume that ||T|| £ 1. By Lemma 3 h(t) := (t(1 — tT) " 'Xq, Xo) € p(—1, 1), where X is a cyclic vector for T
with [|Xo|| = 1. Since h(0) = 0 and h’(0) = 1, by Theorem 1, there is a Jacobi operator J such that

(t(1—1t)) "eq., &) = h(t) = (t(1 — tT) 'Xo, %) ([t| < 1).
This gives
(J"eo, e0) = (T"Xg,X9) (n=0,1,2,...)
and hence || Y cjfieq||> = || Y ¢iT'xo||? for every finite set of ;. Thus U : Y ¢;TXg > Y_ cJ'eg is unitary and UT = JU. O

Theorem 2. For every open interval I and for every f(t) € P(I), there is a sequence of rational functions f,(t) such that
fa(t) € P(U) and

lim f(t) = f(©).
n—oo
Moreover the convergence is uniform on every compact subset of I.

Proof. We ﬁ~rst show the case I = (—1, 1). In the proof of Lemma 2 we have seen thatjn converges strongly to J; hence so
does t(1 —tJ,) 'tot(1 —tJ))~! foreach —1 < t < 1. We therefore need to show (t(1 — tJ,) " 'eo, eo) is rational. Observe
that it is equal to (t(1 — tJ,) " 'eq, €). Denote the zeros of p,+1(t) by co < ¢; < --- < ¢,. By (7) they are eigenvalues of J,,
and

1
X; 1= — 75 (Po, P1(Ci), - - -, Pa(Ci))

(i |pk(c,»>|2)
k=0

is a unit eigenvector corresponding to c;. This deduces that

n

(t(1 = t]) "eo, €) = Y (t(1— tn) "o, Xi)(X;, €o)
i=0
L t L t p?
1 (eo, Xi) (Xi, €9) = 1 ——0 .
—a =TS e 2
k=0

i=0

Since this is rational and operator monotone on (—1, 1), the desired result holds in the case of I = (—1, 1).IfI = (—o0, 00),
f(t) is just an affine function as mentioned in the Introduction, so we have only to put f,(t) = f(t). As we also mentioned in
the Introduction we can reduce other cases to the case of I = (—1, 1). So we can obtain the first statement. Since f (t) and
fa(t) are both continuous and non-decreasing, the second statement is a fundamental fact. O
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3. Principal inverse and the Lowner kernel

In this section we analyze ‘general’ orthogonal polynomials {p,} from the perspective of operator monotonicity; here,
‘general’ means that the support of the measure corresponding to {p,} is not necessarily in a finite interval.

Recall that a kernel function K (t, s) is said to be positive semi-definite on I x I if the associative matrices (K(t;, t;));; are
positive semi-definite, namely

n
> Kt t)ziz 2 0 (11)

ij=1

for each n, for all n points t; € I and for all n complex numbers z;. Let h(t) be a bijection from J to I. Then K (t, s) is positive
semi-definite on I x [ if and only if K(h(t), h(s)) is positive semi-definite on J x J. We invoke the next Schur theorem
(e.g., p. 457 of [9]).

If K1(t, s) and Ky (t, s) are both positive semi-definite kernel functions on I x I, then so is the Schur product K;(t, s) - Kx(t, s).

K(t, s) is said to be conditionally (or almost) positive semi-definite if (11) holds for each n, for all n points t; € I and for all
n complex numbers z; such that ZL] z; = 0.If —K(t, s) is conditionally positive semi-definite, then K (t, s) is said to be
conditionally negative semi-definite. For instance,

K(t,s) =t 4+ s+ constant

is not only conditionally positive semi-definite but also conditionally negative semi-definite. Suppose K (t, s) = 0 for every
s, tinl. Then K(t, s) is said to be infinitely divisible if K (t, s)“ is positive semi-definite for every a > 0. The following lemma
is known (e.g., p. 152 of [5,6,8]), but for completeness we give a proof, for we often make use of it.

Lemma 5. Let K(t,s) > O for t,s € L If K(t,s) is conditionally negative semi-definite on I x I, then the reciprocal function
1

o) is infinitely divisible there.
Proof. Taket; € I (i=1,2,...,n) and put a; = K(t;, t;). Define b;; by
bj = aj — ain — apj + @y (1 < 10,j < 1),

Since —a; = —K (t;, t;) satisfies (11) for > z; = 0, the matrix (—bj) is positive semi-definite (see p. 134 of [5]). By the Schur
theorem the matrix (e %) is positive semi-definite too. Since

e — i+ 4" p=bijp—an+ 4" ,
the matrix (exp(—afj)) is positive semi-definite as well. The kernel function exp(—K (t, s)) is therefore positive semi-definite.

We note that exp(—AK(t, s)) is also positive semi-definite for A > 0 since AK(t, s) is conditionally negative semi-definite
too. By making use of

o0
I'(a) = k° / e ldn (a>0)
0
we get
K(t,s)™* = b /00 exp(—AK(t, s)A%1dx
' '@ Jo ' '

which is positive semi-definite. This implies 1/K (t, s) is infinitely divisible. O

We remark that the next lemma is not about orthogonal polynomials.

Lemma 6. For non-decreasing sequence {c,} define a polynomial hy(x) by hi(x) = (x — cq) - - - (x — cx) for each k and denote
the maximal zero of h; (x) by dy. Then the kernel function

hn(X) — hin ()
TS (x gt y)

Koy = 4 )~ (12)
b ) x=y)

is infinitely divisible on (d,, o0) x (d,, 00), provided 1 £ m < n.
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Proof. We first show that K"~ (x, y) is infinitely divisible for every n. Since K (x, y) = m the matrices associated
with this kernel function is the Cauchy matrices. Hence it is an infinitely divisible kernel function on (d;, 00) x (dz, 00),
where d, = % (see [2,3]). Assume that I(,f’1(x, y) is infinitely divisible on (dyo0) x (dg, 00). We show that K,fH(X, y)is
also infinitely divisible on (dy+1, 00) X (di+1, 00). Forx #y
1 b1 (%) — he 1 (v)
K]i<+1(xv y) hk(x) - hk(y)
P (X = 1) = he )Y — i)

h(0) — hi(y)
o X — () — (v — ah(X)
= —Ck—Ckp1+ X+Y) + he) — )
hy— — hy_
:—q—%u+u+w—@—q»%£%;¢£9u—m

=~ — 1 + XY — ¢ — KT X Y X — ).

One can see that the first side equals the last side even for x = y. By the assumption, this is a conditionally negative semi-
definite kernel function on (dy00) x (dy, 00). Since K,iﬂrl(x,y) > 0 on (dgt1, 00) X (dg+1, 00), by Lemma 5 I(,f+l(x,y) is
infinitely divisible. We next show K" is infinitely divisible. It is evident that K (x,y) = 1 is infinitely divisible. Suppose
m < n. Then, since

K'x,y) = K7, K2 (x, ) - K (%, ),
by the Schur theorem, K} (x, y) is infinitely divisible. O

Let f(t) be areal C! function on an interval I. Then the kernel function

£O £
&mw:{ —s 79 (13)
f® (t=s)

is called a Lowner kernel of f (t). The following theorem is also due to Léwner [11] (cf. [10,5]):
f () € P() ifand only if K (t, s) is positive semi-definite on I x I.
Now we go back to orthonormal polynomials {p,};2, with positive leading coefficients .

Definition 1. Let d, be the maximal zero of p,(t). Then the restriction of p,(t) to [d,, 00) is increasing. We call its inverse
function the principal inverse of p,(t) and write p;l (t).

We note that p,(d,) < 0. The following lemma guarantees that the composite p,_; o p,/ 1 is increasing on [p,(d,), 00).

Lemma?7. d, | <d,forn2=2.

Proof. Assume d,_; = d,. Then p;,(d,—1) = 0. By substituting d,_; for t in the Christoffel-Darboux formula

n—1
3 P = Sl Opat (6) — Py (OPa(O)),
k=0 ®n+1

we get 0 < p;(da—1)pn—1(da—1) since p;_,(d,—1) = 0. But this contradicts p,_1(d.—1) < 0, so we obtain the required
inequality. O

We are ready to show the main theorem of this section.

Theorem 3. Let {p,}°2, be orthonormal polynomials with positive leading coefficients a, and p;; ! the principal inverse of p,(t).
Then

p, € P(pa(dy), 00), (14)

where d,, is the maximal zero of p;,(t). Moreover, p;] (t) has a univalent holomorphic extension p,jl (z) to C\ (—o0, pn(dy)] such
that it is a Pick function and satisfies

pa(p;'(2)) =2z onC\ (—o0, pa(dy)].
Further,

Pnop,' € P(D(dy), 00) form=1,....n—1. (15)
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Proof. To see (15) we show that the Loéwner kernel I(pmop;1 (t, s) is positive semi-definite on (p,(d,), 00) x (pn(d,), 00).
Since p,, is increasing on (d,, 00), it is sufficient to show that
K, op-1 (Pr(0). Pa(s))
is positive semi-definite on (d,, co) x (d,, 00). We observe that
Pm(t) — pm(s)
— ] pa(t) = pn(s)
Kpmop;1 (Pn(8), pa(s)) = p;n(t)
pR(0)
We first show the case m = n — 1 by induction for n. For simplicity we put

Hi(, 8) =K, opr1 (P(0), PK(5)).-

(t#s)

(t =5).

In virtue of

p1(t) — p1(s) = a1 (t — ), p2(t) — p2(s) = aa(t — 5)(t + 5 — 2dy),

we get
GARN S
it S S s
_ t+s—2d
Hy(t,s) = ot? 1 2
_— (t =5).
(6% 2(t—d2)

The matrices associated with this Kernel function is the Cauchy matrices. Hence it is an infinitely divisible kernel function
on (d;, 00) x (d3, 00). Assume that Hi(t, s) is an infinitely divisible kernel function on (dy, 00) X (di, 00). Notice that
Hyy1(t,s) > O0fort,s > dgr1. By (5)
a () —spi(s)
Hea(t, ) pi(t) — pi(s)
tpi(s) — spk(t
= POZPO ). (16)
p(t) — pi(s)
Let py(t) = ax(t — c1) - - - (t — cx) be the factorization of py(t). Then we have

br — ar_1Hi(t, s)

Pi(s) pi(t)
tpr(s) — spk(t o f—
pk( ) Pk( ) _ (t _ Ck) s—ck t—ck (S . Ck) —

Pr(t) — pr(s) Pi(t) — pi(s)
= —(t — KT (6, (s — ) — .

where K,f_l(t, s) is given in (12). By Lemma 6 the above kernel function is a conditionally negative definite kernel on
(dg, 00) x (di, 00). From (16) it follows that m is conditionally negative definite. Hy.1(t, s) is therefore infinitely

divisible. Thus we have shown that Hi(t, s) is infinitely divisible on (dy, co) x (di, o0) for every k > 2. Hence it turn out
that the Schur product

KPmOPrTI (Dn (), Pu(S)) = H (€, S)Hpm41 (¢, S) - - - Hu(E, 5)

isinfinitely divisible on (d,,, 00) x (d,,, 00); of course it is positive semi-definite. This indicates (15). Since p; (t) = «1t+const,
the case of m = 1 deduces (14). Consequently p; ! (z) is holomorphic on C \ (—o0, p,(d,)], and it is a Pick function. Since
the composite p,(p, () is holomorphic on the domain and coincides with z on the real interval (p,(d,), 00), we get
pn(p, 1(2)) = z on the domain. From this formula it follows that . 1(z) is univalent. O
In [15,16], we have shown the following.
Let c, be the maximal zero of p,(t) and put pu4(t) = pn(t)|(c,.00); then
pmop;l eP0,00) (m=1,...,n—1).

At first sight, Theorem 3 seems to be just a slight extension of this result, but the proof is completely different and we cannot
extend the domain of p; 1'in Theorem 3 anymore; so we may say that Theorem 3 is an essential extension of it.
Observe that Theorem 3 implies that for A, B > d,

pn(A) § pn(B) = pn—](A) § pn—l(B) =---=A § B,
because p;(A) = a1A + constant. By using the notation introduced in [17,18] we can express this as follows:
t f pZ(t) f e f pn—](t) f pn(t) on [dm OO)
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