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a b s t r a c t

We study the Cauchy problem for a general homogeneous linear partial differential
equation in two complex variables with constant coefficients and with divergent initial
data. We state necessary and sufficient conditions for the summability of formal power
series solutions in terms of properties of divergent Cauchy data. We consider both the
summability in one variable t (with coefficients belonging to some Banach space of Gevrey
series with respect to the second variable z) and the summability in two variables (t, z).
The results are presented in the general framework of moment-PDEs.
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1. Introduction

The problem of summability of formal solutions of linear PDEswasmainly studied under the assumption that the Cauchy
data are convergent, see Balser [3], Balser and Loday-Richaud [5], Balser and Miyake [6], Ichinobe [8], Lutz, Miyake and
Schäfke [9], Malek [10], Michalik [11–13] and Miyake [15].

The case of more general initial data was investigated only for the complex heat equation (see Balser [1,4]). In [1] Balser
considered the case of entire initial data with an appropriate growth condition and he gave some preliminary results for
divergent initial data, too. Next, these results were extended in [4], where a characterisation of summable formal power
series solutions of the complex heat equation in terms of properties of divergent Cauchy data was given.

The aim of our paper is a generalisation of Balser’s results [1,4] to homogeneous linear partial differential equations with
constant coefficients.

Namely, we consider the initial value problem for a general linear partial differential equation with constant coefficients
in two complex variables (t, z)

P(∂t , ∂z)u = 0, ∂
j
tu(0, z) =ϕj(z) (j = 0, . . . , n − 1), (1)

where P(λ, ζ ) is a polynomial in both variables of degree n with respect to λ and the Cauchy dataϕj(z) =


∞

n=0 ϕjnzn ∈

C[[z]] are formal power series.
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We study the Gevrey asymptotic properties of formal power series solutionsu for a fixed Gevrey order of the initial data.
Moreover, we characterise the multisummable formal solutionsu of (1) in terms of the Cauchy data.

The results are expressed in the general framework of moment differential equations with the differentiations ∂t and ∂z
replaced by more general operators of moment differentiations ∂m1,t and ∂m2,z respectively (see Definition 12). The general
moment differential equations were introduced by Balser and Yoshino [7], who studied the Gevrey order of formal solutions
of such equations. A characterisation of the multisummable formal solutions of moment differential equations in terms of
analytic continuation properties and growth estimates of the Cauchy data was established in our previous paper [14] under
the assumption of convergence of the Cauchy data. In the present paper we continue the study without this assumption.
Additionally we consider a wider class of moment functions, which is a group with respect to multiplication, and so the set
of moment differential operators contains some integro-differential operators (see Example 3).

We give a meaning to summability of formal solutionsu in two variables by two methods. In the first one we treatu as
a formal power series in t-variable with the coefficients belonging to some Banach space of Gevrey series (in z-variable).
This situation is carried over by the general theory of summability developed by Balser [2]. In the second method we study
summability ofu in two variables (t, z) using approaches used by Balser [4] and by Sanz [16].

Themain idea of the paper is based on the use of appropriatemoment Borel transformsBm′
1,t

andBm′
2,z

(see Definition 5),
which transform the formal solutionu of the equation P(∂m1,t , ∂m2,z)u = 0 with the divergent Cauchy data ϕj into the
analytic solution v = Bm′

1,t
Bm′

2,z
u of the equation P(∂m1m′

1,t
, ∂m2m′

2,z
)v = 0 with the convergent Cauchy data Bm′

2,z
ϕj. On

the other hand we are able to define the summability ofu (both in t and in (t, z) variables) in terms of analytic continuation
properties of v. In this way, analogously to [14], we reduce the problem of summability ofu to the problem of analytic
continuation of v.

In the case of summability ofu with respect to t-variable, it is sufficient to apply our previous result [14, Theorem 3],
which establishes the relation between the analytic continuation properties of v (with respect to t) and the Cauchy data
Bm′

2,z
ϕj. In the case of summability ofu in two variables (t, z) the situation is more complicated, since we have to study the

analytic continuation properties of v with respect to both variables. To this end we characterise the analytic continuation
properties of v in two variables (t, z) in terms of the Cauchy data.

Finally, in both cases we obtain a characterisation of the multisummable formal solution u of moment differential
equations in the terms of the divergent initial dataϕj.

In the last sectionwediscuss a simple example illustrating the developed theory. Namely,we consider the formal solutionu =u(t, z) of the Cauchy problem

(∂t − ∂qz )u = 0, u(0, z) =ϕ(z).
We show the relation between the properties of the Cauchy data ϕ, the summability ofu in one variable t and in two
variables (t, z).

2. Notation

We use the following notation. The complex disc in Cn with centre at the origin and radius r > 0 is denoted by
Dn
r := {z ∈ Cn

: |z| < r}. To simplify notation, we write Dr instead of D1
r . If the radius r is not essential, then we denote it

briefly by Dn (resp. D).
A sector in a direction d ∈ R with an opening ε > 0 in the universal covering space C \ {0} of C \ {0} is defined by

Sd(ε) := {z ∈ C \ {0} : z = reiθ , d − ε/2 < θ < d + ε/2, r > 0}.

Moreover, if the value of opening angle ε is not essential, then we denote it briefly by Sd.
Analogously, by a disc-sector in a direction d ∈ R with an opening ε > 0 and radius r > 0 we mean a domainSd(ε; r) := Sd(ε) ∪ Dr . If the values of ε and r are not essential, we write it asSd for brevity (i.e.Sd = Sd ∪ D).
By O(G) we understand the space of holomorphic functions on a domain G ⊆ Cn. Analogously, the space of analytic

functions of the variables z1/κ11 , . . . , z1/κnn ((κ1, . . . , κn) ∈ Nn) on G is denoted by O1/κ1,...,1/κn(G). More generally, if E
denotes a Banach space with a norm ∥ · ∥E, then by O(G,E) (resp. O1/κ1,...,1/κn(G,E)) we shall denote the set of all E-
valued holomorphic functions (resp. holomorphic functions of the variables z1/κ11 , . . . , z1/κnn ) on a domain G ⊆ Cn. For
more information about functions with values in Banach spaces we refer the reader to [2, Appendix B]. In the paper, as a
Banach space E we will take the space of complex numbers C (we abbreviate O(G,C) to O(G) and O1/κ1,...,1/κn(G,C) to
O1/κ1,...,1/κn(G)) or the space of Gevrey series Gs,1/κ(r) (see Definition 7).

Definition 1. A function u ∈ O1/κ(Sd(ε; r),E) is of exponential growth of order at most K ∈ R as x → ∞ inSd(ε; r) if for anyε ∈ (0, ε) andr ∈ (0, r) there exist A, B < ∞ such that

∥u(x)∥E < AeB|x|
K

for every x ∈Sd(ε;r).
The space of such functions is denoted by OK

1/κ(
Sd(ε; r),E).
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Analogously, a function u ∈ O1/κ1,1/κ2(
Sd1(ε1; r1)×Sd2(ε2; r2)) is of exponential growth of order at most (K1, K2) ∈ R2 as

(t, z) → ∞ inSd1(ε1; r1) ×Sd2(ε2; r2) if for anyεi ∈ (0, εi) and anyri ∈ (0, ri) (i = 1, 2) there exist A, B1, B2 < ∞ such
that

|u(t, z)| < AeB1|t|
K1 eB2|z|

K2 for every (t, z) ∈Sd1(ε1;r1)×Sd2(ε2;r2).
The space of such functions is denoted by O

K1,K2
1/κ1,1/κ2

(Sd1(ε1; r1)×Sd2(ε2; r2)).
The space of formal power seriesu(x) =


∞

j=0 ujxj/κ with uj ∈ E is denoted by E[[x
1
κ ]]. Analogously, the space of formal

power seriesu(t, z) =


∞

j,n=0 ujnt j/κ1zn/κ2 with ujn ∈ E is denoted by E[[t
1
κ1 , z

1
κ2 ]]. We use the ‘‘hat’’ notation (u,v,ϕ, ψ ,f )

to denote the formal power series. If the formal power seriesu (resp.v,ϕ, ψ ,f ) is convergent, we denote its sum by u (resp.
v, ϕ, ψ , f ).

3. Moment functions

In this section we recall the notion of moment methods introduced by Balser [2].

Definition 2 (See [2, Section 5.5]). A pair of functions em and Em is said to be kernel functions of order k (k > 1/2) if they have
the following properties:
1. em ∈ O(S0(π/k)), em(z)/z is integrable at the origin, em(x) ∈ R+ for x ∈ R+ and em is exponentially flat of order k in

S0(π/k) (i.e. ∀ε>0∃A,B>0 such that |em(z)| ≤ Ae−(|z|/B)k for z ∈ S0(π/k − ε)).
2. Em ∈ Ok(C) and Em(1/z)/z is integrable at the origin in Sπ (2π − π/k).
3. The connection between em and Em is given by the corresponding moment function m of order 1/k as follows. The function

m is defined in terms of em by

m(u) :=


∞

0
xu−1em(x)dx for Re u ≥ 0 (2)

and the kernel function Em has the power series expansion

Em(z) =

∞
n=0

zn

m(n)
for z ∈ C. (3)

Observe that in case k ≤ 1/2 the set Sπ (2π − π/k) is not defined, so the second property in Definition 2 cannot be
satisfied. It means that we must define the kernel functions of order k ≤ 1/2 and the corresponding moment functions in
another way.

Definition 3 (See [2, Section 5.6]). A function em is called a kernel function of order k > 0 if we can find a pair of kernel
functions em and Em of order pk > 1/2 (for some p ∈ N) so that

em(z) = em(z1/p)/p for z ∈ S(0, π/k).

For a given kernel function em of order k > 0 we define the corresponding moment function m of order 1/k > 0 by (2) and
the kernel function Em of order k > 0 by (3).

Remark 1. Observe that by Definitions 2 and 3 we have

m(u) = m(pu) and Em(z) =

∞
j=0

z j

m(j)
=

∞
j=0

z jm(jp) .
We extend the notion of moment functions to real orders as follows

Definition 4. We say thatm is amoment function of order 1/k < 0 if 1/m is a moment function of order −1/k > 0.
We say thatm is amoment function of order 0 if there exist moment functionsm1 andm2 of the same order 1/k > 0 such

thatm = m1/m2.

By Definition 4 and by [2, Theorems 31 and 32] we have

Proposition 1. Let m1, m2 be moment functions of orders s1, s2 ∈ R respectively. Then
(1) m1m2 is a moment function of order s1 + s2,
(2) m1/m2 is a moment function of order s1 − s2.

Remark 2. By the above proposition we see that the set M of all moment functions endowed with the multiplication
operation has the structure of group ⟨M, ·⟩. Moreover, the map ord : ⟨M, ·⟩ −→ ⟨Z,+⟩ defined by ord (m) := s for every
moment functionm of order s, is a group homomorphism.
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Example 1. For any a ≥ 0, b ≥ 1 and k > 0 we can construct the following examples of kernel functions em and Em of
orders k > 0 with the corresponding moment functionm of order 1/k satisfying Definition 2 or 3:

• em(z) = akzbke−zk ,
• m(u) = aΓ (b + u/k),
• Em(z) =

1
a


∞

j=0
zj

Γ (b+j/k) .

In particular for a = b = 1 we get the kernel functions and the corresponding moment function, which are used in the
classical theory of k-summability.

• em(z) = kzke−zk ,
• m(u) = Γ (1 + u/k),
• Em(z) =


∞

j=0
zj

Γ (1+j/k) =: E1/k(z), where E1/k is the Mittag-Leffler function of index 1/k.

Example 2. For any s ∈ R we will denote by Γs the function

Γs(u) :=


Γ (1 + su) for s ≥ 0
1/Γ (1 − su) for s < 0.

Observe that by Example 1 and Definition 4, Γs is an example of a moment function of order s ∈ R.

The moment functions Γs will be extensively used in the paper, since every moment function m of order s has the same
growth as Γs. Precisely speaking, we have

Proposition 2 (See [2, Section 5.5]). If m is a moment function of order s ∈ R then there exist constants c, C > 0 such that

cnΓs(n) ≤ m(n) ≤ CnΓs(n) for every n ∈ N.

4. Moment Borel transform, Gevrey order and Borel summability

We use the moment function to define the Gevrey order and the Borel summability. We first introduce

Definition 5. Let κ ∈ N and m be a moment function. Then the linear operator Bm,x1/κ : E[[x
1
κ ]] → E[[x

1
κ ]] defined by

Bm,x1/κ


∞
j=0

ujxj/κ


:=

∞
j=0

uj

m(j/κ)
xj/κ

is called anm-moment Borel transform with respect to x1/κ .

We define the Gevrey order of formal power series as follows

Definition 6. Let κ ∈ N and s ∈ R. Thenu ∈ E[[x
1
κ ]] is called a formal power series of Gevrey order s if there exists a disc

D ⊂ C with centre at the origin such that BΓs,x1/κu ∈ O1/κ(D,E). The space of formal power series of Gevrey order s is

denoted by E[[x
1
κ ]]s.

Analogously, if κ1, κ2 ∈ N and s1, s2 ∈ R thenu ∈ E[[t
1
κ1 , z

1
κ2 ]] is called a formal power series of Gevrey order (s1, s2) if

there exists a disc D2
⊂ C2 with centre at the origin such that BΓs1 ,t

1/κ1 BΓs2 ,z
1/κ2u ∈ O1/κ1,1/κ2(D

2,E). The space of formal

power series of Gevrey order (s1, s2) is denoted by E[[t
1
κ1 , z

1
κ2 ]]s1,s2 .

Remark 3. By Proposition 2, we may replace Γs (resp. Γs1 and Γs2 ) in Definition 6 by any moment function m of order s
(resp. by any moment functionsm1 and m2 of orders s1 and s2).

Remark 4. Ifu ∈ E[[x
1
κ ]]s and s ≤ 0 then the formal seriesu is convergent, so its sum u is well defined. Moreover,u ∈ E[[x

1
κ ]]0 ⇔ u ∈ O1/κ(D,E) andu ∈ E[[x

1
κ ]]s ⇔ u ∈ O

−1/s
1/κ (C,E) for s < 0.

By Definitions 5 and 6 we obtain

Proposition 3. For everyu ∈ E[[x
1
κ ]] the following properties of moment Borel transforms are satisfied:

• Bm1,x1/κBm2,x1/κu = Bm1m2,x1/κu for every moment functions m1 and m2.
• Bm,x1/κB1/m,x1/κu = B1/m,x1/κBm,x1/κu = B1,x1/κu =u for every moment function m.

• u ∈ E[[x
1
κ ]]s1 ⇔ Bm,x1/κu ∈ E[[x

1
κ ]]s1−s for every s, s1 ∈ R and for every moment function m of order s.
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As a Banach space E we will take the space of complex numbers C or the space of Gevrey series Gs,1/κ(r) defined below.

Definition 7. Fix κ ∈ N, r > 0 and s ∈ R. By Gs,1/κ(r)we denote a Banach space of Gevrey series

Gs,1/κ(r) := {ϕ ∈ C[[z
1
κ ]]s : BΓs,z1/κϕ ∈ O1/κ(Dr) ∩ C(Dr)}

equipped with the norm

∥ϕ∥Gs,1/κ (r) := max
|z|≤r

|BΓs,z1/κϕ(z)|.
We also set Gs,1/κ := lim

−→r>0
Gs,1/κ(r). Analogously, we define O1/κ(G,Gs,1/κ) := lim

−→r>0
O1/κ(G,Gs,1/κ(r)) and OK

1/κ(G,
Gs,1/κ) := lim

−→r>0
OK

1/κ(G,Gs,1/κ(r)).
Moreover, we denote by Gs2,1/κ [[t]]s1 the space of formal power seriesu(t, z) =


∞

j=0uj(z)t j of Gevrey order s1 with
coefficientsuj(z) ∈ Gs2,1/κ .

By Definitions 6, 7, Remark 3 and Proposition 3 we conclude

Proposition 4. For every κ ∈ N, s, s ∈ R (resp. s1, s2, s ∈ R) and for everymoment functionm of order s the following conditions
are equivalent:

• u ∈ C[[x
1
κ ]]s (resp.u ∈ C[[t, z

1
κ ]]s1,s2 ),

• BΓs,x1/κu ∈ O1/κ(D) (resp. BΓs1 ,t
BΓs2 ,z

1/κu ∈ O1,1/κ(D2)),
• there exists r > 0 such thatu ∈ Gs,1/κ(r) (resp.u ∈ Gs2,1/κ(r)[[t]]s1 ),
• u ∈ Gs,1/κ (resp.u ∈ Gs2,1/κ [[t]]s1 ),
• Bm,x1/κu ∈ C[[x

1
κ ]]s−s (resp. Bm,z1/κu ∈ Gs2−s,1/κ [[t]]s1 ).

Now we are ready to define the summability of formal power series in one variable (see Balser [2])

Definition 8. Let κ ∈ N, K > 0 and d ∈ R. Thenu ∈ E[[x
1
κ ]] is called K -summable in a direction d if there exists a disc-sectorSd in a direction d such that BΓ1/K ,x1/κu ∈ OK

1/κ(
Sd,E).

Remark 5. By Definitions 7 and 8,u ∈ Gs,1/κ [[t]] is K -summable in a direction d if and only ifBΓ1/K ,tBΓs,z1/κu ∈ OK
1,1/κ(

Sd ×

D). Moreover, we may replace Γs in the above characterisation by any moment functionm of order s.

We can now define the multisummability in a multidirection.

Definition 9. Let K1 > · · · > Kn > 0. We say that a real vector (d1, . . . , dn) ∈ Rn is an admissible multidirection if

|dj − dj−1| ≤ π(1/Kj − 1/Kj−1)/2 for j = 2, . . . , n.

Let K = (K1, . . . , Kn) ∈ Rn
+
and let d = (d1, . . . , dn) ∈ Rn be an admissible multidirection. We say that a formal power

seriesu ∈ E[[x]] is K-multisummable in the multidirection d ifu =u1 + · · · +un, whereuj ∈ E[[x]] is Kj-summable in the
direction dj for j = 1, . . . , n.

Following Sanz [16] we extend the notion of summability to two variables

Definition 10. For κ1, κ2 ∈ N, K1, K2 > 0 and d1, d2 ∈ R the formal power seriesu ∈ C[[t
1
κ1 , z

1
κ2 ]] is called (K1, K2)-

summable in the direction (d1, d2) if there exist disc-sectorsSd1 andSd2 such that BΓ1/K1 ,t
1/κ1 BΓ1/K2 ,z

1/κ2u ∈ O
K1,K2
1/κ1,1/κ2

(Sd1 ×Sd2).
Remark 6. By the general theory of moment summability (see [2, Section 6.5 and Theorem 38]), we may replace Γ1/K in
Definition 8 (resp. Γ1/K1 and Γ1/K2 in Definition 10) by anymoment functionm of order 1/K (resp. by anymoment functions
m1 of order 1/K1 and m2 of order 1/K2).

A more general approach to summability in several variables was given by Balser [4]. Namely, he introduced

Definition 11. Let s1, s2 > 0, O ⊂ {(t0, z0) ∈ ( C \ {0})2 : ∥(t0, z0)∥ = 1} be bounded, open and simply connected and let

G = {(t, z) ∈ ( C \ {0})2 : (t, z) = (xs1 t0, xs2z0), (t0, z0) ∈ O, x > 0}.

Then we say that G is a (s1, s2)-region of infinite radius with an opening O.
Moreover, for κ1, κ2 ∈ N the formal power series

u(t, z) =

∞
j,n=0

ujnt j/κ1zn/κ2 ∈ C[[t
1
κ1 , z

1
κ2 ]]
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is called (1/s1, 1/s2)-summable in the direction O if

B(s1,s2)u(t, z) :=

∞
j,n=0

ujn

Γ (1 + s1j/κ1 + s2n/κ2)
t j/κ1zn/κ2

belongs to the space O1/κ1,1/κ2(G ∪ D2) and for every O′ b O there exist A, B > 0 such that

|B(s1,s2)u(xs1 t0, xs2z0)| ≤ AeBx for every (t0, z0) ∈ O′, x > 0.

In the paper we will consider only the situation, when G is a polysector Sd1 × Sd2 with an opening

O = Od1,d2 := {(t0, z0) ∈ Sd1 × Sd2 : ∥(t0, z0)∥ = 1}.

In this case, immediately by Definition 11, we get

Proposition 5. Let s1, s2 > 0, d1, d2 ∈ R and κ1, κ2 ∈ N. Then the formal power seriesu ∈ C[[t
1
κ1 , z

1
κ2 ]] is (1/s1, 1/s2)-

summable in the direction Od1,d2 if and only if B(s1,s2)u ∈ O
1/s1,1/s2
1/κ1,1/κ2

(Sd1 ×Sd2).
The connection between the Borel type transforms BΓs1,t

BΓs2,z
and B(s1,s2) is given in the next lemma.

Lemma 1. Let s1, s2 > 0 andu ∈ C[[t, z]]. Then the formal power seriesv(t, z) := BΓs1,t
BΓs2,z

u(t, z) and w(t, z) :=

B(s1,s2)u(t, z) are connected by the formula

w(t, z) = (1 + s1t∂t + s2z∂z)
 1

0
v(tεs1 , z(1 − ε)s2) dε.

Proof. Letu(t, z) =


∞

k,n=0 ukntkzn. Then

v(t, z) =

∞
k,n=0

ukntkzn

Γ (1 + ks1)Γ (1 + ns2)
and w(t, z) =

∞
k,n=0

ukntkzn

Γ (1 + ks1 + ns2)
.

Using properties of the beta function 1

0
εks1(1 − ε)ns2 dε = B(1 + ks1, 1 + ns2) =

Γ (1 + ks1)Γ (1 + ns2)
Γ (2 + ks1 + ns2)

we conclude that 1

0
v(tεs1 , z(1 − ε)s2) dε =

∞
k,n=0

ukntkzn

Γ (1 + ks1)Γ (1 + ns2)

 1

0
εks1(1 − ε)ns2 dε

=

∞
k,n=0

ukntkzn

Γ (2 + ks1 + ns2)
.

Hence

w(t, z) = (1 + s1t∂t + s2z∂z)
 1

0
v(tεs1 , z(1 − ε)s2) dε. �

Remark 7. In Theorem 3 we will show that ifu ∈ C[[t, z
1
κ ]] is a formal solution of (13) then

BΓs1 ,t
BΓs2 ,z

1/κu ∈ O
1/s1,1/s2
1,1/κ (Sd1 ×Sd2) ⇔ B(s1,s2)u ∈ O

1/s1,1/s2
1,1/κ (Sd1 ×Sd2).

In other words, for suchu we have the equivalence between (1/s1, 1/s2)-summability in the direction (d1, d2) (introduced
by Sanz) and (1/s1, 1/s2)-summability in the direction Od1,d2 (introduced by Balser). In our opinion it should be possible
to extend the general theory of moment summability (see Balser [2, Section 6.5]) to several variables and to show that the
above equivalence holds for every formal power seriesu ∈ C[[t, z]].

5. Moment operators

In this section we recall the notion of moment differential operators constructed recently by Balser and Yoshino [7]. We
also extend the concept of moment pseudodifferential operators introduced in our previous paper [14].
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Definition 12. Letm be a moment function. Then the linear operator ∂m,x : E[[x]] → E[[x]] defined by

∂m,x


∞
j=0

uj

m(j)
xj


:=

∞
j=0

uj+1

m(j)
xj

is called them-moment differential operator ∂m,x.
More generally, if κ ∈ N then the linear operator ∂m,x1/κ : E[[x

1
κ ]] → E[[x

1
κ ]] defined by

∂m,x1/κ


∞
j=0

uj

m(j/κ)
xj/κ


:=

∞
j=0

uj+1

m(j/κ)
xj/κ

is called them-moment 1/κ-fractional differential operator ∂m,x1/κ .

Example 3. Below we present some examples of moment differential operators.
• Form(u) = Γ1(u), the operator ∂m,x coincides with the usual differentiation ∂x.
• Form(u) = Γs(u) (s > 0), the operator ∂m,x satisfies

(∂m,xu)(xs) = ∂ sx(u(xs)),
where ∂ sx is the Caputo fractional derivative of order s defined by

∂ sx


∞
j=0

uj

Γs(j)
xsj


:=

∞
j=0

uj+1

Γs(j)
xsj.

• For m(u) ≡ 1, the corresponding operator ∂m,x satisfies

∂m,xu(x) =
u(x)− u0

x
for everyu(x) =

∞
j=0

ujxj ∈ E[[x]].

• Form(u) = Γ−1(u), the operator ∂m,x satisfies

∂m,xu(x) =
1
x

 x

0

u(y)− u0

y
dy for everyu(x) =

∞
j=0

ujxj ∈ E[[x]].

• Form(u) = Γ−s(u) (s > 0), the operator ∂m,x satisfies

(∂m,xu)(xs) =
1
xs
∂−s
x
u(xs)− u0

xs
for everyu(x) =

∞
j=0

ujxj ∈ E[[x]],

where ∂−s
x is the right-inversion operator to ∂ sx and is defined by

∂−s
x


∞
j=0

uj

Γs(j)
xsj


:=

∞
j=1

uj−1

Γs(j)
xsj.

The moment differential operator ∂m,z is well-defined for every ϕ ∈ O(D). In addition, we have the following integral
representation of ∂nm,zϕ.

Proposition 6 (See [14, Proposition 3]). Let ϕ ∈ O(Dr) andmbe amoment function of order 1/k > 0. Then for every |z| < ε < r
and n ∈ N we have

∂nm,zϕ(z) =
1

2π i


|w|=ε

ϕ(w)


∞(θ)

0
ζ nEm(zζ )

em(wζ )
wζ

dζ dw,

where θ ∈ (− argw −
π
2k ,− argw +

π
2k ).

Using the above formula, we have defined in [14, Definition 8] a moment pseudodifferential operator λ(∂m,z) : O(D) →

O(D) as an operator satisfying

λ(∂m,z)Em(ζ z) := λ(ζ )Em(ζ z) for |ζ | ≥ r0.

Namely, if λ(ζ ) is an analytic function for |ζ | ≥ r0 then λ(∂m,z) is defined by

λ(∂m,z)ϕ(z) :=
1

2π i


|w|=ε

ϕ(w)


∞(θ)

r0eiθ
λ(ζ )Em(ζ z)

em(ζw)
ζw

dζ dw

for every ϕ ∈ O(Dr) and |z| < ε < r , where θ ∈ (− argw −
π
2k ,− argw +

π
2k ).
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We extend this definition to the case where λ(ζ ) is an analytic function of the variable ξ = ζ 1/κ for |ζ | ≥ r0 (for some
κ ∈ N and r0 > 0). Since (∂m,zϕ)(zκ) = ∂κm,z(ϕ(zκ)) for every ϕ ∈ O(D), where m(u) := m(u/κ) (see [14, Lemma 3]), the
operator λ(∂m,z) should satisfy the formula

(λ(∂m,z)ϕ)(zκ) = λ(∂κm,z)(ϕ(zκ)) for every ϕ ∈ O1/κ(D). (4)

For this reason we have

Definition 13. Let m be a moment function of order 1/k > 0 and λ(ζ ) be an analytic function of the variable ξ = ζ 1/κ

for |ζ | ≥ r0 (for some κ ∈ N and r0 > 0) of polynomial growth at infinity. A moment pseudodifferential operator
λ(∂m,z) : O1/κ(D) → O1/κ(D) (or, more generally, λ(∂m,z) : E[[z

1
κ ]]0 → E[[z

1
κ ]]0) is defined by

λ(∂m,z)ϕ(z) :=
1

2κπ i

 κ

|w|=ε

ϕ(w)


∞(θ)

r0eiθ
λ(ζ )Em(ζ 1/κz1/κ)

em(ζw)
ζw

dζ dw (5)

for every ϕ ∈ O1/κ(Dr) and |z| < ε < r , where m(u) := m(u/κ), Em(ζ 1/κz1/κ) =


∞

n=0
ζ n/κ zn/κm(n) , θ ∈ (− argw −

π
2k ,− argw +

π
2k ) and

 κ
|w|=ε

means that we integrate κ times along the positively oriented circle of radius ε. Here the
integration in the inner integral is taken over a ray {reiθ : r ≥ r0}.

Observe that

(λ(∂m,z)ϕ)(zκ) =
1

2κπ i

 κ

|w|=ε

ϕ(w)


∞(θ)

r0eiθ
λ(ζ )Em(ζ 1/κz)

em(ζw)
ζw

dζ dw

=
1

2π i


|wκ |=ε

ϕ(wκ)


∞(θ/κ)

r1/κ0 eiθ/κ
λ(ζ k)Em(ζ z) em(ζw)

ζw
dζ dw

= λ(∂κm,z)(ϕ(zκ)),
so (4) holds for the operators λ(∂m,z) defined by (5).

Immediately by thedefinition,weobtain the following connection between themoment Borel transformand themoment
differentiation.

Proposition 7. Let m and m′ be moment functions of positive orders. Then the operators Bm′,x, ∂m,x : E[[x]] → E[[x]] satisfy
the following commutation formulae for everyu ∈ E[[x]] and for m = mm′:

(i) Bm′,x∂m,xu = ∂m,xBm′,xu,
(ii) Bm′,xP(∂m,x)u = P(∂m,x)Bm′,xu for any polynomial P with constant coefficients.

The same commutation formula holds if we replace P(∂m,x) by λ(∂m,x). Namely, we have

Proposition 8. Let m and m′ be moment functions of positive orders and λ(ζ ) be an analytic function of the variable ξ = ζ 1/κ

for |ζ | ≥ r0 (for some κ ∈ N and r0 > 0) of polynomial growth at infinity. Then the operators Bm′,x1/κ , λ(∂m,x) : E[[x
1
κ ]]0 →

E[[x
1
κ ]]0 satisfy the commutation formula

Bm′,x1/κλ(∂m,x)u = λ(∂m,x)Bm′,x1/κu
for everyu ∈ E[[x

1
κ ]]0 and for m = mm′.

Proof. Note that, by Proposition 1, m = mm′ is also a moment function of positive order. Observe that by Definition 13 we
have

Bm′,x1/κλ(∂m,x)u(x) =
1

2κπ i

 κ

|w|=ε

u(w)


∞(θ)

r0eiθ
λ(ζ )Bm′,x1/κ Em(ζ 1/κx1/κ)

em(ζw)
ζw

dζ dw

=
1

2κπ i

 κ

|w|=ε

u(w)


∞(θ)

r0eiθ
λ(ζ )Em(ζ 1/κx1/κ)

em(ζw)
ζw

dζ dw

= λ(∂m,x)
1

2κπ i

 κ

|w|=ε

u(w)


∞(θ)

r0eiθ
Bm′,x1/κ Em(ζ 1/κx1/κ)

em(ζw)
ζw

dζ dw

= λ(∂m,x)Bm′,x1/κu(x),
wherem(u) := m(u/κ) andm(u) := m(u/κ) = m(u/κ)m′(u/κ). �

Using Proposition 8 we are able to extend Definition 13 to the formal power series and to the moment functions of real
orders.
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Definition 14. Let s ∈ R, m be a moment function of orders ∈ R and λ(ζ ) be an analytic function of the variable ξ = ζ 1/κ

for |ζ | ≥ r0 of polynomial growth at infinity. A moment pseudodifferential operator λ(∂m,z) for the formal power seriesϕ ∈ E[[z
1
κ ]]s is defined by

λ(∂m,z)ϕ(z) := BΓ−s,z1/κλ(∂m,z)BΓs,z1/κϕ(z),
where m = mΓs, s = max{s, 1 −s} and the operator λ(∂m,z) is constructed in Definition 13.

Definition 15 ([14, Definition 9]). We define a pole order q ∈ Q and a leading term λ ∈ C \ {0} of λ(ζ ) as the numbers
satisfying the formula limζ→∞ λ(ζ )/ζ

q
= λ. We write it also as λ(ζ ) ∼ λζ q.

At the end of the section we improve the estimate given in [14, Lemma 1] as follows

Lemma 2. Let ϕ ∈ C[[z
1
κ ]]s, s ≤ 0, m be a moment function of order 1/k > 0 and λ(∂m,z) be a moment pseudodifferential

operator with λ(ζ ) ∼ λζ q and q ∈ Q. Then there exist r > 0 and A, B < ∞ such that

sup
|z|<r

|λj(∂m,z)ϕ(z)| ≤ |λ|jABjΓq(s+1/k)(j) for j = 0, 1, . . . ,

where q := max{0, q}.

Proof. Repeating the proof of [14, Lemma 1], we may take r > 0 and εr > 0 such that

sup
|z|<r

|λj(∂m,z)ϕ(z)| ≤ |λ|jA1B
j
1
Γq/k(j)
εjq

1
2κπε

 κ

|w|=ε

|ϕ(w)| d|w|

for some A1, B1 < ∞ and for every ε > εr such that Dε b D and ϕ ∈ O1/κ(D).
If s = 0 then the assertion is given by the estimation

1
2κπε

 κ

|w|=ε

|ϕ(w)| d|w| ≤ A2.

If s < 0 then ϕ ∈ O
−1/s
1/κ (C). So we estimate

1
2κπε

 κ

|w|=ε

|ϕ(w)| d|w| ≤ A2eB2ε
−1/s

for every ε > εr .

Hence, putting ε = (
−sjq
B2
)−s and applying the Stirling formula (see [2, Theorem 68]) we conclude that

sup
|z|<r

|λj(∂m,z)ϕ(z)| ≤
|λ|jABjΓq/k(j)e−sjq

(−sjq)−sjq
≤ |λ|jABjΓq(s+1/k)(j). �

6. Formal solutions and Gevrey estimates

In this section we study the formal solutions of the initial value problem for a general linear moment partial differential
equation with constant coefficients

P(∂m1,t , ∂m2,z)u = 0
∂
j
m1,tu(0, z) =ϕj(z) ∈ C[[z]] (j = 0, . . . , n − 1),

(6)

where m1,m2 are moment functions of orders s1, s2 ∈ R respectively, and

P(λ, ζ ) = P0(ζ )λn −

n
j=1

Pj(ζ )λn−j (7)

is a general polynomial of two variables, which is of order nwith respect to λ.
First, we will show the following

Proposition 9. Let m′

1 and m′

2 be moment functions,u ∈ C[[t, z]] andv = Bm′
1,t

Bm′
2,z
u. Thenu is a formal solution of (6) if

and only if v is a formal solution of
P(∂m1,t , ∂m2,z)v = 0
∂
j
m1,t
v(0, z) = ψj(z) := Bm′

2,z
ϕj(z) ∈ C[[z]] for j = 0, . . . , n − 1, (8)

where m1 := m1m′

1 and m2 := m2m′

2.
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Proof. (=⇒) We assume thatu is a formal solution of (6). By Proposition 7 we have

P(∂m1,t , ∂m2,z)v = P(∂m1,t , ∂m2,z)Bm′
1,t

Bm′
2,z
u

= Bm′
1,t

Bm′
2,z

P(∂m1,t , ∂m2,z)u = 0

and

∂
j
m1,t
v(0, z) = ∂

j
m1,t

Bm′
1,t

Bm′
2,z
u(0, z) = Bm′

1,t
Bm′

2,z
∂
j
m1,tu(0, z)

= Bm′
2,z
ϕj(z)

for j = 0, . . . , n − 1. Sov is a formal solution of (8).
(⇐=) Observe thatu = B1/m′

1,t
B1/m′

2,z
v andϕj = B1/m′

2,z
ψj for j = 0, . . . , n − 1. Repeating the first part of the proof

withu replaced byv andϕj replaced by ψj, we obtain the assertion. �

If P0(ζ ) defined by (7) is not a constant, then a formal solution of (6) is not uniquely determined. To avoid this
inconvenience we choose some special solution which is already uniquely determined. To this endwe factorise themoment
differential operator P(∂m1,t , ∂m2,z) as follows

P(∂m1,t , ∂m2,z) = P0(∂m2,z)(∂m1,t − λ1(∂m2,z))
n1 · · · (∂m1,t − λl(∂m2,z))

nl

=: P0(∂m2,z)
P(∂m1,t , ∂m2,z),

whereλ1(ζ ), . . . , λl(ζ ) are the roots of the characteristic equation P(λ, ζ ) = 0withmultiplicityn1, . . . , nl (n1+· · ·+nl = n)
respectively.

Since λα(ζ ) are algebraic functions, wemay assume that there exist κ ∈ N and r0 < ∞ such that λα(ζ ) are holomorphic
functions of the variable ξ = ζ 1/κ (for |ζ | ≥ r0) and, moreover, there exist λα ∈ C\{0} and qα = µα/να (for some relatively
prime numbers µα ∈ Z and να ∈ N) such that λα(ζ ) ∼ λαζ

qα for α = 1, . . . , l. Hence the moment pseudodifferential
operators λα(∂m2,z) are well-defined.

Under the above assumption, by a normalised formal solutionu of (6) we mean such a solution of (6), which is also a
solution of the pseudodifferential equationP(∂m1,t , ∂m2,z)u = 0 (see [14, Definition 10]).

Now we are ready to study the Gevrey order of formal solutionu of (6), which depends on the orders s1, s2 ∈ R of the
moment functionsm1,m2 respectively, on the Gevrey order s ∈ R of the initial dataϕ and depends on the pole orders qα ∈ Q
of the roots λα(ζ ) (α = 1, . . . , l). We generalise the results for the analytic Cauchy data given in [14, Theorems 1 and 2] as
follows

Theorem 1. Let s ∈ R and let u be a normalised formal solution of (6) with ϕj ∈ C[[z]]s (j = 0, . . . , n − 1) thenu =
l

α=1
nα

β=1uαβ withuαβ being a formal solution of a simple pseudodifferential equation
(∂m1,t − λα(∂m2,z))

βuαβ = 0
∂
j
m1,tuαβ(0, z) = 0 (j = 0, . . . , β − 2)
∂
β−1
m1,tuαβ(0, z) = λβ−1

α (∂m2,z)ϕαβ(z), (9)

whereϕαβ(z) :=
n−1

j=0 dαβj(∂m2,z)ϕj(z) ∈ C[[z
1
κ ]]s and dαβj(ζ ) are some holomorphic functions of the variable ξ = ζ 1/κ and

of polynomial growth.
Moreover, if qα is a pole order of λα(ζ ) and qα = max{0, qα}, then a formal solution uαβ is a Gevrey series of order

qα(s2 + s)− s1 with respect to t. More precisely,uαβ ∈ C[[t, z
1
κ ]]qα(s2+s)−s1,s or, equivalently,uαβ ∈ Gs,1/κ [[t]]qα(s2+s)−s1 .

Proof. For fixed s > max{s,−s2} we definev := BΓs,zu. By Proposition 9,v is a formal solution of
P(∂m1,t , ∂m2,z)v = 0
∂
j
m1,tv(0, z) = ψj(z) = BΓs,zϕj(z) ∈ C[[z]]s−s for j = 0, . . . , n − 1,

where m2 := m2Γs. Since m2 is a moment function of order s + s2 > 0 and ψj are the Gevrey series of order s − s < 0 for
j = 0, . . . , n − 1, repeating the proof of [14, Theorem 1] we conclude thatv =

l
α=1

nα
β=1vαβ withvαβ being a formal

solution of
(∂m1,t − λα(∂m2,z))

βvαβ = 0
∂
j
m1,tvαβ(0, z) = 0 (j = 0, . . . , β − 2)
∂
β−1
m1,tvαβ(0, z) = λβ−1

α (∂m2,z)
ψαβ(z),
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whereψαβ(z) :=
n−1

j=0 dαβj(∂m2,z)
ψj(z) ∈ C[[z

1
κ ]]s−s and dαβj(ζ ) are some holomorphic functions of the variable ξ = ζ 1/κ

and of polynomial growth. Hence, by Definition 14,u =
l

α=1
nα

β=1uαβ , whereuαβ = BΓ−s,z1/κvαβ satisfies (9) with

ϕαβ = BΓ−s,z1/κ
ψαβ = BΓ−s,z1/κ

n−1
j=0

dαβj(∂m2,z)
ψj(z) =

n−1
j=0

dαβj(∂m2,z)ϕj(z)

for β = 1, . . . , nα and α = 1, . . . , l.
To find the Gevrey order ofvαβ =


∞

j=0 vαβj(z)t
j with respect to t , observe that by [14, Lemma 2]

vα,β(t, z) = m1(0)
∞

j=β−1


j

β − 1


λ
j
αβ(∂m2,z)ψαβ(z)

m1(j)
t j.

Hence, by Lemma 2, there exist r > 0 and A, B < ∞ such that

sup
|z|<r

|vαβj(z)| = m1(0)


j
β − 1

 sup
|z|<r

|λ
j
αβ(∂m2,z)ψαβ(z)|

m1(j)

≤ ABjΓqα(s−s+s+s2)(j)
Γs1(j)

≤ ABjΓqα(s+s2)−s1(j)

for every j ≥ β − 1. It means that vαβ ∈ Gs−s,1/κ [[t]]qα(s2+s)−s1 . Finally, by Proposition 4 we conclude that uαβ =

BΓ−s,z1/κvαβ ∈ Gs,1/κ [[t]]qα(s2+s)−s1 or, equivalently,uαβ ∈ C[[t, z
1
κ ]]qα(s2+s)−s1,s. �

7. Analytic solutions

In this section we study the analytic continuation properties of the sum of convergent formal power series solutions of
(∂m1,t − λ(∂m2,z))

βv = 0

∂
j
m1,tv(0, z) = 0 (j = 0, . . . , β − 2)

∂
β−1
m1,t v(0, z) = λβ−1(∂m2,z)ϕ(z) ∈ O1/κ(D),

(10)

where λ(ζ ) is a root of the characteristic equation of (6). It means that λ(ζ ) is an analytic function of the variable ξ = ζ 1/κ

for |ζ | ≥ r0 and λ(ζ ) ∼ λζ q. During this section we assume thatm1 andm2 are moment functions of orders 1/k1, 1/k2 > 0,
respectively.

Repeating the proof of [14, Lemma 4] we get the following representation of solution v of (10)

Lemma 3. Let v be a solution of (10) and 1/k1 ≥ q/k2. Then v belongs to the space O1,1/κ(D2) and is given by

v(t, z) =
tβ−1

(β − 1)!
∂
β−1
t

m1(0)
2κπ i

 κ

|w|=ε

ϕ(w)


∞(θ)

r0eiθ
Em1(tλ(ζ ))Em2(ζ

1/κz1/κ)
em2(ζw)

ζw
dζ dw,

where θ ∈ (− argw −
π
2k2
,− argw +

π
2k2
) andm2(u) = m2(u/κ).

We generalise [14, Lemma 5] as follows

Lemma 4. Let λ(ζ ) ∼ λζ q be a root of the characteristic equation of (6) for q = µ/ν with relatively prime numbers µ, ν ∈ N,
where λ(ζ ) is an analytic function of the variable ξ = ζ 1/κ for |ζ | ≥ r0 (for some r0 > 0). Moreover, let 1/k1 = q/k2, K > 0
and d ∈ R. We assume that v is a solution of

(∂m1,t − λ(∂m2,z))
βv = 0

∂
j
m1,tv(0, z) = ϕj(z) ∈ O1/κ(D) (j = 0, . . . , β − 1).

If ϕj ∈ O
qK
1/κ(
S(d+arg λ+2kπ)/q) for k = 0, . . . , qκ − 1 and j = 0, . . . , β − 1, then v ∈ O

K ,qK
1,1/κ(

Sd ×S(d+arg λ+2kπ)/q) for
k = 0, . . . , qκ − 1. Moreover, if additionally ϕj ∈ O(D) for j = 0, . . . , β − 1, then v ∈ O

K ,qK
1,1/κ(

Sd+2nπ/ν ×S(d+arg λ+2kπ)/q) for
k = 0, . . . , qκ − 1 and n = 0, . . . , ν − 1.

Proof. First, we consider the case k1, k2 > 1/2. By the principle of superposition of solutions of linear equations, we may
assume that v satisfies (10) with ϕ ∈ O

qK
1/κ(
S(d+arg λ+2kπ)/q(δ;r)) for k = 0, . . . , qκ − 1 and for someδ,r > 0. Hence, by

Lemma 3, the function v ∈ O1,1/κ(D2) has the integral representation

v(t, z) =
tβ−1

(β − 1)!
∂
β−1
t

m1(0)
2κπ i

 κ

|w|=ε

ϕ(w)k(t, z, w) dw, (11)
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where ε <r and
k(t, z, w) :=


∞(θ)

r0eiθ
Em1(tλ(ζ ))Em2(ζ

1/κz1/κ)
em2(ζw)

ζw
dζ

with θ ∈ (− argw −
π
2k2
,− argw +

π
2k2
) andm2(u) = m2(u/κ). Now we consider the function

(t, z) → k(t, z, w) for every fixedw ∈ C \ {0}. (12)

Observe that by Definition 2 there exist constants Ai and bi (i = 1, 2, 3) such that |Em1(tλ(ζ ))| ≤ A1eb1|t|
k1 |ζ |k1q ,

|Em2(ζ
1/κz1/κ)| ≤ A2eb2|ζ |

k2 |z|k2 and |em2(ζw)| ≤ A3e−b3|ζ |k2 |w|
k2 . Hence, there exist a, b > 0 such that for every fixed

w ∈ C \ {0} and for every (t, z) ∈ C2 satisfying |t| < a|w|
q and |z| < b|w|, we have

|k(t, z, w)| ≤


∞

r0

Aesk2 (b1|t|k1+b2|z|k2−b3|w|
k2 ) ds ≤


∞

r0

Ae−bsk2 |w|
k2 ds < ∞

with some positive constantsA,b. Hence the function (12) belongs to the space O1,1/κ({(t, z) ∈ C2
: |t| < a|w|

q, |z| <
b|w|}) and the right-hand side of (11) is a well-defined holomorphic function of the variables t and ζ = z1/κ in a complex
neighbourhood of the origin.

To show that v ∈ O1,1/κ(Sd ×S(d+arg λ+2kπ)/q) for k = 1, . . . , qκ − 1, we deform the κ-fold circle |w| = ε in the
integral representation (11) of v as in the proof of [14, Lemma 5]. Namely, we split these circles into 2qκ arcs γ2k and γ2k+1
(k = 0, . . . , qκ − 1), where γ2k extends between points of argument (d+ arg λ+ 2kπ)/q±δ/3 and γ2k+1 extends between
(d+ arg λ+ 2kπ)/q+δ/3 and (d+ arg λ+ 2(k+ 1)π)/q−δ/3 mod 2qκπ . Finally, since ϕ ∈ O1/κ(S(d+arg λ+2kπ)/q(δ)), we
may deform γ2k into a path γ R

2k along the ray argw = (d + arg λ+ 2kπ)/q −δ/3 to a point with modulus R (which can be
chosen arbitrarily large), then along the circle |w| = R to the ray argw = (d + arg λ + 2kπ)/q +δ/3 and back along this
ray to the original circle. So, we have

v(t, z) =
tβ−1

(β − 1)!
∂
β−1
t v1(t, z)+

tβ−1

(β − 1)!
∂
β−1
t v2(t, z),

where

v1(t, z) :=

qκ−1
k=0

m1(0)
2κπ i


γ2k+1

ϕ(w)k(t, z, w) dw

and

v2(t, z) :=

qκ−1
k=0

m1(0)
2κπ i


γ R
2k

ϕ(w)k(t, z, w) dw.

To study the analytic continuation of v1, observe that for arg t = d, arg z = (d + arg λ + 2kπ)/q (k = 0, . . . , qκ − 1),
argw ≠ (d + arg λ+ 2kπ)/q (k ∈ Z) and for q = k2/k1, we may choose a direction θ in (12), which satisfies the following
conditions

•

arg t + 2kπ + arg λ+ qθ ∈


π

2k1
, 2π −

π

2k1


for some k ∈ Z

(in this case, by Definition 2, we have |Em1(tλ(ζ ))| ≤ C |tλ(ζ )|−1 as ζ → ∞, arg ζ = θ ),
•

arg z/κ + 2lπ + θ/κ ∈


π

2k2κ
, 2π −

π

2k2κ


for some l ∈ Z

(in this case, by Definition 2, we have |Em2(ζ
1/κz1/κ)| ≤ C ′

|ζ z|−1/κ as ζ → ∞, arg ζ = θ ),
•

argw + 2nπ + θ ∈


−
π

2k2
,
π

2k2


for some n ∈ Z

(in this case, by Definition 2, there exists ε > 0 such that em2(ζw)

ζw

 ≤ e−ε|ζ |k2 as ζ → ∞, arg ζ = θ).



S. Michalik / J. Math. Anal. Appl. 406 (2013) 243–260 255

Hence there exist δ > 0 and r > 0 such that the functionv1 ∈ O1,1/κ(Sd(δ; r)×S(d+arg λ+2kπ)/q(δ; r)) for k = 0, . . . , qκ−1.
Moreover, there exists C < ∞ such that |k(t, z, w)| < C for every (t, z) ∈ Sd(δ; r) ×S(d+arg λ+2kπ)/q(δ; r) and for every
w ∈

qκ−1
k=0 γ2k+1. Hence

|v1(t, z)| ≤
qκ
2κπ

max
k=0,...,qκ−1


γ2k+1

|ϕ(w)|C d|w| ≤C < ∞

and we conclude that v1 is bounded as t → ∞ and z → ∞.
Now we are ready to study the analytic continuation of v2, Since the function (12) belongs to the space O1,1/κ({(t, z) ∈

C2
: |t| < a|w|

q, |z| < b|w|}), one can find δ, r > 0 such that v2 ∈ O1,1/κ(Sd(δ; r) × S(d+arg λ+2kπ)/q(δ; r)) for
k = 0, . . . , qκ − 1 as R tends to infinity. Estimating this integral we obtain

|v2(t, z)| ≤
qκ
2κπ

max
k=0,...,qκ−1


γ R
2k

|ϕ(w)|C d|w| ≤ AReBR
qK

≤AeB1|t|K+B2|z|qK ,
since |t| ∼ |w|

q
= Rq and |z| ∼ |w|.

Hence also v ∈ O
K ,qK
1,1/κ(

Sd ×S(d+arg λ+2kπ)/q) for k = 0, . . . , qκ − 1.
In the general case k1, k2 > 0, there exists p ∈ N such thatk1 := pk1 > 1/2 andk2 := pk2 > 1/2. By [14, Lemma 3], the

functionw(t, z) := v(tp, zp) is a solution of
(∂

pm1,t
− λ(∂

pm2,z
))βw = 0,

∂
npm1,t
w(0, z) = ϕn(zp) ∈ O

pqK
1/κ (

S(d+arg λ+2kπ)/(pq)) for n = 0, . . . , β − 1
∂
jm1,t
w(0, z) = 0 for j = 1, . . . , βp − 1 and p ̸ | j,

wherem1(u) := m1(u/p) andm2(u) := m2(u/p) are moment functions of order 1/k1 and 1/k2 respectively.
By Theorem 1 we conclude thatw = w0 + · · · + wp−1 withwj (j = 0, . . . , p − 1) satisfying

(∂m1,t − ei2jπ/pλ1/p(∂pm2,z
))βwj = 0,

∂nm1,twj(0, z) =ϕjn(z) ∈ O
pqK
1/κ (

S(d+arg λ+2kπ)/(pq)) for n = 0, . . . , β − 1.

Applying the first part of the proof to the above equation we see that wj(t, z) ∈ O
pK ,pqK
1,1/κ (

S(d+2jπ)/p ×S(d+arg λ+2kπ)/(pq)) for
j = 1, . . . , p. It means that v(t, z) = w(t1/p, z1/p) ∈ O

K ,qK
1,1/κ(

Sd ×S(d+arg λ+2kπ)/q) for k = 0, . . . , qκ − 1.
To prove the last part of the lemma, observe that if ϕj ∈ O

qK
1/κ(Ŝ(d+arg λ+2kπ)/q) and ϕj ∈ O(D) then also ϕj ∈

OqK (Ŝ(d+arg λ+2kπ)/q) and consequentlyϕj ∈ OqK (Ŝ(d+2nπ/ν+arg λ+2kπ)/q) for n = 0, . . . , ν−1. Hence, replacing d by d+2nπ/ν
we conclude that v ∈ O

K ,qK
1,1/κ(Ŝd+2nπ/ν ×S(d+arg λ+2kπ)/q) for n = 0, . . . , ν − 1 and k = 0, . . . , qκ − 1. �

Now we are ready to generalise [14, Theorem 3] as follows

Theorem 2. Let λ(ζ ) ∼ λζ q be a root of the characteristic equation of (6) for q = µ/ν with relatively prime numbersµ, ν ∈ N,
where λ(ζ ) is an analytic function of the variable ξ = ζ 1/κ for |ζ | ≥ r0 (for some r0 > 0). Moreover, let us assume that v is a
solution of (10), 1/k1 = q/k2, K > 0 and d ∈ R. Then the following conditions are equivalent:

(a) ϕ ∈ O
qK
1/κ(
S(d+arg λ+2kπ)/q) for k = 0, . . . , qκ − 1,

(b) v ∈ O
K ,qK
1,1/κ(

Sd ×S(d+arg λ+2kπ)/q) for k = 0, . . . , qκ − 1.
(c) v ∈ OK

1,1/κ(
Sd × D),

(d) ∂ jm2,z1/κ
v(t, 0) ∈ OK (Sd) for j = 0, . . . , qκβ − 1.

If additionally we assume that ϕ ∈ O(D) then the above conditions are also equivalent to

(e) v ∈ O
K ,qK
1,1/κ(

Sd+2nπ/ν ×S(d+arg λ+2kπ)/q) for n = 0, . . . , ν − 1 and k = 0, . . . , qκ − 1,
(f) v ∈ OK

1,1/κ(
Sd+2nπ/ν × D) for n = 0, . . . , ν − 1.

Proof. The implication (a) ⇒ (b) is given immediately by Lemma 4. The implications (b) ⇒ (c) and (c) ⇒ (d) are trivial. To
prove the implication (d) ⇒ (a), observe that by [14, Lemma 3] the functionw(t, z) := v(tqκ , zκ) satisfies

(∂
qκm1,t

− λ(∂κm2,z))
βw = 0,

wherem1(u) := m1(u/(qκ)) andm2(u) := m2(u/κ) aremoment functions of orders 1/k1 := 1/(k1qκ) and 1/k2 := 1/(k2κ).
It means thatw is also a solution of the equation

(∂m1,t −λ0(∂m2,z))
β
· · · (∂m1,t −λqκ−1(∂m2,z))

βw = 0,
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whereλj(ζ ) := ei2π j/(qκ)λ1/(qκ)(ζ κ) for j = 0, . . . , qκ − 1.

Since λj(ζ ) is an analytic function for sufficiently large |ζ | with a pole order equal to 1 (more precisely λj(ζ ) ∼

ei2π j/(qκ)λ1/(qκ)ζ ) and 1/k1 = 1/k2, by [14, Lemma 7] and by condition (d), the functionw satisfies also
(∂m2,z −λ−1

0 (∂m1,t))
β
· · · (∂m2,z −λ−1

qκ−1(∂m1,t))
βw = 0,

∂nm2,zw(t, 0) = ψn(t) ∈ OqκK (Ŝ(d+2πk)/(qκ))

for n = 0, . . . , qκβ − 1 and k = 0, . . . , qκ − 1. Hence, by Theorem 1, w = w0 + · · · + wqκ−1 with wj (j = 0, . . . , qκ − 1)
satisfying

(∂m2,z −λ−1
j (∂m1,t))

βwj = 0,
∂nm2,zwj(t, 0) = ψjn(t) ∈ OqκK (Ŝ(d+2πk)/(qκ))

for n = 0, . . . , β − 1 and k = 0, . . . , qκ − 1. Sinceλ−1
j (τ ) ∼ e−i2π j/(qκ)λ−1/(qκ)τ , by Lemma 4 with replaced variables, we

conclude thatwj(t, z) ∈ OqκK (D × Ŝθjk), where

θjk :=
d + 2πk

qκ
− arg(e−i2π j/(qκ)λ−1/(qκ)) =

d + arg λ+ 2π(k + j)
qκ

for k = 0, . . . , qκ − 1. In consequence, also w(t, z) ∈ OqκK (D × Ŝ(d+arg λ+2πk)/(qκ)) and finally v(t, z) = w(t1/(qκ), z1/κ) ∈

O
qK
1/(qκ),1/κ(D×Ŝ(d+arg λ+2πk)/q). In particularϕ(z) ∈ O

qK
1/κ(Ŝ(d+arg λ+2πk)/q) for k = 0, . . . , qκ−1,which proves the implication

(d) ⇒ (a).
If additionally ϕ ∈ O(D) then also ϕ ∈ OqK (Ŝ(d+2nπ/ν+arg λ+2kπ)/q) for n = 0, . . . , ν− 1. Hence, replacing d by d+ 2nπ/ν

we conclude by Lemma 4 that v ∈ O
K ,qK
1,1/κ(

Sd+2nπ/ν ×S(d+arg λ+2kπ)/q) for n = 0, . . . , ν − 1 and k = 0, . . . , qκ − 1 and the
implication (a) ⇒ (e) holds. The last implications (e) ⇒ (f) and (f) ⇒ (c) are obvious. �

By the above theorem we conclude

Corollary 1. If K ′ > 0, d′
∈ R, ϕ ∈ OK ′

(Sd′) and m is a moment function of order 0, then also Bm,zϕ ∈ OK ′

(Sd′).

Proof. Let v be a solution of

(∂t − ∂z)v = 0, v(0, z) = ϕ(z) ∈ OK ′

(Sd′).

Then v(t, z) = ϕ(t + z) ∈ OK ′

(Sd′ ×D). Sincem is a moment function of order 0, we see that also Bm,zv ∈ OK ′

(Sd′ ×D). On
the other hand, by Proposition 9, Bm,zv is a solution of

(∂t − ∂Γ1m,z)Bm,zv = 0, Bm,zv(0, z) = Bm,zϕ(z) ∈ O(D).

Hence, applying Theorem 2, we conclude that Bm,zϕ ∈ OK ′

(Sd′). �

8. Summable and multisummable solutions

In this section we characterise summable formal solutionsu of (9) in terms of the Cauchy dataϕ. Next, we also give a
similar characterisation of multisummable normalised formal solutions of general equation (6).

Applying Theorem 2 we obtain the following impressive characterisation of summable solutions of simple
pseudodifferential equations (9)

Theorem 3. Let λ(ζ ) ∼ λζ q be a root of the characteristic equation of (6) for q = µ/ν with relatively prime numbersµ, ν ∈ N,
where λ(ζ ) is an analytic function of the variable ξ = ζ 1/κ for |ζ | ≥ r0 (for some r0 > 0). We also assume that m1, m2 are
moment functions of orders s1, s2 ∈ R respectively, d, s ∈ R, s > −s2, q >

s1
s2+s , K =


q(s2 + s) − s1

−1 andu is a formal
solution of

(∂m1,t − λ(∂m2,z))
βu = 0

∂
j
m1,tu(0, z) = 0 (j = 0, . . . , β − 2)
∂
β−1
m1,tu(0, z) = λβ−1(∂m2,z)ϕ(z) ∈ C[[z

1
κ ]]s.

(13)

Then the following conditions are equivalent:

(a) BΓs,z1/κϕ ∈ O
qK
1/κ(
S(d+arg λ+2kπ)/q) for k = 0, . . . , qκ − 1,

(b) BΓ1/K ,tBΓs,z1/κu ∈ OK
1,1/κ(

Sd × D),
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(c) BΓ1/K ,tBΓs,z1/κu ∈ O
K ,qK
1,1/κ(

Sd ×S(d+arg λ+2kπ)/q) for k = 0, . . . , qκ − 1,
(d) BΓs1/q−s2 ,z

1/κϕ is qK-summable in the directions (d + arg λ+ 2kπ)/q for k = 0, . . . , qκ − 1,
(e) u(t, z) ∈ Gs,1/κ [[t]] is K-summable in direction d.

Moreover, if additionally s > 0 and qs2 ≥ s1 then the above conditions (a)–(e) are also equivalent to

(f) u(t, z) ∈ C[[t, z
1
κ ]] is (K , 1/s)-summable in the directions (d, (d + arg λ+ 2kπ)/q) for k = 0, . . . , qκ − 1,

(g)u(t, z) ∈ C[[t, z
1
κ ]] is (K , 1/s)-summable in the directions Od,(d+arg λ+2kπ)/q for k = 0, . . . , qκ − 1.

Remark 8. If we assume additionally that ϕ ∈ O(D) then we may replace the direction d by d+ 2nπ/ν (n = 0, . . . , ν − 1).
Hence conditions (a)–(e) are also equivalent to

(h) BΓ1/K ,tBΓs,z1/κu ∈ OK
1,1/κ(

Sd+2nπ/ν × D) for n = 0, . . . , ν − 1,
(i) BΓ1/K ,tBΓs,z1/κu ∈ O

K ,qK
1,1/κ(

Sd+2nπ/ν ×S(d+arg λ+2kπ)/q) for n = 0, . . . , ν − 1 and k = 0, . . . , qκ − 1,
(j) u(t, z) ∈ Gs,1/κ [[t]] is K -summable in the directions d + 2nπ/ν for n = 0, . . . , ν − 1,

and conditions (f)–(g) are equivalent to

(k) u(t, z) ∈ C[[t, z
1
κ ]] is (K , 1/s)-summable in the directions (d + 2nπ/ν, (d + arg λ + 2kπ)/q) for k = 0, . . . , qκ − 1

and n = 0, . . . , ν − 1.
(l) u(t, z) ∈ C[[t, z

1
κ ]] is (K , 1/s)-summable in the directions Od+2nπ/ν,(d+arg λ+2kπ)/q for k = 0, . . . , qκ − 1 and n =

0, . . . , ν − 1.

Proof of Theorem 3. First, observe that by Propositions 7 and 8 the function v := BΓ1/K ,tBΓs,z1/κu satisfies the equation
(∂m1,t − λ(∂m2,z))

βv = 0
∂
j
m1,t

v(0, z) = 0 (j = 0, . . . , β − 2)
∂
β−1
m1,t

v(0, z) = λβ−1(∂m2,z)BΓs,z1/κϕ(z) ∈ O1/κ(D),

wherem1 := m1Γ1/K is amoment function of order 1/k1 := s1+1/K = q(s2+s) > 0 andm2 := m2Γs is amoment function
of order 1/k2 := s2 + s > 0. Since 1/k1 = q/k2, applying Theorem 2 to v we conclude that properties (a)–(c) are equivalent.

Moreover, by Remark 5 we obtain the equivalence (b) ⇔ (e).
To show the equivalence between (a) and (d), observe that BΓs1/q−s2 ,z

1/κϕ is qK -summable in directions (d + arg λ +

2kπ)/q for k = 0, . . . , qκ − 1 if and only if BΓ1/qK ,z1/κBΓs1/q−s2 ,z
1/κϕ ∈ O

qK
1,1/κ(

S(d+arg λ+2kπ)/q) for k = 0, . . . , qκ − 1. By
Proposition 3 and Corollary 1, it is equivalent to (a).

Now we assume additionally that s > 0 and qs2 ≥ s1. To find the equivalence between (f) and the previous
conditions (a)–(e), it is sufficient to show implications (c) ⇒ (f) and (f) ⇒ (b). To this end observe that qK ≤ 1/s.
Hence if BΓ1/K ,tBΓs,z1/κu ∈ O

K ,qK
1,1/κ(

Sd × S(d+arg λ+2kπ)/q) then also BΓ1/K ,tBΓs,z1/κu ∈ O
K ,1/s
1,1/κ(

Sd × S(d+arg λ+2kπ)/q) (for
k = 0, . . . , qκ − 1) and consequently by Definition 10 we conclude (f). On the opposite side, if u satisfies (f) then
BΓ1/K ,tBΓs,z1/κu ∈ O

K ,1/s
1,1/κ(

Sd ×S(d+arg λ+2kπ)/q). In particular, BΓ1/K ,tBΓs,z1/κu ∈ OK (Sd × D), which gives (b).
Next we show the equivalence (c) ⇔ (g). By Proposition 5, u(t, z) =


∞

j,n=0 ujnt jzn/κ is (K , 1/s)-summable in the
direction Od,(d+arg λ+2kπ)/q if and only if

v(t, z) :=

∞
j,n=0

ujn

Γ (1 + j/K + sn/κ)
tkzn/κ ∈ O

K ,1/s
1,1/κ(

Sd ×S(d+arg λ+2kπ)/q).

So, it is sufficient to show

v ∈ O
K ,qK
1,1/κ(

Sd ×S(d+arg λ+2kπ)/q) ⇔v ∈ O
K ,1/s
1,1/κ(

Sd ×S(d+arg λ+2kπ)/q).

By Lemma 1 we get the following connection betweenV (t, z) :=v(t, zκ) and V (t, z) := v(t, zκ)

V (t, z) = (1 +
1
K
t∂t +

s
κ
z∂z)

 1

0
V (tε1/K , z(1 − ε)s/κ) dε.

By the above formula and by the assumption Kq ≤ 1/s we conclude that if v ∈ O
K ,Kq
1,1/κ(

Sd × S(d+arg λ+2kπ)/q) thenv ∈ O
K ,1/s
1,1/κ(

Sd ×S(d+arg λ+2kπ)/q).
To show the implication on the opposite side, we use the connection between the boundary conditions for v andv.

Namely, since

∂nm2,z1/κ
v(t, 0) =

m2(n)
m2(0)

∞
j=0

ujn

Γ (1 + j/K + sn/κ)
t j
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and

∂nm2,z1/κ
v(t, 0) =

m2(n)
m2(0)

∞
j=0

ujn

Γ (1 + j/K)Γ (1 + sn/κ)
t j,

we get

∂nm2,z1/κ
v(t, 0) = Bm′

n,t∂
n
m2,z1/κ

v(t, 0),
wherem′

n(u) :=
Γ (1+u/K+sn/κ)

Γ (1+u/K)Γ (1+sn/κ) is amoment function of order 0 for n = 0, . . . , qκβ−1. So, since ∂n
m2,z1/κ

v(t, 0) ∈ OK (Sd),
by Corollary 1 we see that also ∂n

m2,z1/κ
v(t, 0) ∈ OK (Sd) for n = 0, . . . , qκβ − 1. Hence, by Theorem 2 we conclude that

v ∈ O
K ,qK
1,1/κ(

Sd ×S(d+arg λ+2kπ)/q). �

Now we return to the general equation (6). For convenience we assume that

P(λ, ζ ) = P0(ζ )
n
α=1

lα
β=1

(λ− λαβ(ζ ))
nαβ ,

where λαβ(ζ ) ∼ λαβζ
qα are the roots of the characteristic equation P(λ, ζ ) = 0 with pole orders qα ∈ Q and leading terms

λαβ ∈ C \ {0} for β = 1, . . . , lα and α = 1, . . . ,n.
We also assume that s, s1, s2 ∈ R, s1 > 0, s + s2 > 0 andϕj ∈ C[[z]]s for j = 0, . . . , n − 1. Without loss of generality we

may assume that there exist exactly N pole orders of the roots of the characteristic equation, which are greater than s1
s2+s ,

say s1
s2+s < q1 < · · · < qN < ∞ and let Kα > 0 be defined by Kα := (qα(s2 + s)− s1)−1 for α = 1, . . . ,N .
By Theorem 1, the normalised formal solutionu of (6) is given by

u =

n
α=1

lα
β=1

nαβ
γ=1

uαβγ (14)

withuαβγ satisfying
(∂m1,t − λαβ(∂m2,z))

γuαβγ = 0

∂
j
m1,tuαβγ (0, z) = 0 for j = 0, . . . , γ − 2

∂
γ−1
m1,tuαβγ = λ

γ−1
αβ (∂m2,z)ϕαβγ (z),

whereϕαβγ (z) =
n−1

j=0 dαβγ j(∂m2,z)ϕj(z) ∈ C[[z
1
κ ]]s and dαβγ j(ζ ) are holomorphic functions of the variable ξ = ζ 1/κ of

polynomial growth at infinity.
Since qα ≤

s1
s2+s for α = N + 1, . . . ,n, by Theorem 1,uαβγ is convergent for γ = 1, . . . , nαβ , β = 1, . . . , lα and

α = N + 1, . . . ,n.
Under the above conditions, immediately by Theorem 3 we get (see also [14, Theorem 5])

Theorem 4. Let (d1, . . . , dN) ∈ RN be an admissible multidirection with respect to (K1, . . . , KN) and let qα = µα/να with
relatively prime numbers µα, να ∈ N for α = 1, . . . ,N. We assume that

BΓs,zϕj(z) ∈ OqαKα (S(dα+arg λαβ+2nαπ)/qα )

for every j = 0, . . . , n − 1, nα = 0, . . . , µα − 1, β = 1, . . . , lα and α = 1, . . . ,N. Then the normalised formal solutionu ∈ Gs,1/κ [[t]] of (6) is (K1, . . . , KN)-multisummable in the multidirection (d1, . . . , dN).

In general, the sufficient condition for the multisummability of u given in Theorem 4 is not necessary, since the
multisummability of u satisfying (14) does not imply the summability of uαβγ (see [14, Example 2]). For this reason,
following [14], we define a kind of multisummability for which that implication holds.

Definition 16. Let (d1, . . . , dN) be an admissible multidirection with respect to (K1, . . . , KN). We say thatu is (K1, . . . , KN)-
multisummable in the multidirection (d1, . . . , dN) with respect to the decomposition (14) if uαβγ is Kα-summable in the
direction dα (for α = 1, . . . ,N) and is convergent (for α = N + 1, . . . ,n), where β = 1, . . . , lα and γ = 1, . . . , nαβ .

Repeating the proof of [14, Theorem 6] with [14, Theorem 4] replaced by Theorem 3, we conclude
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Theorem 5. Let (d1, . . . , dN) ∈ RN be an admissible multidirection with respect to (K1, . . . , KN) and let qα = µα/να with
relatively prime numbers µα, να ∈ N for α = 1, . . . ,N. We assume thatu is the normalised formal solution of

P(∂m1,t , ∂m2,z)u = 0

∂
j
m1,tu(0, z) = 0 (j = 0, . . . , n − 2)

∂n−1
m1,t
u(0, z) =ϕ(z) ∈ C[[z]]s.

Thenu ∈ Gs,1/κ [[t]] is (K1, . . . , KN)-multisummable in the multidirection (d1, . . . , dN)with respect to the decomposition (14) if
and only if

BΓs,zϕ ∈ OqαKα (S(dα+arg λαβ+2nαπ)/qα )

for every nα = 0, . . . , µα − 1, β = 1, . . . , lα and α = 1, . . . ,N.

Remark 9. Analogously, one can also consider the multisummability in two variables using the approaches given by Sanz
or Balser. By Theorem 3 we obtain the same characterisation of multisummable solutions in two variables as in Theorems 4
and 5.

9. An example

In this section we give a simple example illustrating the developed theory. For fixed q ∈ N and s ∈ R we discuss the
solution of the equation

(∂t − ∂qz )u = 0, u(0, z) =ϕ(z) ∈ C[[z]]s. (15)

Observe thatu satisfies equation (∂m1,t − λ(∂m2,z))u = 0 with the moment functions m1 = m2 = Γ1 and λ(ζ ) = ζ q. We
have

Corollary 2. Let s ∈ R, q ∈ N andu be a formal power series solution of (15). Then the following conditions are equivalent:
(1) u(0, z) ∈ C[[z]]s.
(2) u(t, 0) ∈ C[[t]]q(1+s)−1.
(3) u(t, z) ∈ C[[t, z]]q(1+s)−1,s.

Proof. The implications (3) ⇒ (2) and (3) ⇒ (1) are obvious. The implication (1) ⇒ (3) follows from Theorem 1. So, it is
sufficient to show implication (2) ⇒ (3). To this end, observe thatu satisfies the equation

(∂z − λ1(∂t)) · · · (∂z − λq(∂t))u = 0, u(t, 0) ∈ C[[t]]q(1+s)−1,

where λn(ζ ) = ei2nπ/qζ 1/q for n = 1, . . . , q.
Hence, by Theorem 1 with replaced variables t and z, we get u = u1 + · · · + uq, where un satisfies the equation

(∂z − λn(∂t))un = 0 andun ∈ C[[t, z]]q(1+s)−1,s for n = 1, . . . , q. It means that alsou ∈ C[[t, z]]q(1+s)−1,s. �

Assuming s = 0 (resp. s < 0) in Corollary 2, replacingu andϕ in (15) by their sums u and ϕ, and applying Remark 4, we
obtain

Corollary 3. The solution u of (15) is t-analytic in a complex neighbourhood of the origin if and only if ϕ ∈ O(D) (for q = 1)
and ϕ ∈ O

q
q−1 (C) (for q = 2, 3, . . .). Furthermore, the solution u of (15) is t-entire of exponential growth of order k > 0 if and

only if ϕ ∈ O
kq

k(q−1)+1 (C).

By Theorem 3 we obtain immediately

Proposition 10. Let d ∈ R,u be a formal power series solution of (15) and q(1 + s)− 1 > 0. Then the following conditions are
equivalent:
1. u ∈ Gs,1[[t]] is (q(1 + s)− 1)−1-summable in direction d.
2. BΓs,zϕ ∈ O

q
q(1+s)−1 (S(d+2kπ)/q) (for k = 0, . . . , q − 1).

3. BΓ1/q−1,zϕ is q
q(1+s)−1 -summable in the directions (d + 2kπ)/q for k = 0, . . . , q − 1.

If additionally s > 0 then conditions 1–3 are also equivalent to
4. u ∈ C[[t, z]] is ((q(1 + s)− 1)−1, s−1)-summable in the directions (d, (d + 2kπ)/q) for k = 0, . . . , q − 1.
5. u ∈ C[[t, z]] is ((q(1 + s)− 1)−1, s−1)-summable in the directions Od,(d+2kπ)/q for k = 0, . . . , q − 1.
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