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1. Introduction

The problem of summability of formal solutions of linear PDEs was mainly studied under the assumption that the Cauchy
data are convergent, see Balser [3], Balser and Loday-Richaud [5], Balser and Miyake [6], Ichinobe [8], Lutz, Miyake and
Schafke [9], Malek [10], Michalik [11-13] and Miyake [15].

The case of more general initial data was investigated only for the complex heat equation (see Balser [1,4]). In [1] Balser
considered the case of entire initial data with an appropriate growth condition and he gave some preliminary results for
divergent initial data, too. Next, these results were extended in [4], where a characterisation of summable formal power
series solutions of the complex heat equation in terms of properties of divergent Cauchy data was given.

The aim of our paper is a generalisation of Balser’s results [ 1,4] to homogeneous linear partial differential equations with
constant coefficients.

Namely, we consider the initial value problem for a general linear partial differential equation with constant coefficients
in two complex variables (t, z)

P@,3,)i=0, &00,2)=¢@) (=0,....n—1), (1)

where P(%, ¢) is a polynomial in both variables of degree n with respect to A and the Cauchy data @;(z) = Zﬁio pinz" €
C[[z]] are formal power series.
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We study the Gevrey asymptotic properties of formal power series solutions U for a fixed Gevrey order of the initial data.
Moreover, we characterise the multisummable formal solutions U of (1) in terms of the Cauchy data.

The results are expressed in the general framework of moment differential equations with the differentiations d; and d,
replaced by more general operators of moment differentiations 9, ; and 9, , respectively (see Definition 12). The general
moment differential equations were introduced by Balser and Yoshino [7], who studied the Gevrey order of formal solutions
of such equations. A characterisation of the multisummable formal solutions of moment differential equations in terms of
analytic continuation properties and growth estimates of the Cauchy data was established in our previous paper [14] under
the assumption of convergence of the Cauchy data. In the present paper we continue the study without this assumption.
Additionally we consider a wider class of moment functions, which is a group with respect to multiplication, and so the set
of moment differential operators contains some integro-differential operators (see Example 3).

We give a meaning to summability of formal solutions U in two variables by two methods. In the first one we treat u as
a formal power series in t-variable with the coefficients belonging to some Banach space of Gevrey series (in z-variable).
This situation is carried over by the general theory of summability developed by Balser [2]. In the second method we study
summability of 7 in two variables (t, z) using approaches used by Balser [4] and by Sanz [16].

The main idea of the paper is based on the use of appropriate moment Borel transforms :(')’m/l rand $m’2.z (see Definition 5),
which transform the formal solution U of the equation PO, amz,z)a = 0 with the divergent Cauchy data @; into the
analytic solution v = By, ,[O’B’m/z,zﬂ of the equation P(amlm/1 t 3m2m’2,z)v = 0 with the convergent Cauchy data :Bm/Z’Z@. On
the other hand we are able to define the summability of i (both in t and in (¢, z) variables) in terms of analytic continuation
properties of v. In this way, analogously to [14], we reduce the problem of summability of Ul to the problem of analytic
continuation of v.

In the case of summability of U with respect to t-variable, it is sufficient to apply our previous result [14, Theorem 3],
which establishes the relation between the analytic continuation properties of v (with respect to t) and the Cauchy data
J;’m/zquij. In the case of summability of U in two variables (t, z) the situation is more complicated, since we have to study the
analytic continuation properties of v with respect to both variables. To this end we characterise the analytic continuation
properties of v in two variables (t, z) in terms of the Cauchy data.

Finally, in both cases we obtain a characterisation of the multisummable formal solution U of moment differential
equations in the terms of the divergent initial data @;.

In the last section we discuss a simple example illustrating the developed theory. Namely, we consider the formal solution
U =(t, z) of the Cauchy problem

(B —U=0, U0O,2)=p@x).

We show the relation between the properties of the Cauchy data @, the summability of U in one variable t and in two
variables (¢, z).

2. Notation

We use the following notation. The complex disc in C" with centre at the origin and radius r > 0 is denoted by
D! :={z € C" : |z| < r}. To simplify notation, we write D, instead of D}. If the radius r is not essential, then we denote it
briefly by D" (resp. D).

A sector in a direction d € R with an opening & > 0 in the universal covering space (5\76} of C \ {0} is defined by
Sa(e) ={z€C\{0}: z=re”, d—e/2 <0 <d+e/2, r > 0}.

Moreover, if the value of opening angle ¢ is not essential, then we denote it briefly by S,.

Analogously, by a disc-sector in a direction d € R with an opening ¢ > 0 and radius r_> 0 we mean a domain
Sd(s r) := Sq(e) U D,. If the values of ¢ and r are not essential, we write it as Sd for brevity (i.e. Sd =S4 UD).

By ©(G) we understand the space of holomorphic functions on a domain G € C". Analogously, the space of analytic
functions of the variables z]/'(1 1/K” ((k1,...,4n) € N")on G is denoted by O1/,.....1/x, (G). More generally, if E
denotes a Banach space w1th a norm || Iz, then by O(G, E) (resp. O1,....,.1/x, (G, E)) we shall denote the set of all E-

valued holomorphic functions (resp. holomorphic functions of the variables zl/'”, Z,}/K”) on a domain G € C". For

more information about functions with values in Banach spaces we refer the reader to [2, Appendix B]. In the paper, as a
Banach space E we will take the space of complex numbers C (we abbreviate O (G, C) to O(G) and Oy, .....1/x, (G, C) to
O1/k;,...1/1, (G)) o1 the space of Gevrey series G; 1/ (r) (see Definition 7).

AAAAA

Definition 1. A functionu € Oy, (/S\d(s; 1), E) is of exponential growth of order at most K € Rasx — o0 in/S\d(e; r) if for any
Z € (0,e)andT € (0, r) there exist A, B < oo such that

K -~
B™ for every x € S4(%; 7).

The space of such functions is denoted by (91/,( (Sd(s; r), E).

[u@®)lle < Ae
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Analogously, a function u € O1/ic1.1/k2 (Sd1 (e1;17) X Sd2 (g2; 12)) is of exponential growth of order at most (K, K;) € R? as
(t,z) > oin Sd1 (e1;11) X Sd2 (s2; 1) ifforany €; € (0, &) and any 7; € (0, 1;) (i = 1, 2) there exist A, By, B, < oo such
that

lu(t, z)| < AeBIt T B2z g every (t,z) € §d1 (€1;71) x /S\dz (&2 7).
The space of such functions is denoted by (Df/‘Kle/Kz (S¢, (g1; 1) X Edz (625 12)).

The space of formal power series U(x) = ZJ 0 ujxf/" withu; € Eis denoted by E[[x%]] Analogously, the space of formal

power series U(t, z) = ZJ 10 u]ntf/“z"/"2 with uj, € E is denoted by JE[[tkl z"z 1]. We use the “hat” notation (i, 7, @, 1// f)
to denote the formal power series. If the formal power series U (resp. v, @, '(/f,f) is convergent, we denote its sum by u (resp.

v, 0, ¥, f).
3. Moment functions

In this section we recall the notion of moment methods introduced by Balser [2].

Definition 2 (See [2, Section 5.5]). A pair of functions e,; and E,, is said to be kernel functions of order k (k > 1/2) if they have
the following properties:

1. em € O(So(m/k)), em(2)/z is integrable at the origin en(x) € Ry for x € R, and ey, is exponentially flat of order k in

So(n/k) (i.e. ¥s-03a 5= such that ey (z)] < Ae=7/" for z € So(rr /k — &)).

2. En € 0%(C) and Ep, (1/z)/z is integrable at t the origin in S, 2w — m /k).

3. The connection between e, and E,, is given by the corresponding moment function m of order 1/k as follows. The function
m is defined in terms of e, by

[o¢]
m(u) = / x“le,(x)dx forReu > 0 (2)
0
and the kernel function E,;, has the power series expansion
(o] Zn
En(z) = Z forz e C. (3)
= m(n

Observe that in case k < 1/2 the set S; (2w — 7 /k) is not defined, so the second property in Definition 2 cannot be
satisfied. It means that we must define the kernel functions of order k < 1/2 and the corresponding moment functions in
another way.

Definition 3 (See [2, Section 5.6]). A function ey, is called a kernel function of order k > 0 if we can find a pair of kernel
functions es and Ez; of order pk > 1/2 (for some p € N) so that

em(z) = ex(zV/P)/p forz € S(0, 7 /k).
For a given kernel function e, of order k > 0 we define the corresponding moment function m of order 1/k > 0 by (2) and
the kernel function E, of order k > 0 by (3).

Remark 1. Observe that by Definitions 2 and 3 we have

[o¢] [e0)

5 m(jp)

m@) =mpu) and E,(2) =Y —— =
= m()

j=
We extend the notion of moment functions to real orders as follows

Definition 4. We say that m is a moment function of order 1/k < 0if 1/m is a moment function of order —1/k > 0.
We say that m is a moment function of order 0 if there exist moment functions m; and m; of the same order 1/k > 0 such
that m = my/ms.

By Definition 4 and by [2, Theorems 31 and 32] we have

Proposition 1. Let mq, m, be moment functions of orders s, s, € R respectively. Then

(1) mymy is a moment function of order s; + S,
(2) mq/m; is a moment function of order s; — s,.

Remark 2. By the above proposition we see that the set M of all moment functions endowed with the multiplication
operation has the structure of group (M, -). Moreover, the map ord : (M, -) —> (Z, +) defined by ord (m) := s for every
moment function m of order s, is a group homomorphism.
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Example 1. Foranya > 0,b > 1and k > 0 we can construct the following examples of kernel functions e;, and E,; of
orders k > 0 with the corresponding moment function m of order 1/k satisfying Definition 2 or 3:

k
o en(2) = akzP*e 7,

e m(u) = aF(b + u/k),

(o) Z
® En(2) = 3 2 iz Foam-

In particular fora = b = 1 we get the kernel functions and the corresponding moment function, which are used in the
classical theory of k-summability.

o en(z) = kzke 7,
e m(u) =11+ u/k)

o En(2) = =: Eqk(2), where Eq is the Mittag-Leffler function of index 1/k.
/ /

> % r<1+1/k)

Example 2. For any s € R we will denote by Iy the function

_ra+sw fors >0
I = {I/F(l —su) fors <O.

Observe that by Example 1 and Definition 4, I'y is an example of a moment function of order s € R.

The moment functions I'y will be extensively used in the paper, since every moment function m of order s has the same
growth as I. Precisely speaking, we have

Proposition 2 (See [2, Section 5.5]). If m is a moment function of order s € R then there exist constants ¢, C > 0 such that

c"Iy(n) < m(n) < C"Is(n) foreveryn € N.

4. Moment Borel transform, Gevrey order and Borel summability
We use the moment function to define the Gevrey order and the Borel summability. We first introduce

Definition 5. Let « € N and m be a moment function. Then the linear operator 8B, 41/« : E[[X%]] — E[[x%]] defined by

Pt <Z u,xm> Z i

is called an m-moment Borel transform with respect to x'/.
We define the Gevrey order of formal power series as follows

Definition 6. Let x € Nands € R.Then € ]E[[x%]] is called a formal power series of Gevrey order s if there exists a disc
D C C with centre at the origin such that BFS,XWET € 01/(D, E). The space of formal power series of Gevrey order s is

denoted by IE[[X% 1.

—~ R . .
Analogously, if k1, k; € Nand sy, s, € Rthenu € E[[t*1,z*2 ]] is called a formal power series of Gevrey order (s1, s3) if
there exists a disc D> C C? with centre at the origin such that B, e £Fsz i/l € O1/¢,.1/c, (D, E). The space of formal
- .

1 1
power series of Gevrey order (s1, $;) is denoted by E[[t*1, z*2 ]],, s,.

Remark 3. By Proposition 2, we may replace I (resp. I, and I, ) in Definition 6 by any moment function m of order s
(resp. by any moment functions m; and m; of orders s; and s,).

Remarl(4 Ifu e ]E[[x%]] ands < 0 then the formal series U is convergent, so its sum u is well defined. Moreover,
Ue IE[[XK]]O S ue0yDE andu e E[[xx]]s S ue (91/1/5(((1, E) fors < 0.

By Definitions 5 and 6 we obtain

Proposition 3. For every i € ]E[[x% 1] the following properties of moment Borel transforms are satisfied:

® By, x1/kc B, Xl/Ku = Biymy, /U for every momentfunctzons my and my.
® By x/x 31/m Al = B jm itk B Xmu = By, LU = U for every moment function m.

el c IE[[XK 1s, & Bm,xwu € E[[XK 1s,—s for every s, s; € R and for every moment function m of order s.
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As a Banach space E we will take the space of complex numbers C or the space of Gevrey series G; 1/, (r) defined below.
Definition 7. Fix« € N,r > 0 and s € R. By G 1, () we denote a Banach space of Gevrey series

~ 1 ~ —
Gs1/¢ (1) == {9 € Cllz¥]ls: B, 1@ € O17(Dr) N C(Dr)}
equipped with the norm

1@ll,1y0 ) = Max | Bp, 1k P@)]-
lz|=r

We also set G 1/ = li_n)]r>0 Gs, 1/« (r). Analogously, we define 01z (G, Gs1/c) = ]l_l’I)l O17(G, Gs,1/¢(r)) and (91/K (G,
Gs.l/x) = li_l’I)lr>0 0?/;(6’ Gs, 1/« ().

Moreover, we denote by G, 1/ [[t]]s, the space of formal power series ut,z) = Zfioﬂj(z)tf of Gevrey order s; with
coefficients Uj(z) € Gs, 1/

By Definitions 6, 7, Remark 3 and Proposition 3 we conclude

Proposition 4. Foreveryk € N,s, s € R(resp. sy, Sz, S € R) and for every moment function m of order s the following conditions
are equivalent:

o T e Clxs Il (resp. T € C[t, 2 sy 5,)

e B 1/l € O (D) (resp. Br, B, 2l € O1,1(D?)),

. there existsr > Osuch thatu € G;, 1/« (1) (resp. ue Gs,. 1/ (MI[E]s,)r
o U € Gy (resp. U € Gy 1yc[[t]s,),

o B, /U € Cl[x7 1s_s (resp. B 1/ € Gy 51 [[t]]s,).

Now we are ready to define the summability of formal power series in one variable (see Balser [2])

Definition 8. Letx € N,K > Oandd € R. Then ue E[[XK 1]is called K-summable in a direction d if there exists a disc-sector
Sd in a direction d such that £F1/:< Al € (91/K (Sd, E).

Remark 5. By Definitions 7 and 8,1 € Gs,1/¢[[t]] is K-summable in a direction d if and only if 3]‘1”(,[31—'5‘21/»(1[\ € @lf_]/K (§d X
D). Moreover, we may replace I in the above characterisation by any moment function m of order s.

We can now define the multisummability in a multidirection.

Definition 9. Let K; > --- > K, > 0. We say that a real vector (di, . .., d;) € R" is an admissible multidirection if
|di = di—1| < w(1/Kj — 1/Kj—1)/2 forj=2,...,n
Let K= (Kq,...,Ky,) € R} and letd = (dy, ..., d;) € R" be an a admissible multidirection. We say that a formal power

series U € E[[x]] is I(—multlsummable in the multldlrectlon difu =1y + - + 1y, where'u\j € E[[x]] is Kj-summable in the
directiond;forj=1,...,n.

Following Sanz [ 16] we extend the notion of summability to two variables

Definition 10. For k1,«x; € N, K;,K; > 0Oandd;,d, € R the formal power series U € (C[[t“l sz]] is called (K1, K>)-

summable in the direction (dy, d;) if there exist disc-sectors Sd1 and 5.12 suchthat B, =1/ B Fyjky 2 '/e2 ue o, /K']( 1k (Sdl X

Sdz).

Remark 6. By the general theory of moment summability (see [2, Section 6.5 and Theorem 38]), we may replace I in
Definition 8 (resp. Iy k, and Iy , in Definition 10) by any moment function m of order 1/K (resp. by any moment functions
m; of order 1/K; and m, of order 1/K>).

A more general approach to summability in several variables was given by Balser [4]. Namely, he introduced
Definition 11. Lets{, s, > 0,0 C {(tg, 29) € ((C/\\{B})Z: |l (to, z0)|| = 1} be bounded, open and simply connected and let
={(t,2) € (C/\\{B})Z: (t,z) = (X’'to, x22y), (to,20) € O, x > 0}.
Then we say that G is a (s1, S2)-region of infinite radius with an opening O.

Moreover, for k1, k3 € N the formal power series

> . 11
ut, z) = Z ujnt]/Klzn/Kz € C[[t*T, z72 ]
j,n=0
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is called (1/s1, 1/s3)-summable in the direction O if

o0
~ Ujn i
Bes, sUlt, 2) = _J g1 zn/k2
e jnZ:o (1 + s1j/k1 + 52n/k2)

belongs to the space Oy, 1/, (GU D?) and for every O’ € O there exist A, B > 0 such that
| Bs, .57 U X o, x220)| < A forevery (ty,z9) € 0, x > 0.
In the paper we will consider only the situation, when G is a polysector Sy, x S4, with an opening

0 = 0y, .4, = {(to, 20) € Sq, X Sg, : |I(to, 20)|l = 1}.

In this case, immediately by Definition 11, we get

- RN
Proposition 5. Let s1,5, > 0,d;,d, € Rand k1, ko € N. Then the formal power seriesu € C[[t*1,z*2]]is (1/s1, 1/S2)-

summable in the direction Oy, 4, if and only if By, 5,0 € (9]1;211732 (Sa, X Suy).

The connection between the Borel type transforms B, , Br,, , and By, s,) is given in the next lemma.

Lemma 1. Let 51,5, > O0and U € C[[t, z]]. Then the formal power series V(t,z) = 351_[31}2_2'&(& z) and w(t,z) =
:B(sl,sZ)’u\(t, z) are connected by the formula

1
w(t,z) = (14 s1t3; + szzaz)/ v(te’, z(1 — €)2) de.
0

Proof. Letu(t,z) = Y 27 _o Uknt*z". Then

> uy kan > Uy l'kZ"
e, z) =) L and B(t,2) =y ——— .
oo I'(1+ ks))I'(1+ nsy) Ko I'(1+ ks + nsy)

Using properties of the beta function

I'(1+ks)I"'(1+ nsy)
I' (2 + ks + nsy)

1
/ 11— &)™2de = B(1 + ks1, 1+ nsy) =
0

we conclude that

K 1
Uyl 2" / eX1(1 — &)™ de
'(M+ks)I'(1+nsy) Jo

I
M2

1
/ v(te’, z(1 — €)2) de
0 k,n=0
o Upnthz"

T2+ ksy +nsy)’

k,n=0

Hence

1
w(t,z) = (14 s1td; +szzaz)/ Ve, z(1—e)?)de. O
0

Remark 7. In Theorem 3 we will show thatif I € C[[t, z% 1] is a formal solution of (13) then
Br, «Br, 2l € 0,111 (Sa, X Si) € Bis, syl € 01111 (Say X Say).

In other words, for such U we have the equivalence between (1/s;, 1/s,)-summability in the direction (d;, d,) (introduced
by Sanz) and (1/s4, 1/s,)-summability in the direction Oy, 4, (introduced by Balser). In our opinion it should be possible
to extend the general theory of moment summability (see Balser [2, Section 6.5]) to several variables and to show that the
above equivalence holds for every formal power series U € C[[t, z]].

5. Moment operators

In this section we recall the notion of moment differential operators constructed recently by Balser and Yoshino [7]. We
also extend the concept of moment pseudodifferential operators introduced in our previous paper [14].
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Definition 12. Let m be a moment function. Then the linear operator o, x : E[[x]] — E[[x]] defined by
0 Uu; . o Uu; 1
3 ) =) Y
(S ) =2

is called the m-moment differential operator 0y, .
More generally, if « € N then the linear operator d, 4/ : ]E[[x%]] — IE[[x%]] defined by

N T SN U ;
e | Y =2l ) = Ll
! (; mj/x) ) ;mwm

is called the m-moment 1/«-fractional differential operator 9, ,1/..

Example 3. Below we present some examples of moment differential operators.

e For m(u) = I'1(u), the operator 9y, , coincides with the usual differentiation 9.
e Form(u) = I(u) (s > 0), the operator 9y, x satisfies

(O ) (x°) = (X)),

where 9 is the Caputo fractional derivative of order s defined by
N —_xI] = X9,
x (Z R0 ) 2,70

e For m(u) = 1, the corresponding operator 9y, x satisfies

UXx) — o

BnAl(X) = for every Ui(x) = Z u € E[[x]].
=0

e For m(u) = I'_1(u), the operator 9y, x satisfies
N 1 [*1Uy) —u N >
OmxU(x) = f/ M dy foreveryu(x) = Zujx’ e E[[x]].
X Jo y i—
j=0

e Form(u) = I'_s(u) (s > 0), the operator 9y, , satisfies
UKS) — ug - N
575 for every u(x) = Zujx’ € E[[x]1,

=0

(am,xm (xs) - lax_
XS

where 0, * is the right-inversion operator to d; and is defined by

—s — Uj Sj = Uj— Sj
9, (Z Fséj)xj> = Z FJS—(;)X’.

j=0 j=1

The moment differential operator dy, ; is well-defined for every ¢ € @ (D). In addition, we have the following integral
representation of d;; ,¢.

Proposition 6 (See[14, Proposition 3]). Let ¢ € O (D,) and m be amoment function oforder 1/k > 0.Thenforevery|z| < & < T
and n € Nwe have

1 oo (0)
heo@ =g o [ o)

€m

(u;C) dz dw,

w
where 0 € (—argw — 3, —argw + ;).

Using the above formula, we have defined in [14, Definition 8] a moment pseudodifferential operator A(9y, ;) : O (D) —
O (D) as an operator satisfying

2(Om,2)Em(§2) == A()En(g2) for|¢| = 1o.
Namely, if A(¢) is an analytic function for [¢| > ry then A(dy, ) is defined by

e ® em(w)

1
A(Om,2)e(2) = i %‘ - P(w) ~ ME)Em(t2)

0 i w

d¢ dw

forevery ¢ € O(D;) and |z| < & < r,wheref € (—argw — 3, —argw + 7).
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We extend this definition to the case where A(¢) is an analytic function of the variable £ = ¢'/* for |¢| > ry (for some
k € Nandro > 0). Since (3m .¢)(z“) = 95 ,(p(z")) for every ¢ € O (D), where m(u) := m(u/x) (see [14, Lemma 3]), the
operator A(dp, ;) should satisfy the formula
A Om.)p) (") = M0 ,)(p(z")) forevery ¢ € O/ (D). (4)
For this reason we have

Definition 13. Let m be a moment function of order 1/k > 0 and A(¢) be an analytic function of the variable & = ¢ /¥
for |¢] = 1o (for some x € N and ry > 0) of polynomial growth at infinity. A moment pseudodifferential operator

A(Om,z): O1/c(D) — Oy, (D) (or, more generally, A(9, ) : IE[[Z%]]O — E[[z%]]o) is defined by

A(Om2)e(2) =

K oo(0)
$ pw [ M g 5)

w|=¢ rgel?
0

2k i

00 CH/KZH/K

for every ¢ € Oy/(D;) and |z| < & < r, where m(u) = m(u/k), Ez(¢V/<zV/<) = Y22, 1
2% —argw + ) and f wj=e MEANs that we integrate « times along the positively oriented circle of radius ¢. Here the
integration in the inner integral is taken over a ray {re?’ : r > rq}.

,0 € (—argw —

Observe that
) ¢ w(0) e enm(Tw)
(om0 = 5 .f o) [ e dr du
KTT1 |w|=¢ roe
_ 1 o0 eiw) |
= o . s‘/)(w )/ )»(C VEz(L2) ———— w

= M5 ) (9().

so (4) holds for the operators A(dy, ;) defined by (5).
Immediately by the definition, we obtain the following connection between the moment Borel transform and the moment
differentiation.

Proposition 7. Let m and m’ be moment functions of positive orders. Then the operators Bpy x, Om.x: E[[X]] — E[[x]] satisfy
the following commutation formulae for every U € E[[x]] and for m = mm':

(i) ﬂ(Bm/,xam.xa :Aaﬁ,xcgm/,xﬁv R
(ii) By xP(Omx)u = P(0m.x) B U for any polynomial P with constant coefficients.

The same commutation formula holds if we replace P(0p, x) by A(9y x). Namely, we have
Proposition 8. Let m and m’ be moment functions of positive orders and A(¢) be an analytic function of the variable & = ¢/
for |¢]| = ro (for some k € Nandry > 0) of polynomial growth at infinity. Then the operators B,y y1/c, M(Om.x) : ]E[[x%]]o —
IE[[X%]]O satisfy the commutation formula

B 1k A (O IU = A(B5,x) By 1/ U
for everyl € ]E[[x%]]o and for m = mm’.

Proof. Note that, by Proposition 1, m = mm’ is also a moment function of positive order. Observe that by Definition 13 we

have
K oo(0)
%wmwmmszf u(w) 'k@%w@ﬂwwﬁﬁmiw
K1 |w|=¢ roe’9 é’
K oo(0)
- ].f uw) [ a@Ea ) ™) g gy
2kmi |w|=¢ roet? fw

1 K oo(0) -
= A(am)r f uw) [ D@m,,xukEﬁ(;”le/K)M de dw
KTl cw

lw|=¢ roe!
= A‘(aﬁ,x)ﬁm’,x”"ﬁ(x)a
where m(u) := m(u/«) and %(u) =m(u/k) = mu/k)m'(u/x). O

Using Proposition 8 we are able to extend Definition 13 to the formal power series and to the moment functions of real
orders.



S. Michalik / J. Math. Anal. Appl. 406 (2013) 243-260 251

Definition 14. Lets € R, m be a moment function of orders € R and A(Z) be an analytic function of the variable £ = ¢V/*
for |{| > 1o of polynomial growth at infinity. A moment pseudodifferential operator A(dp ) for the formal power series

@ € E[[z+ ], is defined by
A(Om2)9(2) = Br__ 1A (37.2)Br, ;19 (2),
where m = mI%, 5 = max{s, 1 — 5} and the operator A(37.) is constructed in Definition 13.
Definition 15 ([14, Definition 9]). We define a pole order q € Q and a leading term A € C \ {0} of A(¢) as the numbers
satisfying the formula lim;_, o, A(£)/¢% = A. We write it also as A($) ~ AZ%.
At the end of the section we improve the estimate given in [14, Lemma 1] as follows

Lemma?2. Let ¢ € (C[[z%]]s, s < 0, m be a moment function of order 1/k > 0 and A(9s, ;) be a moment pseudodifferential
operator with L.(¢) ~ A¢? and q € Q. Then there exist r > 0 and A, B < oo such that

sup [X (O )@ (@)| < IAVAB Tgss1/0 () forj=0,1,...,

|z|<r
where q := max{0, q}.
Proof. Repeating the proof of [ 14, Lemma 1], we may take r > 0 and &, > 0 such that

. LGy 1 [*
sup |4 (9m2) ()] < |A|JA13'1M—7§ lo(w) dlu|

lz|<r el 2kme |w|=¢

for some A, By < oo and for every & > &, such that D, € Dand ¢ € Oy (D).
If s = 0 then the assertion is given by the estimation

f lp(w)| dlw| < A,.

2kme J =

Ifs < Otheng € (91_/}(/5(@). So we estimate

K
f lo(w)| djw| < AeP25""" forevery e > &,.

2kme |w|=¢

Hence, putting ¢ = (_'%f)*s and applying the Stirling formula (see [2, Theorem 68]) we conclude that

. AVAB I3 (e
sup M (Om)p(2)| < PABTa)e

lz|<r (_Sja)fsﬁ = |M]ABIFE(5+1/’<)O)' .

6. Formal solutions and Gevrey estimates

In this section we study the formal solutions of the initial value problem for a general linear moment partial differential
equation with constant coefficients

{P(amﬁ, Oy )U =0
o, 1(0,2) = ;(2) € Cllzll (G=0,....,n—1),

where m, m, are moment functions of orders s, s, € R respectively, and

(6)

P(r, ) = Po(O)A" = Y Pi(O)A" (7)

=1

is a general polynomial of two variables, which is of order n with respect to .
First, we will show the following

Proposition 9. Let m, and m/, be moment functions, U € C[[t,z]] and v = Bm/l,[:Bm/z’zﬁ. Then U is a formal solution of (6) if
and only if v is a formal solution of
P (0, .t 8ﬁ2,z)/v:\: 0 (®)
¥, 0(0,2) = Y(2) = By, ,9;(2) € Cllz]] forj=0,...,n~1,

mq,t

where m; :== mym) and m; = mymj,.
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Proof. (=) We assume that U is a formal solution of (6). By Proposition 7 we have

P(Biy ¢ Oty 2O = P By 1 Oy 2) B, By 21
= qu,t‘ﬂm/z,zp(amhf’ amz,l)a =0

and
&, 0(0,2) = afm],[cﬂm/l B, 1(0,2) = By ,tﬁmé,za{nlﬁ(o,z)
= B .92
forj=0,...,n— 1.So7v is a formal solution of (8).

(<=) Observe that = B]/m/r[:&’]/m/z,z’v‘ and g; = 31/,11/2,2@ forj = 0,...,n — 1. Repeating the first part of the proof
with 7 replaced by v and @; replaced by @] we obtain the assertion. O

If Py(¢) defined by (7) is not a constant, then a formal solution of (6) is not uniquely determined. To avoid this
inconvenience we choose some special solution which is already uniquely determined. To this end we factorise the moment
differential operator P(0p, ¢, Om,,z) as follows

P(arm,h amz,z) = Po(amz,z)(8m1,t - )Vl(amz,z))nl e (aml,t - )\l(amz,z))nl
: PO(amzﬁz)P(aml.t» amz.z),

where A1(¢), ..., Aj(¢) are the roots of the characteristic equation P(A, ) = Owith multiplicityny, ..., nj(n;+- - -4+n; = n)
respectively.

Since A, (¢) are algebraic functions, we may assume that there exist x € Nand ry < oo such that A, (¢) are holomorphic
functions of the variable £ = ¢V/* (for |¢| > ro) and, moreover, there exist A, € C\ {0} and gy = (e /vy (for some relatively
prime numbers u, € Z and v, € N)such that A,({) ~ A % fora = 1,..., L Hence the moment pseudodifferential
operators Ay (dm, ,) are well-defined.

Under the above assumption, by a normalised formal solution 1 of (6) we mean such a solution of (6), which is also a
solution of the pseudodifferential equation P(dy,, ¢, dm, .)U = O (see [14, Definition 10]).

Now we are ready to study the Gevrey order of formal solution 7 of (6), which depends on the orders s1, s, € R of the
moment functions my, m; respectively, on the Gevrey order s € R of the initial data @ and depends on the pole orders g, € Q

of the roots 1, (¢) (@ = 1, ..., ). We generalise the results for the analytic Cauchy data given in [14, Theorems 1 and 2] as
follows
Theorem 1. Let s € R and let U be a normalised formal solution of (6) with @ € Cllzlls § = 0,...,n — 1) then

U= Zfﬁl ZZ“:l Uyp WithUyg being a formal solution of a simple pseudodifferential equation

Oyt = o Omy.2)) Tap = 0
a’ml_guaﬁ(o,z)=0 G=0,....,8=2) (9)
O 00p(0,2) = 227 (Omy.)Pup 2),

where Qop(z) = Z{’;o] dopj(Om, 2)P;(2) € (C[[z%]]S and dqp;(¢) are some holomorphic functions of the variable § = V¢ and
of polynomial growtll:.
Moreover, if q, is a pole order of A (¢) and q, = max{0, q,}, then a formal solution Uy is a Gevrey series of order

q, (52 +5) — s1 with respect to t. More precisely, ’u},;; e CI[t, Z%]]aa(52+5)—51~5 or, equivalently, il\alg € Gs 1/ [lt]lg, sy45)—s1-
Proof. For fixed s > max{s, —s,} we define v := :B’pg,zﬁ. By Proposition 9, v is a formal solution of

P(aml,ts aﬁz,z)ﬁA: 0
8,metﬁ(0,z) = Vj(2) = B ,9;(2) € C[[z]]s—s forj=0,...,n—1,

where m, := m, 5. Since m, is a moment function of order s + s, > 0 and {/;1 are the Gevrey series of order s — s < 0 for
j=0,...,n— 1, repeating the proof of [ 14, Theorem 1] we conclude that? = fo:] 22“21 Vyp With D, being a formal
solution of

Oyt = o Brp.2)) Vup = 0

Oy Vap(0,2) =0 (=0,...,8—2)

o 0up(0,2) = A By ) Vap (2),
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where Il/uﬂ(Z) = Z =_ o i (O, Z)I/f] (2) € (C[[ZK 1]s—s and daﬂ,(;“) are some holomorphic functions of the variable & = ¢/«
and of polynomial growth. Hence, by Definition 14, u = er:] Zﬂ:l Ugp, Where Uy s = B _1/¢Uyp satisfies (9) with

n—1 n—
Bup = Br i Vap = Br_x Y dupi(Om, ) Vi@ = Y dupi(9m, 2)P5(2)
j=0 j=0

forp=1,...,nganda=1,...,L

To find the Gevrey order of 7, va p=

)Lj (am z)wozﬂ(z) P
» — 0 of 2, ]'
Vo p(t, 2) = my( )] E (5 1) T me t

Hence, by Lemma 2, there exist r > 0 and A, B < oo such that

j ‘Sl‘lp Ikaﬂ@mz DVap(2)]
st =m0, ) =

SO N ) .
AP DT ABIE rs—s, ()
1}1 (]) Qo (s+s2) =51

for every j > B — 1. It means that 'ﬁaﬂ € Gs_s5,1/¢[[t]]g, (sp+s)—s,- Finally, by Proposition 4 we conclude that 'u\uﬂ =

~ . ~ 1
:BRE’Z]/K Vop € Gs,1/¢[[t]]g, s,+5)—s; OF, equivalently, uyg € C[[t, z¥ [1g, s, 45)—s1,5» O

0 Vapj(2) t/ with respect to t, observe that by [14, Lemma 2]

IA

7. Analytic solutions

In this section we study the analytic continuation properties of the sum of convergent formal power series solutions of
Omy.c = 2Oy 2)) v = 0
O, 0(0,2) =0 (j=0,...,8—2) (10)
Oy t0(0,2) = 27 (O, 2)p(2) € O (D),
where A(¢) is a root of the characteristic equation of (6). It means that A(¢) is an analytic function of the variable & = ¢ /¥
for |¢| = rgand A(¢) ~ A&9. During this section we assume that m; and m, are moment functions of orders 1/kq, 1/k; > 0,

respectively.
Repeating the proof of [ 14, Lemma 4] we get the following representation of solution v of (10)

Lemma 3. Let v be a solution of (10) and 1/k; > q/k,. Then v belongs to the space O+ 1, (D?) and is given by

¢p—1 ~ 0) [ 00(6) .
B-1Nn! tﬂ 1”;{;_1) [w] vaw) io Eml(“‘({))EFnz(gl/Kzl/K)e zé'(iiw) d¢ dw,
: wi|=¢ rpeé

where 6 € (—argw —

v(t,z) =

Zk —argw + 2”72) and iy (u) = my(u/k).
We generalise [ 14, Lemma 5] as follows

Lemma 4. Let A(¢) ~ A7 be a root of the characteristic equation of (6) for ¢ = /v with relatively prime numbers t, v € N,
where A (¢) is an analytic function of the variable & = ¢/* for |¢| > 1o (for some ry > 0). Moreover, let 1/k; = q/k,, K > 0
and d € R. We assume that v is a solution of

{(aml,t - )\(amz,z))ﬁv =0
I, 0(0,2) = ¢j(2) € O1(D) (=0,....,8—1).
K,gK /&

If ¢ € ij(K()S\(dHrgHz,m)/q)for k=0,..,gc—1andj = 0,....,8 — 1, thenv € Oy}, (Sq x S(dﬂrgHka/q) for
k=0,...,qg«x — 1. Moreover, ifadditionally e OMD)forj=0,...,8—1thenv € (92(1[’/11 (§d+2nn/v X S<d+arg,\+2kﬂ)/q) for
k=0,....,g« —1landn=0,...,v—1.

Proof. First, we consider the case kq, k; > 1 /2 By the prmc1p1e of superposition of solutions of linear equatlons we may
assume that v satisfies (10) with ¢ € (91/:« (S(dﬂrgHan)/q(é 7)) fork =0, ...,qc — 1 and for some 8 7 > 0. Hence, by
Lemma 3, the function v € @11/« (D?) has the integral representation

th=1 5 1my(0)

v(t,z) = B-D'" 2mi w|=¢

p(w)k(t, z, w) dw, (11)
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where ¢ < 7 and

oo(0)
k(t,z, w) :=/ . Eml(t)\(;))Eﬁqz(éJ/KZUK)emz;iiw)d;_

(L

with 6 € (—argw — —argw + & T ) and M, (u) = my(u/k). Now we consider the function

2I<
(t,z) — k(t,z, w) foreveryfixedw € C\ {0}. (12)

Observe that by Definition 2 there exist constants A; and b; (i = 1,2, 3) such that |Ep, (tA({))] < Apebrlef el
|Ei, (¢ /6219 < Ape2e1? 212 angd lem, (Cw)| < Aseb31¢121wI Hence, there exist a,b > 0 such that for every fixed
w € C \ {0} and for every (t, z) € C? satisfying |t| < alw|? and |z| < b|w|, we have

o] o] ~
[k(t,z, w)| < / Aes? il bz1z2 —bsful’2) g6 / Ae b 21wl o o0
» 2, < <

o o

with some positive constants Z, b. Hence the function (12) belongs to the space O 1, ({(t,2) € C?: |t] < aw], |z] <
blw]|}) and the right-hand side of (11) is a well-defined holomorphic function of the variables t and { = z'/* in a complex
neighbourhood of the origin.

To show that v € O11/(Sq4 % S(dngHz,ﬂ,)/q) fork = 1,...,qg«x — 1, we deform the «-fold circle |[w| = ¢ in the
integral representation (11) of v as in the proof of [ 14, Lemma 5] Namely, we split these circles into 2qk arcs yy and yap41
(k=0,...,qk — 1), where y,, extends between points of argument (d + arg A + 2km)/q £ /3 and y»41 extends between
(d+argh +2km)/q+68/3and (d +arg A+ 2(k+ 1)) /q — 6 /3 mod 2qgx 7. Finally, since ¢ € 01 (Sdtargr+2kr)/q(8)), we
may deform y,y into a path .\, along the ray argw = (d + arg A + 2kn)/q — 3/3 to a point with modulus R (which can be
chosen arbitrarily large), then along the circle |w| = R to theray argw = (d + arg A + 2kmw)/q + 3/3 and back along this
ray to the original circle. So, we have

-1 th—1

u(t,z) = ! P e, 2) + 3Py (t, 2)
NI TR B-nrt T
where
& my(0)
vi(t,2) =) . / pw)k(t, z, w) dw
=0 2K Jypis
and

& mi(0)

vy(t,z) == o(w)k(t, z, w) dw.

s 2kmi R
= 2k

To study the analytic continuation of vq, observe that for argt = d, argz = (d + argh + 2kw)/q (k = 0,...,qc — 1),
argw # (d 4 arg A + 2kmr)/q (k € Z) and for g = k,/k,, we may choose a direction 6 in (12), which satisfies the following
conditions

[ ]
b4 b4
argt + 2kmwr +argA 4+ qo € , 2T — — for some k € Z
2k, k1 2kq

(in this case, by Definition 2, we have [Ep, (tA(2))] < Clta(t)|"tas ¢ — oo, args = 0),

T T
z 21 0/k € 2 —
argz/k + 2l + 0 /k (212 T T

) for somel € Z

(in this case, by Definition 2, we have |Eg, (£ /*zV/%)| < C'|¢z| 7% as ¢ — oo, arg¢ = 6),
[ ]

T
2]{2 ’

(in this case, by Definition 2, there exists & > 0 such that

b4
argw+2nn+9€<— T) for somen € Z
<2

<e 2 a5 s 00, arg =6).

cw
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Hence there exist§ > Oandr > Osuch that the function vy € 01,1 (/S\d(é; r) X/S\(dﬂrg,wz,m)/q(é; r))fork=0,...,qc—1.
Moreover, there exists C < oo such that [k(t, z, w)| < C for every (t,z) € S4(8;T) X Sitarga+2kr)/q(8; T) and for every

gk—1
w € Ui Vak+1. Hence

K ~
vy (t, 2)| < q— _max / lp(w)|Cdjw| < C < oo
2K7T k=0,..., qk—1 Yokt

and we conclude that v; is bounded ast — oo and z — oo.
Now we are ready to study the analytic continuation of v;, Since the function (12) belongs to the space 01,1/ ({(t,2) €

: |t < alwl|?, |z| < blwl|}), one can find §,r > 0 such that v, € 0y, 1/K(5d(8 r) X S(d+argk+2kﬂ)/q(8 r)) for
k =0,...,gk — 1asR tends to infinity. Estimating this integral we obtain

K ~ o~ ~
vy(t, 2)| < L max / lo(w)|C djw| < AR < APl +Balel ™
R
Yok

2K =0,...,qk—1
since [t| ~ |w|? = R? and |z| |w|
K,qK
Hence also v € (91 1k (Sd X S(dH,gHz,m)/q) fork=0,...,q¢c — 1.

In the general case k1, k, > 0, there exists p € N such thatEl = pky; > 1/2 and Ez = pk, > 1/2.By[14, Lemma 3], the
function w(t, z) := v(tP, zP) is a solution of
(am1  — 2% ) w=0,
ml’tw(o, zZ) = <p,,(zp) € (91//( (5(d+argx+2kn)/(pq)) forn=0,...,8—1
3 w(©0,2) =0 forj=1,...,8p—Tandp /],

where m(u) := m;(u/p) and m, (u) := m,(u/p) are moment functions of order 1/%1 and 1/752 respectively.
By Theorem 1 we conclude that w = wg + - - - + wp_; withw; j =0, ..., p — 1) satisfying
(aN IZJH/P)LUP(aP ))ﬂw] =0,
O, wi(0,2) = Pjn(2) € (91/;( (Starargrsatn /o) forn=0,....8—1.

Applying the first part of the proof to the above equation we see that w;(t, z) € (9] 1 /K (S(d+2m /p X S(dﬂrg A2k /(pg)) fOT
j=1,...,p. It means that v(t, z) = w(t"/?, z'/P) € (9l 1/K(5d X S(dﬂrgHan)/q) fork=0,...,qc — 1.

To prove the last part of the lemma, observe that if ¢; € (91/,( (S<d+argx+2kﬂ)/q) and ¢; € O(D) then also ¢; €
UL (S(d+arg a2kn)/q) and consequently (pj € O (S(d+2m/v+arg,\+2,m)/q) forn =0, ..., v—1.Hence, replacingd by d+2nm /v
we conclude that v € (91 1/K(Sd+2,m/v X S(d+argk+2kﬂ>/q) forn=0,...,v—1and k =0,...,qg«—1. O

Now we are ready to generalise [ 14, Theorem 3] as follows

Theorem 2. Let A(¢) ~ A¢9 be aroot of the characteristic equation of (6) for ¢ = w/v with relatively prime numbers u, v € N,
where A(¢) is an analytic function of the variable & = ¢V for |¢| > ro (for some ry > 0). Moreover, let us assume that v is a
solution of (10), 1/k; = q/ky, K > 0 and d € R. Then the following conditions are equivalent:

@ epe (91/,( (s(d+arg)\+2k71)/q)for k=0,...,q¢ =1,

(b)v g(lq/l,((sd X S(d+argk+2krz)/q)for k=0,...,qc — 1.

(c)ve (9] 1/K(Sd x D),

(d) 8’ (€, 0) € OX(Sy) forj=0,...,qcB — 1.

If addmonally we assume that ¢ € O (D) then the above conditions are also equivalent to

(e) v E (9§(:1q/lf((§d+2nn/v X §d+argk+2kn)/q)for n= Oa v —=1 and k = 0,..., gk — 1,

(f) v € Of ) (Sayannyy X D) forn=0,...,v—1.

Proof. The implication (a) = (b) is given immediately by Lemma 4. The implications (b) = (c) and (c) = (d) are trivial. To
prove the implication (d) = (a), observe that by [ 14, Lemma 3] the function w(t, z) := v(t%, z¥) satisfies

(0 . — 1@, ,Nfw =0,

mq,t my,z

where m; (1) := my(u/(qx)) and M, (u) := my,(u/k) are moment functions of orders 1/]21 = 1/(k1gx) and I/Ez = 1/(kyk).
It means that w is also a solution of the equation

(Oty.0 — 0@y 2))P -+ Oyt — hge1(F.0))P w0 = 0,
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where
Xi(£) = 2@ 1@ ey forj=0,...,qc — 1.

Since A i(¢) is an analytlc functlon for sufficiently large || with a pole order equal to 1 (more precisely Xj(;) ~
’Z”J/WK)AVWKQ) and 1/k; = 1/ky, by [14 Lemma 7] and by condition (d), the function w satisfies also

{(amz 2= hg @) @ oz = hgr- 1@, w =0,
g5, ,w(t, 0) = Ua(t) € O%K (S(d+27rk)/(q)())
forn=0,...,qckf —1andk =0,...,qx — 1. Hence, by Theorem 1, w = wo + - - - + wge—1 Withw; =0, ..., qc — 1)
satisfying
(aﬁlz z )‘« (arn] t)) wj = 0,

{ 55, Wi, 0) 1//]n(f) € o™ (S(L‘l+2ﬂk)/(q)<))
forn=0,...,8—1andk =0, ..., qx — 1.Since )Lj_l(r) ~ e~27j/@9) ) ~1/@) ¢ by Lemma 4 with replaced variables, we
conclude that wj(t, z) € O*X(D x §gjk), where

- d+2mk arg(e /@0 1@y _ d+argh + 27w (k+j)
’ ak qx
fork =0, ..., qx — 1.In consequence, also w(t, z) € O%K(D X Sigyargat2rky/ge)) and finally v(t, z) = w(t"/ @, z1/<) ¢
(95"/((“) 1¢ (D X S(atarg r+27k)/q)- In particular ¢ (z) € (9‘11;(,( (S(a+argr+27ky/q) fork =0, ..., gk — 1, which proves the implication
(d)=(a).
If additionally ¢ € O (D) then also (p e 9% (S(d+2m/v+arg a2kmy/q) forn =0, ..., v—1.Hence, replacing d by d + 2nw /v
we conclude by Lemma 4 that v € (91 1k (Sd+2,m/v X S(d+argx+2kﬂ)/q) forn=0,...,v—1andk =0,...,g« — 1and the

implication (a) = (e) holds. The last implications (e) = (f) and (f) = (c) are obv10us. O

By the above theorem we conclude

Corollary 1. If K’ > 0,d € R, ¢ € or’ (§d/) and m is a moment function of order 0, then also By, ;¢ € or (S}).
Proof. Let v be a solution of
@ —0)v =0, (0,2) =g €0 S).

Then v(t, z) = (t +z) € ©X (Sy x D). Since m is a moment function of order 0, we see that also Byv € OF (Sy x D).On
the other hand, by Proposition 9, By, ;v is a solution of

(0 — 8F1m,z)£m.zv =0, B, v(0,2) = B 0(2) € O(D).

Hence, applying Theorem 2, we conclude that B, ,¢ € or' (§d/). O

8. Summable and multisummable solutions

In this section we characterise summable formal solutions U of (9) in terms of the Cauchy data @. Next, we also give a
similar characterisation of multisummable normalised formal solutions of general equation (6).

Applying Theorem 2 we obtain the following impressive characterisation of summable solutions of simple
pseudodifferential equations (9)

Theorem 3. Let () ~ A¢? be aroot of the characteristic equation of (6) for ¢ = /v with relatively prime numbers i, v € N,
where A(¢) is an analytic function of the variable £ = ¢V/* for || > ro (for some ro > 0). We also assume that m;, m, are

. . -1 -~
moment functions of orders s, s, € R respectively, d,s € R, s > —s5,q > ﬁ, K = (q(sz +s) — 51) and u is a formal
solution of

Oyt — 2Oy )T =0
O, (1(0,2) =0 (G=0,...,8-2) (13)
1000, 2) = 19 (my (@) € Cllz .

Then the following conditions are equivalent:

(a) 31‘ zl/K(/) € (91/,( (S(d+argk+2krr)/q)for k=0,...,qc — 1,
(b) 31*1/1( t£l"5 1/xu € (91 l/K(Sd X D)
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(€) Bry.tBr, zl/’(u € (91 1 K(Sd X S(d+argA+2kﬂ)/q)f0r k=0,...,q¢c -1,
(d) £Fs fams53 Zm(p is gK- summable in the directions (d 4+ arg A + 2km)/qfork =0, ...,qx — 1,

(e) u(t,z) € Gs,1/¢[[t]] is K-summable in direction d.
Moreover, if additionally s > 0 and qs, > s; then the above conditions (a)-(e) are also equivalent to

(f) u(t, z) e C[[t, z%]] is (K, 1/s)-summable in the directions (d, (d + arg A + 2kmw)/q) fork =0, ..., qx — 1,
(g)u(t, z) € C[[t, z%]] is (K, 1/s)-summable in the directions Oy (dtargs+2kr)/q for k=0, ..., qc — 1.

Remark 8. If we assume additionally that ¢ € @ (D) then we may replace the directiondbyd +2nz/v(n=0,...,v —1).
Hence conditions (a)-(e) are also equivalent to
(h) £F1/K t£1~s I/KU € (91 1/K(Sd+2nn/v X D) forn=0,. ,v—1,

(i) JBpl/K tBry 2 el € (91 1/K(Sd+2nﬂ/v X S(dﬂrgﬁzkn)/q) forn=0,...,v—1landk=0,...,qxk — 1,
(j) u(t, 2z) € Gs. .1/« [[t]] is K-summable in the directions d + 2nm /v for n=0,...,v—1,

and conditions (f)-(g) are equivalent to

(k) u(t, z) € C[[t, z%]] is (K, 1/s)-summable in the directions (d 4+ 2nx /v, (d + arg A + 2kmw)/q) fork = 0,...,qxk — 1

andn=0,...,v—1.
() uct,z) e C[[t,z%]] is (K, 1/s)-summable in the directions Ogany v, (d+argr+2kn)/q fOrk = 0,...,q¢k — landn =
0,...,v—1.

Proof of Theorem 3. First, observe that by Propositions 7 and 8 the function v := 8, ot Bryz1 /U satisfies the equation

Oy — A@my2)fv =0
o v0,2)=0 (=0,...,6-2)

my

88 100, 2) = AP (O, 2) By 14 P(2) € Oy (D).

where m; := m; Ik is amoment function of order 1/%1 =514+ 1/K = q(s;+5s) > 0and m, := m, [ isa moment function
of order 1/k, := s, +s > 0.Since 1/k; = q/k», applying Theorem 2 to v we conclude that properties (a)-(c) are equivalent.

Moreover, by Remark 5 we obtain the equivalence (b) < (e).

To show the equivalence between (a) and (d), observe that £rsl/q—52 ,ZWEZ is gk-summable in directions (d + arg A +
2km)/qfork = 0, ..., qc — 1if and only if £F1/q1<,zl/K £rsl/q—sz»zl/'{a € ngi/x(s(d+argl+2kn)/q) fork =10,...,q¢ — 1. By
Proposition 3 and Corollary 1, it is equivalent to (a).

Now we assume additionally that s > 0 and gs, > sl. To find the equivalence between (f) and the previous
conditions (a)-(e), it is sufficient to s show implications (c) = (f) and (f) = (b). To this end observe that gk < 1/s.

Hence if Bry .t Br, Zwﬂ € (9l 1 K(Sd X S(dﬂrgHz,m)/q) then also BrytBr zwu € (91 : K(Sd X S(dHrgHz,m)/q) (for
k = 0,. ..,qK — 1) and consequently by Definition 10 we conclude (f) On the opp051te side, if u satisfies (f) then
£p1/,< tBr, - 1l € (9l W (Sd X S(dﬂrgszn)/q) In particular, Bry .t Br, ZWu € (DK(Sd x D), which gives (b).

Next we show the equivalence (c) < (g). By Proposition 5, u(t,z) = Zﬁ;o ujntfz"/" is (K, 1/s)-summable in the
direction Oy, (gtarg r+2k7)/q if and only if

o0

~ Ujn k_n/k K1/s/8 .o
v(t,z) = E - t'z7" e @ Sq XS .
( ) = 1_,(1 +]/K -}—SH/K) 1,1/,(( d (d+argk+2kn)/q)

So, it is sufficient to show
v E (91 /K (Sd X S(d+argx+zlm)/q) SVe (91 1/:{ (Sd X S(d+argk+2kﬂ)/q)

By Lemma 1 we get the following connection between V(t, z) ="v(t,z)and V(t, z) := v(t, z°)
~ 1 s !
V(t,2) = (1+ 210 + fzaz)/ V(te'™, z(1 — &)%) de.
K 0

By the above formula and by the assumption Kg < 1/s we conclude that if v € @flK/'f( (§d X §d+arg »2km)/q) then

~ _ K1Js P
ve o l//)( (Sq X Sa+argrt2kn)/q)-

To show the implication on the opposite side, we use the connection between the boundary conditions for v and .
Namely, since

0 o~ 1My () o Ujn ¢
aﬁz,zl/"v(t’ 0) = m,(0) & Z ra+j/K+ sn//c)
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and
My () & u; .
et 0) = o2 )Z - o,
m.z m,(0) = r(A+j/K)r+sn/x)
we get
8%2’21/;( v(t,0) = £m’",ta%2_21/xg(ta 0),
where m’ (u) = _LATWKISI/O__ i 3 moment function of order 0 forn = 0 gk B —1.So, since o (t,0) € OF (§ )
n “— T(+u/K)T (1+sn/k) . — P T T,z /K U\ d)
by Corollary 1 we see that also 8%2 LUt 0) € OX(Sy) forn = 0, ..., qcB — 1. Hence, by Theorem 2 we conclude that

Kok ~ =~
v E (91,'1‘1/K(Sd X S(d+argr+2kmy/g)- O

Now we return to the general equation (6). For convenience we assume that

oy
POLE) =Po@) [ [T = hap(@))",

a=1p=1

where A, 5($) ~ Agp¢ 9% are the roots of the characteristic equation P(A, {) = 0 with pole orders q, € Q and leading terms

dap €EC\{O}forf=1,...,.Ipyanda =1,...,7.

We also assume thats, s, s, € R,s; > 0,5 +5, > 0and ¢ € C[[z]]; forj =0, ..., n — 1. Without loss of generality we
may assume that there exist exactly N pole orders of the roots of the characteristic equation, which are greater than S;ﬁ
S1

say 5 <1 <o <y < oo and let K, > 0 be defined by K, := (qu(s2 +5) —s1) ' fora =1,...,N.
By Theorem 1, the normalised formal solution u of (6) is given by

ly TNap

T=3 3 s, (14)

a=1 =1 y=1
with Uyp, satisfying

(81111,[ - )Vaﬁ(amz,z))yﬁaﬁy =0
Oy tUapy (0,2) =0 forj=0,...,y —2

-1~ —1 ~
ar)r/n,tuozﬂy = kgﬂ (amz,z)ﬁﬂaﬁy(z)’

where @ug, (2) = Z}Zol dupyi(Om,,2)9i(2) € (C[[z%]]s and d,g,j(¢) are holomorphic functions of the variable § = cVx of
polynomial growth at infinity.

Since g, < stlﬂ fora = N+ 1,...,7, by Theorem 1, Uyg, is convergent fory = 1,...,n45 B = 1,...,l, and

a=N+1,...,7
Under the above conditions, immediately by Theorem 3 we get (see also [ 14, Theorem 5])

Theorem 4. Let (dq, ...,dy) € RN be an admissible multidirection with respect to (Kq, ..., Ky) and let q, = jiy/Vvy With
relatively prime numbers u,, v, € Nfor « = 1, ..., N. We assume that

~ Ko (C
Bﬁ,zwj(z) € O a(s(da+argkaﬂ+2nan)/qa)

foreveryj =0,...,.n—1,n, =0,...,us — 1,8 =1,...,lyanda = 1, ..., N. Then the normalised formal solution
ue Gs,1/¢[[E1] of (6)is (K1, ..., Ky)-multisummable in the multidirection (dy, ..., dy).

In general, the sufficient condition for the multisummability of U given in Theorem 4 is not necessary, since the
multisummability of U satisfying (14) does not imply the summability of s, (see [14, Example 2]). For this reason,
following [14], we define a kind of multisummability for which that implication holds.

Definition 16. Let (dy, . .., dy) be an admissible multidirection with respect to (K, . .., Ky). We say that is (K, . . ., Ky)-
multisummable in the multidirection (dq, ..., dy) with respect to the decomposition (14) if ﬁaﬂy is K,-summable in the
directiond, (fora = 1, ..., N)and is convergent (foro =N +1,...,7), where 3 =1,..., ,andy = 1,..., Nag-

Repeating the proof of [ 14, Theorem 6] with [ 14, Theorem 4] replaced by Theorem 3, we conclude
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Theorem 5. Let (di, ...,dy) € RN be an admissible multidirection with respect to (K1, ..., Ky) and let q, = i /Vy With
relatively prime numbers iy, vy € Nfor o = 1, ..., N. We assume that U is the normalised formal solution of

P(ann,h amz,z)a =0

&, 14(0,2)=0 (j=0,...,n—2)

op (0, 2) = 9(2) € Cllz]]s.
Then € Gs,1/c[[t1)is (Ky, ..., Ky)-multisummable in the multidirection (ds, .. ., dy) with respect to the decomposition (14) if
and only if

st,Za € O%KO( (S(da+argxaﬂ+2nan)/qa)

foreveryn, =0,...,uqe—1,8=1,....lyanda =1,...,N.
Remark 9. Analogously, one can also consider the multisummability in two variables using the approaches given by Sanz

or Balser. By Theorem 3 we obtain the same characterisation of multisummable solutions in two variables as in Theorems 4
and 5.

9. An example

In this section we give a simple example illustrating the developed theory. For fixed ¢ € N and s € R we discuss the
solution of the equation
(3 —oHu =0, u(0,2) =9() € C[[z]]s. (15)
Observe that U satisfies equation (Omy,e — A(Bmz,z))ﬁ = 0 with the moment functions m; = my = I'y and A(¢) = ¢9. We
have
Corollary 2. Let s € R, g € N and U be a formal power series solution of (15). Then the following conditions are equivalent:

(1) U(0, 2) € C[[z]]s.
(2) U(t 0) € Cl[[t1lg1+s)—1-
(3) u(t, 2) € C[[t, zg(149)-1.s-

Proof. The implications (3) = (2) and (3) = (1) are obvious. The implication (1) = (3) follows from Theorem 1. So, it is
sufficient to show implication (2) = (3). To this end, observe that U satisfies the equation
(8, = 21(3)) -+ (3, — Aq(3))U =0, U(t,0) € C[[tTlgc1+5-1,

where A, (¢) = e /9¢ i forn=1,...,q.
Hence, by Theorem 1 with replaced variables t and z, we get U = Uy + --- + U, Where U, satisfies the equation
(3; — A(8:))Uy = 0 and U, € C[[t, z]]g145)—1.s forn = 1, ..., . It means that also i € C[[t, z]]g(145)—1.5- O

Assuming s = 0 (resp. s < 0) in Corollary 2, replacing i and ¢ in (15) by their sums u and ¢, and applying Remark 4, we
obtain
Corollary 3 The solution u of (15) is t-analytic in a complex neighbourhood of the origin if and only if ¢ € O(D) (forq = 1)
and ¢ € O T = ((C) (for q = 2, 3, .. .). Furthermore, the solution u of (15) is t-entire of exponential growth of order k > 0 if and
only if ¢ € @ka=D+1 1>+1 (©).

By Theorem 3 we obtain immediately

Proposition 10. Let d € R, U be a formal power series solution of (15) and q(1 +s) — 1 > 0. Then the following conditions are
equivalent:

1.ue Gsallt1]is (q(l +5) — 1)~ '-summable in direction d.

2. B, ;9 € @i W (Sayanysg) (for k=0, ...,q — 1).
3. Brig1, JQis 39 =1 -summable in the directions (d + 2kw)/qfor k =0, ...,q — 1.

If additionally s > 0 then conditions 1-3 are also equivalent to

4.1 e C[[t, z]]is ((q(1 4+ s) — 1)~', s~1)-summable in the directions (d, (d + 2kw)/q) for k=0, ...,q— 1.
5. U € C[[t, z]]is ((q(1 + ) — 1)7', s~ 1)-summable in the directions Oq,g+akx)/q for k=0, ...,q — 1.
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