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a b s t r a c t

The coefficients of a linear system, even if it is a part of a block-oriented nonlinear system,
normally satisfy some linear algebraic equations via Hankel matrices composed of impulse
responses or correlation functions. In order to determine or to estimate the coefficients of
a linear system it is important to require the associated Hankel matrix be of row-full-rank.
The paper first discusses the equivalent conditions for identifiability of the system. Then,
it is shown that the row-full-rank of the Hankel matrix composed of impulse responses
is equivalent to identifiability of the system. Finally, for the row-full-rank of the Hankel
matrix composed of correlation functions, the necessary and sufficient conditions are
presented, which appear slightly stronger than the identifiability condition. In comparison
with existing results, here the minimum phase condition is no longer required for the case
where the dimension of the system input and output is the same, though the paper does
not make such a dimensional restriction.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A block-oriented nonlinear system often includes some linear parts as its subsystems, for example, the Hammerstein
system is composed of a nonlinear static block followed by a linear subsystem, and the Wiener–Hammerstein system is a
nonlinear static block sandwiched by two linear subsystems.When identifying such kind of systems, one has to estimate not
only the nonlinearities but also their linear subsystems. From the existing papers, e.g., [3,11,14,8,9] among others, it is seen
that the Hankel matrices composed of impulse responses of the linear subsystem as well as composed of the correlation
functions of its output are of crucial importance for estimating the unknown coefficients of the system. Let us explain this
more clearly.

Consider the following linear model

A(z)yk = B(z)uk, (1)

where

A(z) = I + A1z + · · · + Apzp with Ap ≠ 0 (2)

B(z) = B0 + B1z + · · · + Bqzq with Bq ≠ 0 (3)

are matrix polynomials in the backward-shift operator z : zyk = yk−1. The system output yk and input uk are of n- and
m-dimensions, respectively.
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Assume A(z) is stable, i.e., det A(z) ≠ 0,∀|z| ≤ 1.
In time series analysis, it is required to estimate the systems orders (p, q), thematrix coefficients (A1, . . . , Ap, B1 . . . , Bq),

and the covariance matrix Σu = EukuT
k of the innovation process on the basis of output data {y0, y1, y2, . . .} for the case

where n = m, B0 = I , and {uk} is a sequence of zero-mean iid (independent and identically distributed) or uncorrelated
random vectors.

In system and control, as a rule n ≥ m, and it is also required to estimate the systems orders (p, q) and the
matrix coefficients (A1, . . . , Ap, B0, B1 . . . , Bq) with B0 included. If the linear model is a part of nonlinear systems, e.g., the
Hammerstein system, theWiener system, etc., then the available information for identificationmaybe thenoisy or estimated
inputs and outputs of the model.

Stability of A(z) gives possibility to define the transfer function:

H(z) , A−1(z)B(z) =

∞
i=0

Hiz i, (4)

where H0 = B0, ∥Hi∥ = O(e−ri), r > 0, i > 1. Then, yk in (1) can be connected with the input {uk} via impulse responses:

yk =

∞
i=0

Hiuk−i. (5)

Let us first derive the linear equations connecting {A1, . . . , Ap, B0, B1, . . . , Bq} with {Hi}.
From (4), it follows that

B0 + B1z + · · · + Bqzq = (I + A1z + · · · + Apzp)(H0 + H1z + · · · + Hiz i + · · ·). (6)

Identifying coefficients for the same degrees of z at both sides implies

Bi =

i∧p
j=0

AjHi−j ∀0 ≤ i ≤ q, (7)

Hi = −

i∧p
j=1

AjHi−j ∀i ≥ q + 1, (8)

where A0 = I and a ∧ b denotes min(a, b).
For Hi, q + 1 ≤ i ≤ q + np, by (8) we obtain the following linear algebraic equation

[A1, A2, . . . , Ap]L = −[Hq+1,Hq+2, . . . ,Hq+np], (9)

where

L ,


Hq Hq+1 · · · Hq+np−1

Hq−1 Hq · · · Hq+np−2
...

...
. . .

...
Hq−p+1 Hq−p+2 · · · Hq+(n−1)p

 , (10)

where Hi , 0 for i < 0.
Define

θ TA , [A1, . . . , Ap], W T , −[Hq+1,Hq+2, . . . ,Hq+np]. (11)

Then, from (9) it follows that

θA = (LLT )−1LW , (12)

if L is of row-full-rank.
In this case, if we can obtain estimates for {Hi}, then replacing Hi, i = 0, 1, 2, . . . in (9) with their estimates, we derive

the estimate for θA. Finally, with the help of (7) the estimates for Bi, i = 0, 1, . . . , q can also be obtained.
From here we see that the row-full-rank of the Hankel matrix L composed of impulse responses is important for

estimating the system indeed.
The well-known Yule–Walker equation connects θA with the Hankel matrix composed of correlation functions of the

system output {yk}.
Under the stability assumption on A(z), {yk} is a stationary process with correlation function Ri , EykyTk−i, if {uk} is a

sequence of zero-mean uncorrelated random vectors with the same second moment.
Multiplying yTk−t , t ≥ q + 1 on the both sides of (1) from right and taking expectation, we obtain

E(yk + A1yk−1 + · · · + Apyk−p)yTk−t = E(B0uk + B1uk−1 + · · · + Bquk−q)yTk−t = 0 ∀t ≥ q + 1,
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which yields
p

i=0

AiRq−i+l = 0 ∀l ≥ 1. (13)

For Ri, q + 1 ≤ i ≤ q + np, by (13) we have the following linear algebraic equation called the Yule–Walker equation:
[A1, A2, . . . , Ap]Γ = −[Rq+1, Rq+2, . . . , Rq+np], (14)

where

Γ ,


Rq Rq+1 · · · Rq+np−1

Rq−1 Rq · · · Rq+np−2
...

...
. . .

...
Rq−p+1 Rq−p+2 · · · Rq+(n−1)p

 . (15)

Similar to (12) we can rewrite (14) as

θA = (Γ Γ T )−1Γ U, (16)
whenever Γ is of row-full-rank, where UT , −[Rq+1, Rq+2, . . . , Rq+np].

From here it is seen that the row-full-rank of the Hankel matrix Γ composed of correlation functions has the similar
importance as L does.

The row-full-rank of L and Γ is closely related with identifiability (see, e.g., [12,5,2] among others) of (1)–(3).
The purpose of this paper is to give the necessary and sufficient conditions for the row-full-rank of L andΓ for the general

case n ≥ m andwith B0 unknown. In Section 3 it is shown that the row-full-rank of L is equivalent to identifiability of (1)–(3),
while the row-full-rank of Γ is equivalent to a condition slightly stronger than identifiability as shown in Section 4. Prior
to discussing the row-full-rank of L and Γ , the identifiability issue is addressed in detail in Section 2. A brief conclusion is
given in Section 5, while some auxiliary results from matrix polynomials are provided in Appendix.

2. Identifiability

As explained in Introduction, stability of A(z) guarantees stationarity of yk of the linear model (1) if {uk} is a sequence
of zero mean uncorrelated random vectors with the same second order moment, and also allows to define the transfer
function (4).

For the transfer function H(z) =


∞

i=0 Hiz i, A−1(z)B(z) is called its matrix fraction description (MFD) form. It is natural
to consider the uniqueness issue of the description [12,5,2].

Denote by M the totality of the matrix pairs [X(z) Y (z)] satisfying X−1(z)Y (z) = H(z), where X(z) ∈ Rn×n is stable and
monic with order less than or equal to p and Y (z) ∈ Rn×m is with order less than or equal to q.

By (4) [A(z) B(z)] ∈ M.Weare interested in conditions guaranteeing the uniqueness ofMFD. To clarify this, we first prove
a lemma concerning the orders of factors in a matrix polynomial factorization. In the one-dimensional case, the orders of
factors of a polynomial are certainly less than the order of the polynomial. However, in the multi-dimensional case the
picture is different. Let the n×m-matrix polynomial B(z) = B0 + B1z + · · · + Bqzq be factorized as a product of two matrix
polynomials C(z) and D(z): B(z) = C(z)D(z). Since B(z) = C(z)U(z)U−1(z)D(z) and U−1(z)D(z) remains to be a matrix
polynomial for any unimodular matrix U(z), the factors C ′(z) , C(z)U(z) and D′(z) , U−1(z)D(z) in the factorization
B(z) = C ′(z)D′(z)may be with arbitrarily high orders.

The following lemma shows that the order of D′(z) in the factorization B(z) = C ′(z)D′(z) can be made no higher than
that of B(z) by appropriately choosing the unimodular matrix U(z).

Lemma 1. Assume an n× t-matrix polynomial G(z) of order r is factorized as G(z) = C(z)D(z), where C(z) and D(z) are matrix
polynomials of n × n and n × t dimensions, respectively. Then, an n × n unimodular matrix U(z) can be chosen such that in the
factorization G(z) = C ′(z)D′(z) with C ′(z) , C(z)U(z) and D′(z) , U−1(z)D(z) where degD′(z) ≤ degG(z) = r.
Proof. It is well known from [4] that the elementary column transformations, i.e., multiplying C(z) from right by the
matrices corresponding to exchanging the places of its ith column with the jth column, multiplying the ith column of C(z)
by a constant, and adding its ith column with its jth column multiplied by a polynomial, may lead the matrix polynomial
C(z) to a lower-triangular matrix, for which at each row the highest degree appears at its diagonal element. Denoting by
U(z) the unimodular matrix resulting from all the elementary transformations yielding C(z) to the lower-triangular form,
we have

C(z)U(z) =


c ′

1,1(z) 0 · · · 0
c ′

2,1(z) c ′

2,2(z) · · · 0
...

...
. . .

...
c ′

n,1(z) c ′

n,2(z) · · · c ′

n,n(z)

 , (17)

where deg c ′

i,s(z) ≤ deg c ′

i,i(z) ∀s ≤ i ∀i : i = 1, . . . , n.
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We now show that this U(z) is the one required by the lemma.
Let D′(z) , U−1(z)D(z) = {d′

i,j(z)}
j=1,...,t
i=1,...,n and G(z) = {gi,j(z)}

j=1,...,t
i=1,...,n.

For the lemma it suffices to show that for any fixed j : j = 1, . . . , t

deg d′

i,j(z) ≤ max
1≤l≤n

deg gl,j(z) ∀i : i = 1, . . . , n. (18)

For i = 1, we have g1,j(z) = c ′

1,1(z)d
′

1,j(z), which obviously implies

deg d′

1,j(z) ≤ max
1≤l≤n

deg gl,j(z).

Thus, (18) holds for i = 1.
Assume (18) is true for i = 1, . . . , s − 1. We want to show that (18) also holds for i = s.
Assume the converse: deg d′

s,j(z) > max1≤l≤n deg gl,j(z).
The inductive assumption incorporated with the converse assumption implies that

deg d′

s,j(z) > deg d′

i,j(z) ∀i : i = 1, . . . , s − 1. (19)

By noticing deg c ′

s,l(z) ≤ deg c ′
s,s(z) ∀l ≤ s ∀s : s = 1, . . . , n, by (19) from the equality gs,j(z) = c ′

s,1(z)d
′

1,j(z) + · · · +

c ′

s,s−1(z)d
′

s−1,j(z) + c ′
s,s(z)d

′

s,j(z) we derive deg gs,j(z) = deg c ′
s,s(z)d

′

s,j(z). From here the converse assumption leads to a
contradictory inequality:

deg gs,j(z) ≥ deg d′

s,j(z) > max1≤l≤n deg gl,j(z).
The obtained contradiction proves the lemma. �

The following lemma is based on [5,2], but its proof is presented in detail below, because it plays an important role for
the main results of the paper and also because some assertions in [5] are not easily understandable without Lemma 1.

Lemma 2. The following conditions are equivalent.

H1 The set M is composed of the unique pair [A(z) B(z)].
H2 A(z) and B(z) have no common left factor and [Ap Bq] is of row-full-rank.
H3 There are no n-vector polynomial d(z) and m-vector polynomial c(z) (not both zero) with orders strictly less than p and q,

respectively, such that dT (z)H(z)+ cT (z) = 0.

Proof. H2 ⇒ H1
Assume H2 holds. Take any matrix polynomial pair [A(z) B(z)] ∈ M, where

A(z) = I + A1z + · · · + Apzp with p ≤ p,

B(z) = B0 + B1z + · · · + Bqzq with q ≤ q.

We have to show that [A(z) B(z)] = [A(z) B(z)]. Set C(z) , A(z)A−1(z). Then, we have

A(z) = C(z)A(z), (20)

B(z) = A(z)H(z) = A(z)A−1(z)B(z) = C(z)B(z). (21)

Since both A(z) and A(z) are stable matrices, det C(z) is not identically equal to zero. So, the rank of C(z) is n.
By Lemma 3 given in Appendix C(z) can be presented in the Smith–McMillan canonical form:

C(z) = U(z)diag

q1(z)
p1(z)

,
q2(z)
p2(z)

, . . . ,
qn(z)
pn(z)


V (z)

= U(z)P−1(z)Q (z)V (z), (22)

where U(z) and V (z) are n × n unimodular matrices,

P(z) = diag [p1(z), p2(z), . . . , pn(z)]
Q (z) = diag [q1(z), q2(z), . . . , qn(z)]

with pi(z) and qi(z) being coprime ∀i = 1, . . . , n.
Putting the expression of C(z) given by (22) into (20) and (21) leads to

Q−1(z)P(z)U−1(z)A(z) = V (z)A(z), Q−1(z)P(z)U−1(z)B(z) = V (z)B(z). (23)

Noticing that the right-hand sides of both equalities in (23) are matrix polynomials, we find that the ith rows of both
P(z)U−1(z)A(z) and P(z)U−1(z)B(z)must be divided by qi ∀i = 1, . . . , n.
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Noticing that qi and pi are coprime ∀i = 1, . . . , n, we find that Q (z) must be a common left factor of U−1(z)A(z) and
U−1(z)B(z). In other words, both Q−1(z)U−1(z)A(z) and Q−1(z)U−1(z)B(z) are matrix polynomials. Noticing that Q−1(z)
and P(z) in (20) are commutative, we find that P(z) is a left-common factor of V (z)A(z) and V (z)B(z).

Since A(z) and B(z) have no common left factor, there are matrix polynomials M(z) and N(z) such that A(z)M(z) +

B(z)N(z) = I , and hence V (z)A(z)M(z)V−1(z) + V (z)B(z)N(z)V−1(z) = I . This means that V (z)A(z) and V (z)B(z) have
neither a common left factor. Consequently, P(z) is unimodular. Then, from (22) it is seen that C(z) is a matrix polynomial:
C(z) , C0 + C1z + · · · + Crzr .

From (20) and (21) we have [A(z) B(z)] = C(z)[A(z) B(z)]. Comparing thematrix coefficients of the highest order at both
sides of A(z) = C(z)A(z) and B(z) = C(z)B(z), respectively, gives us Cr [Ap Bq] = 0. By H2 [Ap Bq] is of row-full-rank, so
Cr = 0.

Similarly, we derive Ci = 0, i ≥ 1. Therefore, C(z) is a constant matrix: C(z) = C0. Setting z = 0 in (20), we find
C(z) ≡ I.

Then, from (20) and (21) we conclude that A(z) ≡ A(z) and B(z) ≡ B(z). Thus, H1 holds.
H1 ⇒ H2

Let [A(z) B(z)] be the unique pair in M. Assume the converse: either [Ap Bq] is not of row-of-rank or A(z) and B(z) have
a common-left factor.

In the case [Ap Bq] is not of row-of-rank, there exists a nonzero vector α ∈ Rn such that

αT
[Ap Bq] = 0.

Set K(z) , I + βαT z, where β is a nonzero vector β ∈ Rn with sufficiently small ∥β∥ so that K(z) is stable. Then, K(z)A(z)
and K(z)B(z) are of orders less than or equal to p and q, respectively. Therefore, [K(z)A(z) K(z)B(z)] ∈ M. This contradicts
the uniqueness of [A(z) B(z)] in M, and proves the row-full-rank of [Ap Bq].

In the case A(z) and B(z) have a common-left factor C(z) : A(z) = C(z)A(z), B(z) = C(z)B(z).
Let U(z) be the unimodular matrix defined in Lemma 1. Then, C ′(z) , C(z)U(z) is of the form (17) with deg c ′

i,s(z) ≤

deg c ′

i,i(z) ∀s ≤ i ∀i : i = 1, . . . , n. Define A′(z) , U−1(z)A(z) and B′(z) , U−1(z)B(z). Then A(z) = C ′(z)A′(z) and
B(z) = C ′(z)B′(z). By Lemma 1, we have deg A′(z) ≤ p, deg B′(z) ≤ q. Since I = C ′(0)A′(0), we may assume that both
C ′(z) and A′(z) are monic and stable. Therefore, [A′(z) B′(z)] ∈ M. However, this contradicts the uniqueness of [A(z) B(z)]
in M. So, H2 holds.
H1 ⇒ H3

Let H1 hold and let [A(z) B(z)] ∈ M with orders p and q, respectively.
We now show H3. Assume the converse that there exist n-vector polynomial d(z) and m-vector polynomial c(z) (not

both zero) with orders strictly less than p and q, respectively, such that dT (z)H(z)+ cT (z) = 0.
Let ξ ∈ Rn

≠ 0 and defineA(z) , A(z)+zξdT (z) = I+A1z+· · ·+Apzp, B(z) , B(z)−zξcT (z) =B0 +B1z+· · ·+Bqzq.
Then, we haveA(z)H(z) = (A(z)+ zξdT (z))H(z) = B(z)− zξcT (z) =B(z). (24)

It is clear thatA(z) remains stable if ∥ξ∥ > 0 is small enough. Therefore, [A(z) B(z)] ∈ M. This contradicts H1, and hence
H3 holds.
H3 ⇒ H1

Let H3 hold. We now show H1. Assume the converse: there are two different matrix polynomials [A(z) B(z)] ∈ M and
[A(z) B(z)] ∈ M with orders less than or equal to p and q, respectively.

Set X(z) , A(z)− A(z) = X1z + · · · + Xpzp and Y (z) , B(z)− B(z) = Y0 + Y1z + · · · + Yqzq. From here it follows that

X(z)H(z) = Y (z). (25)

Setting z = 0 in (25) we find that Y0 = 0. By assumption there exists at least one nonzero row in (25). Take any nonzero
row in [X(z) Y (z)] and write it as z[dT (z) − cT (z)]. It is clear that [dT (z) − cT (z)] is a row polynomial with orders strictly
less than p and q, respectively. By (25) we have dT (z)H(z)+ cT (z) = 0, which contradicts H3.

The proof of the lemma is completed. �

3. Row-full-rank of Hankel matrix L

In Introduction it has beenpointed out that for identification of linearmodels the row-full-rank of certainHankelmatrices
is of crucial importance. We now present the necessary and sufficient conditions for the row-full-rank of L.

Theorem 1. Assume [A(z) B(z)] ∈ M. Then the following condition H4 is equivalent to H1, or H2, or H3 defined in Lemma 2.

H4 The matrix L defined by (10) is of row-full-rank.
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Proof. By Lemma 2, H1–H3 are equivalent. So, for the theorem it suffices to show that H3 and H4 are equivalent.

H3 ⇒ H4
Assume [A(z) B(z)] is the unique pair in M with orders p and q, respectively. Then, we have that

H(z) = A−1(z)B(z) =
A∗(z)B(z)

a(z)
=

B∗(z)
a(z)

, (26)

where a(z) , det(A(z)) =
np

i=0 aiz
i, A∗(z) is the adjoint matrix of A(z), and B∗(z) , A∗(z)B(z) =

(n−1)p+q
j=0 B∗

j z
j.

From (26) it follows that

(1 + a1z + · · · + anpznp)(H0 + H1z + · · · + Hiz i + · · ·) = B∗

0 + B∗

1z + · · · + B∗

(n−1)p+qz
(n−1)p+q. (27)

Identifying coefficients for the same degrees of z at both sides of (27), we obtain

Ht = −

np
i=1

aiHt−i ∀t > q + (n − 1)p. (28)

If the matrix L were not of row-full-rank, then there would exist a vector x = [xT1, . . . , x
T
p ]

T
≠ 0 with xi ∈ Rn such that

xT L = 0, i.e.,

p
j=1

xTj Hq−j+l = 0 ∀1 ≤ l ≤ np. (29)

In this case we show that (29) holds ∀l ≥ 1.
Noticing (28) and (29), for l = np + 1 we have

p
j=1

xTj Hq−j+np+1 = −

p
j=1

xTj
np
i=1

aiHq−j+np+1−i

= −

np
i=1

ai
p

j=1

xTj Hq−j+np+1−i = 0. (30)

Hence (29) holds for l = np + 1. Carrying out a similar treatment as that done in (30), we find

p
j=1

xTj Hq−j+l = 0 ∀l ≥ 1. (31)

Defining d(z) ,
p

i=1 xiz
i−1, we have

dT (z)H(z) =


p

i=1

xTi z
i−1


·


∞
j=0

Hjz j


=

p
i=1


xTi z

i−1


q−i
j=0

Hjz j +
∞

j=q−i+1

Hjz j


=

p
i=1

q−i
j=0

xTi Hjz i+j−1
+

∞
k=1


p

i=1

xTi Hq−i+k


zq+k−1

=

p
i=1

q−i
j=0

xTi Hjz i+j−1 , −cT (z). (32)

Consequently, dT (z)H(z) + cT (z) = 0 and the orders of d(z) and c(z) are strictly less than p and q, respectively. This
contradicts H3, and hence H4 holds.

H4 ⇒ H3
Assume the converse: there existd(z) =

p
i=1xiz i−1 andc(z) (not both zero) with orders strictly less than p and q,

respectively, such that

dT (z)H(z) =cT (z). (33)
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Noticing

dT (z)H(z) =

p
i=1

∞
j=0

xTi Hjz i+j−1
=

∞
j=0


p

i=1

xTi Hj−i+1


z j,

we have
∞
j=0

p
i=1

xTi Hj−i+1z j =cT (z). (34)

Noting the order ofcT (z) is less than q, from (34) we must have
∞
j=q

p
i=1

xTi Hj−i+1z j = 0,

which implies
p

i=1

xTi Hq−i+l = 0 ∀l ≥ 1.

This means that the rows of the matrix L are linearly dependent, which contradicts H4. Consequently, H3 must be held. �

Remark 1. For L to be of row-full-rank, the sufficient condition was discussed in [11,14,8,9]. In contrast to this, Theorem 1
states the necessary and sufficient conditions for the row-full-rank of L. It is worth noting that θA and θB , [B0, B1, . . . , Bq]

can be estimated by Theorem1with the help of (12) and (7), once the estimates for {Hi} have been derived (see, e.g., [14,8,9]).

4. Row-full-rank of Hankel matrix Γ

We now consider the row-full-rank of the Hankel matrix Γ composed of correlation functions. Assume that {uk} is a
sequence of zero mean uncorrelated random vectors with EukuT

k = I.
If Γ is of row-full-rank and {Ri} can be estimated, then by (16), θA can also be estimated. As concerns the coefficients θB,

let us set χk , B(z)uk.
The spectral density of χk is

Φχ (z) = B(z)BT (z−1),

while the spectral density of {yk} given by (1)–(3) is

Φ(z) ,

∞
j=−∞

Rjz j = A−1(z)B(z)BT (z−1)A−T (z−1), (35)

which implies

Φχ (z) = B(z)BT (z−1) = A(z)Φ(z)AT (z−1). (36)

Since the right-hand side of (36) is equal to

A(z)Φ(z)AT (z−1) =

p
i=0

Aiz i
∞

k=−∞

Rkzk
p

j=0

AT
j z

−j

=

p
i=0

∞
k=−∞

p
j=0

AiRkAT
j z

i+k−j
=

∞
k=−∞


p

i=0

p
j=0

AiRk+j−iAT
j


zk, (37)

we have

B(z)BT (z−1) =

q
k=−q


p

i=0

p
j=0

AiRk+j−iAT
j


zk. (38)

Therefore, to derive θB it is the matter of factorizing the right-hand-side of (38).
The following theorem tells us that the row-full-rank of Γ is slightly stronger than that of L.
It is worth noting that the theorem requires no stability-like condition on B(z), and B(z) is even allowed to not be a square

matrix.
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Theorem 2. Assume [A(z) B(z)] ∈ M and B0 is of column-full-rank. Then, the following H5 and H6 are equivalent.

H5 The matrix Γ defined by (15) is of row-full-rank.
H6 The matrix [Ap Bq] is of row-full-rank and the matrix polynomials A(z) and B(z)BT (z−1)zq have no common left factor.

Proof. H6 ⇒ H5
We first note that H6 implies H2, and hence by Lemma 2, [A(z) B(z)] is the unique pair in M under H6. So, it suffices

to show that [A(z) B(z)] cannot be unique if H5 is not true. In other words, we intend to show that there exists a pair
[A(z)B(z)] ∈ M such that [A(z)B(z)] ≠ [A(z) B(z)], if Γ is not of row-full-rank.

The proof of H6 ⇒ H5 is completed by four steps.

Step 1. We first show that the converse assumption leads to

p
j=1

ηTj Rq−j+l = 0 ∀l ≥ 1, (39)

where the column vector η = [ηT1 , . . . , η
T
p ]

T
≠ 0 with ηi ∈ Rn is such that ηTΓ = 0, i.e.,

p
j=1

ηTj Rq−j+l = 0, 1 ≤ l ≤ np. (40)

The existence of such an η is a consequence of the converse assumption that Γ is not of row-full-rank.
By (26), we have

yk + a1yk−1 + · · · + anpyk−np = B∗

0uk + B∗

1uk−1 + · · · + B∗

(n−1)p+quk−((n−1)p+q). (41)

Multiplying both sides of (41) by yTk−t from right and taking expectation, we have

E(yk + a1yk−1 + · · · + anpyk−np)yTk−t = E(B∗

0uk + B∗

1uk−1 + · · · + B∗

(n−1)p+quk−((n−1)p+q))yTk−t

= 0, ∀ t > q + (n − 1)p,

which yields

Rt = −

np
i=1

aiRt−i, ∀t > q + (n − 1)p. (42)

Noticing (42), we have

p
j=1

ηTj Rq−j+np+1 = −

p
j=1

ηTj

np
i=1

aiRq−j+np+1−i

= −

np
i=1

ai
p

j=1

ηTj Rq−j+np+1−i = 0, (43)

where the last equality follows from (40). Therefore, (39) holds for l = np+ 1. Carrying out a similar treatment as that done
in (43), we arrive at (39).

Step 2. We now define [A(z)B(z)], and show [A(z) B(z)] ∈ M.
SetA(z) , A(z)+ βdT (z), (44)B(z) ,A(z)A−1(z)B(z) =A(z)H(z), (45)

whered(z) ,
p

i=1 ηiz
i and β ∈ Rn is an arbitrary nonzero column vector with small enough ∥β∥ such thatA(z) is stable.

It is clear thatA(z) ≠ A(z) and degA(z) ≤ p. From (45) it is seen that [A(z) B(z)] and [A(z)B(z)] share the same transfer
function H(z).

Therefore, to show [A(z)B(z)] ∈ M it suffices to prove thatB(z) is a matrix polynomial and degB(z) ≤ q. If this is done,
then the uniqueness is violated. This means that H5 must be held.
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Step 3. Before doing this we first prove that C(z) ,A(z)A−1(z) is a matrix polynomial.
For this, we explicitly express each terms inA(z)Φ(z)AT (z−1).

By the definition ofΦ(z) given by (35) we have

dT (z)Φ(z)AT (z−1) =

p
i=1

∞
j=−∞

p
l=0

ηTi RjAT
l z

i+j−l

=

p
i=1

p
l=0


∞

j=q−i+1

ηTi RjAT
l z

i+j−l
+

q−i
j=−∞

ηTi RjAT
l z

i+j−l



=

p
i=1

p
l=0

∞
j=q−i+1

ηTi RjAT
l z

i+j−l
+

p
i=1

p
l=0

q−i
j=−∞

ηTi RjAT
l z

i+j−l (46)

=

p
l=0

∞
j=1


p

i=1

ηTi Rq−i+j


zq+jAT

l z
−l

+

p
i=1

p
l=0

q−i
j=−∞

ηTi RjAT
l z

i+j−l

=

p
i=1

p
l=0

∞
j=i−q

ηTi R
T
j A

T
l z

i−j−l

=

p
i=1

p
l=0

q−l
j=i−q

ηTi R
T
j A

T
l z

i−j−l
+

p
i=1

p
l=0

∞
j=q−l+1

ηTi R
T
j A

T
l z

i−j−l

=

p
i=1

p
l=0

q−l
j=i−q

ηTi R
T
j A

T
l z

i−j−l
+

p
i=1

ηTi z
i

∞
j=1


p

l=0

RT
q−l+jA

T
l


z−q−j

=

p
i=1

p
l=0

q−l
j=i−q

ηTi R
T
j A

T
l z

i−j−l, (47)

where for the fifth equality (39) is invoked, while for the last equality (13) is used.
Similarly, we obtain

A(z)Φ(z)d(z−1) =

p
l=0

p
i=1

q−i
j=l−q

AlRT
j ηiz

l−i−j (48)

and

dT (z)Φ(z)d(z−1) =

p
i=1

p
l=1

∞
j=−∞

ηTi Rjηlz i+j−l

=

p
i=1

p
l=1

∞
j=q−i+1

ηTi Rjηlz i+j−l
+

p
i=1

p
l=1

q−i
j=−∞

ηTi Rjηlz i+j−l

=

p
l=1

∞
j=1


p

i=1

ηTi Rq−i+j


zq+jηlz−l

+

p
i=1

p
l=1

q−i
j=−∞

ηTi Rjηlz i+j−l

=

p
i=1

p
l=1

∞
j=i−q

ηTi R
T
j ηlz

i−j−l

=

p
i=1

p
l=1

q−l
j=i−q

ηTi R
T
j ηlz

i−j−l
+

p
i=1

ηTi z
i

∞
j=1


p

l=1

RT
q−l+jηl


z−q−j

=

p
i=1

p
l=1

q−l
j=i−q

ηTi R
T
j ηlz

i−j−l. (49)

From (35) and (47)–(49) it follows thatA(z)Φ(z)AT (z−1) = (A(z)+ βdT (z))Φ(z)(A(z−1)+ βdT (z−1))T

= A(z)Φ(z)AT (z−1)+ A(z)Φ(z)d(z−1)βT
+ βdT (z)Φ(z)AT (z−1)+ βdT (z)Φ(z)d(z−1)βT
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= B(z)BT (z−1)+

p
l=0

p
i=1

q−i
j=l−q

AlRT
j yiz

l−i−jβT
+

p
i=1

p
l=0

q−l
j=i−q

βyTi R
T
j A

T
l z

i−j−l

+

p
i=1

p
l=1

q−l
j=i−q

βyTi R
T
j ylβ

T z i−j−l , F(z). (50)

The degrees of z in F(z) are between −q and q. So, it may diverge to infinity only at z = 0 and at z equal to infinity, and
hence all its nonzero finite poles should be canceled with its zeros.

Noticing

F(z) =A(z)Φ(z)AT (z−1) =A(z)A−1(z)B(z)BT (z−1)A−T (z−1)AT (z−1), (51)

we see that all poles of A−1(z) should be canceled with zeros of F(z). However, H6 requires that A(z) and B(z)BT (z−1)zq
have no common left factor. This means that any pole of A−1(z) cannot be canceled with zeros of B(z)BT (z−1)zq. By stability
of A(z) the poles of A−1(z), being outside the closed unit disk, can neither be canceled with zeros of A−T (z−1) andAT (z−1),
since their zeros are inside the unit disk. Therefore, all poles of A−1(z)must be canceled with zeros ofA(z). In other words,
C(z) =A(z)A−1(z)must be a matrix polynomial:

C(z) = C0 + C1z + · · · + Crzr .

Step 4. We now complete the proof of H6 ⇒ H5.

From definition, we haveA(z) = C(z)A(z), which leads to C0 = I by setting z = 0.

Further,B(z) = C(z)B(z) is also a matrix polynomial denoted byB(z) = B0 +B1z + · · · +Bqzq, and we haveB0 = B0
since C0 = I. By (45) and (51) we haveB(z)BT (z−1) = F(z). (52)

It remains to show that degB(z) ≤ q. Ifq > q andBq ≠ 0, then comparing the matrix coefficients of the degreeq at both
sides of (52) we obtainBqBT

0 = 0, since the maximal degree of z in F(z) defined by (50) is q. Since B0 is of column-full-rank,
we find thatBq = 0. A similar treatment for q+ 1 ≤ s ≤q− 1 leads toBs = 0, q+ 1 ≤ s ≤q inB(z). Thus, we have proved
that degB(z) ≤ q, and at the same time [A(z) B(z)] ∈ M. The violation of uniqueness implies that Γ is of row-full-rank.
H5 ⇒ H6

The proof of H5 ⇒ H6 is completed by three steps.
Step 1. We first show that [Ap Bq] is of row-full-rank.

If [Ap Bq] is not of row-full-rank, then [A(z) B(z)] is not unique inM by Lemma2. Then, thematrix L is not of row-full-rank
by Theorem 1. This means that there exists a nonzero column vectorx = [xT1, . . . ,xTp ]T such that

p
i=1

xTi Hq−i+l = 0 ∀1 ≤ l ≤ np.

From here as shown in (29)–(31), we have
p

i=1

xTi Hq−i+l = 0 ∀l ≥ 1.

Therefore, for any l ≥ 1 we have

p
i=1

xTi Rq−i+l =

p
i=1

xTi ∞
j=0

Hq−i+l+jHT
j =

∞
j=0


p

i=1

xTi Hq−i+l+j


HT

j = 0,

which means that the rows of the matrix Γ are linearly dependent. This contradicts H5.
Consequently, [Ap Bq] is of row-full-rank.

Step 2. We explain how to prove that A(z) and B(z)BT (z−1)zq have no common left factor.
Assume the converse: A(z) and B(z)BT (z−1)zq have a common left factor, i.e., there exists C(z) being not unimodular such

that

[A(z) B(z)BT (z−1)zq] = C(z)[A(z) D(z)]. (53)

Applying Lemma 1 to (53) wemay assume that deg[A(z)] ≤ p, and thematrix C(z) = {ci,j(z)}1≤i,j≤n is lower triangular with
cii(0) = 1 and the degree of ci,i(z) is the greatest among the entries of the ith row ∀i : 1 ≤ i ≤ n. It is clear that A(z) ≠ A(z).
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If we can show that there isB(z)with degB(z) ≤ q so that [A(z)B(z)] and [A(z) B(z)] have the same correlation functions
{Ri}, whereA(z) , A(0)

−1
A(z)withA(0) = I , then by (14) this implies

[A1, A2, . . . , Ap]Γ = −[Rq+1, Rq+2, . . . , Rq+np], (54)

[A1,A2, . . . ,Ap]Γ = −[Rq+1, Rq+2, . . . , Rq+np], (55)

whereAi, 1 ≤ i ≤ p are coefficients ofA(z). From here it follows that

[A1 −A1, A2 −A2, . . . , Ap −Ap]Γ = 0. (56)

Since the matrix [A1 −A1, A2 −A2, . . . , Ap −Ap] is not identically zero, the matrix Γ cannot be of row-full-rank. This
contradicts H5, and hence, completes the proof of the theorem.

Thus, the remaining task of the proof is to findB(z)with property mentioned above.
From (53) we have

B(z)BT (z−1)zq = C(z)D(z). (57)

SetD(z) , D(z)C−T (z−1)z−q
= {di,j(z), 1 ≤ i, j ≤ n}. Then, from (57) it follows that

D(z) = C−1(z)B(z)BT (z−1)C−T (z−1), (58)

which is equivalent to

D(z) , B(z)BT (z−1) = C(z)D(z)CT (z−1). (59)

If we can show thatD(z) =
q

i=−q
Diz i withD−i = DT

i is of rank m (m ≤ n), and is non-negative definite on the unit circle
|z| = 1, then by Lemma 5 given in Appendix there exists an n × m matrix polynomial B(z) with deg[B(z)] ≤ q such thatD(z) = B(z)B

T
(z−1).

By (53) and (59) we have

A(z) = C(z)A(z) and B(z)BT (z−1) = C(z)B(z)B
T
(z−1)CT (z−1) (60)

with deg A(z) ≤ p and deg B(z) ≤ q.
DefineC(z) , C(z)A(0) andB(z) , A(0)

−1
B(z). Then we have

A(z) =C(z)A(z) and B(z)BT (z−1) =C(z)B(z)BT (z−1)CT (z−1), (61)

which yields

A−1(z)B(z)BT (z−1)A−T (z−1) = [C(z)A(z)]−1B(z)BT (z−1)[C(z−1)A(z−1)]−T

= A(z)−1C−1(z)B(z)BT (z−1)C−T (z−1)A−T (z−1)

= A(z)−1B(z)BT (z−1)A−T (z−1). (62)

This means that the two different linear systems [A(z) B(z)] and [A(z)B(z)] share the same spectral density, and hence they
have the same correlation functions. This will prove the theorem.

Step 3. To complete the proof we now show thatD(z) =
q

i=−q
Diz i withD−i =DT

i is of rankm (m ≤ n), and is non-negative
definite on the unit circle |z| = 1.

For any scalar rational polynomial g(z) = g−az−a
+· · ·+g0+· · ·+gbzb with real coefficients we introduce the operators

[·]
+ and [·]

− such that

[g(z)]+ = g0 + · · · + gbzb and [g(z)]− = g0 + g−1z + · · · + g−aza.

The essential step is to show that deg[di,j(z)]+ ≤ q, deg[di,j(z)]− ≤ q for 1 ≤ i, j ≤ n. This is done by a treatment similar
to but more complicated than that used in the proof of Lemma 1. We prove this inductively starting from the first column,
and in each column the proof is also carried out inductively.

Noticing that C(z) is lower triangular, from (59) we have

D(z) = {dij(z)}, dij(z) =

i
t=1

j
s=1

cit(z)dts(z)cjs(z−1) ∀i, j : 1 ≤ i, j ≤ n.

Starting from the first column ofD(z), we show that deg[di1(z)]+ ≤ q for 1 ≤ i ≤ n by induction.
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The (1, 1)-elementd11(z) ofD(z) is related to d11(z) as follows

d11(z) = c11(z)d11(z)c11(z−1). (63)

Since deg[d11(z)]+ ≤ q and the constant term of c11(z) equals 1, we see that deg[d11(z)]+ ≤ q.
Assume it has been established that deg[di1(z)]+ ≤ q ∀i : 1 ≤ i ≤ r.We want to show deg[d(r+1)1(z)]+ ≤ q.
Assume the converse: deg[d(r+1)1(z)]+ > q.
Noticing deg[di1(z)]+ ≤ q ∀i : 1 ≤ i ≤ r and deg[c(r+1)(r+1)(z)] ≥ deg[c(r+1)t(z)] ∀t : 1 ≤ t ≤ r , by the converse

assumption and c11(0) = 1 we see that

deg

c(r+1)(r+1)(z)d(r+1)1(z)c11(z−1)

+
> deg


r

t=1

c(r+1)t(z)dt1(z)c11(z−1)

+

,

and hence

deg


r

t=1

c(r+1)t(z)dt1(z)c11(z−1)+ c(r+1)(r+1)(z)d(r+1)1(z)c11(z−1)

+

= deg

c(r+1)(r+1)(z)d(r+1)1(z)c11(z−1)

+
> q. (64)

Since

d(r+1)1(z) =

r+1
t=1

c(r+1)t(z)dt1(z)c11(z−1), (65)

by (64) we obtain a contradictory inequality:

q ≥ deg[d(r+1)1(z)]+ = deg


r+1
t=1

c(r+1)t(z)dt1(z)c11(z−1)

+

= deg

c(r+1)(r+1)(z)d(r+1)1(z)c11(z−1)

+
> q. (66)

Thus, we have proved deg[d(r+1)1(z)]+ ≤ q and inductively deg[di1(z)]+ ≤ q ∀i : 1 ≤ i ≤ n.
Similarly, we can show deg[di1(z)]− ≤ q ∀i : 1 ≤ i ≤ n. Therefore, the assertion holds for the first column.
We now assume that the assertion is true for the first j columns, i.e.,

deg[dis(z)]+ ≤ q and deg[dis(z)]− ≤ q ∀i : 1 ≤ i ≤ n ∀s : 1 ≤ s ≤ j.

We want to show that it also holds for the j + 1 column.
Observing thatdi(j+1)(z) =d(j+1)i(z−1), 1 ≤ i ≤ j, we see deg[di(j+1)(z)]+ = deg[d(j+1)i(z)]− ≤ q ∀i : 1 ≤ i ≤ j by the

inductive assumption.
Inductively, we now assume that deg[di(j+1)(z)]+ ≤ q ∀i : 1 ≤ i ≤ r for some r : r ≥ j. We want to prove

deg[d(r+1)(j+1)(z)]+ ≤ q.
Assume the converse: deg[d(r+1)(j+1)(z)]+ > q.
Noticing deg[c(r+1)(r+1)(z)] ≤ deg[c(r+1)t(z)] ∀t : 1 ≤ t ≤ r and the inductive assumptions deg[di(j+1)(z)]+ ≤ q ∀i :

1 ≤ i ≤ r and deg[dis(z)]+ ≤ q ∀i : 1 ≤ i ≤ n ∀s : 1 ≤ s ≤ j, we find that

deg

c(r+1)(r+1)(z)d(r+1)(j+1)(z)c(j+1)(j+1)(z−1)

+
> deg


r

t=1

j+1
s=1

c(r+1)t(z)dts(z)c(j+1)s(z−1)+

j
s=1

c(r+1)(r+1)(z)d(r+1)s(z)c(j+1)s(z−1)

+

.

Consequently, we have

deg


r

t=1

j+1
s=1

c(r+1)t(z)dts(z)c(j+1)s(z−1)

+

j
s=1

c(r+1)(r+1)(z)d(r+1)s(z)c(j+1)s(z−1)+ c(r+1)(r+1)(z)d(r+1)(j+1)(z)c(j+1)(j+1)(z−1)

+

= deg

c(r+1)(r+1)(z)d(r+1)(j+1)(z)c(j+1)(j+1)(z−1)

+
> q. (67)
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Since

d(r+1)(j+1)(z) =

r+1
t=1

j+1
s=1

c(r+1)t(z)dts(z)c(j+1)s(z−1),

by (67) we arrive at the following contradictory inequality:

q ≥ deg[d(r+1)(j+1)(z)]+ = deg


r+1
t=1

j+1
s=1

c(r+1)t(z)dts(z)c(j+1)s(z−1)

+

= deg

c(r+1)(r+1)(z)d(r+1)(j+1)(z)c(j+1)(j+1)(z−1)

+
> q. (68)

This contradiction implies that deg[d(r+1)(j+1)(z)]+ ≤ q. As a consequence, we have proved that deg[di(j+1)(z)]+ ≤ q for
1 ≤ i ≤ n. Similarly, we can also show that deg[di(j+1)(z)]− ≤ q for 1 ≤ i ≤ n.

Therefore, the assertion holds for the j + 1 column, i.e., deg[di(j+1)(z)]+ ≤ q, deg[di(j+1)(z)]− ≤ q ∀i : 1 ≤ i ≤ n.
As results,D(z) can be written asD(z) =

q
i=−q

Diz i withD−i =DT
i .

From (58) it follows thatD(z) is of rankm, and is non-negative on the unit circle |z| = 1. Thus, the proof of the theorem
is completed. �

In Theorem 2 the criterion for the row-full-rank of Γ is under the additional assumption that B0 is of column-full-rank.
However, this assumption can be removed with the help of Lemma 4 given in Appendix. As a matter of fact, by Lemma 4,
B(z) has the factorization

B(z) =B(z)BP(z) (69)

whereB(z) is an n×mmatrix polynomial such that deg[B(z)] ≤ deg[B(z)] and its constant termB(0) is of column-full-rank,
while BP(z) is an m × m matrix polynomial satisfying BP(z)BT

P (z
−1) = Im.We writeB(z) as

B(z) =B0 +B1z + · · · +Bqzq (70)

whereB0 is of column-full-rank andBq may be equal to 0.

Theorem 2′. Assume that [A(z) B(z)] ∈ M and B(z) is of rank m. Then the matrix Γ defined by (15) is of row-full-rank if and
only if the matrix [ApBq] is of row-full-rank and the matrix polynomials A(z) and B(z)BT (z−1)zq have no common left factor.

Proof. We need only to discuss the case where B0 is not of column-full-rank. By the factorization (69), we see that the two
linear systems {A(z), B(z)} and {A(z),B(z)} with different impulse responses have the same correlation functions because
they have the same spectral density:

A−1(z)B(z)BT (z−1)A−T (z−1) = A−1(z)B(z)BP(z)BT
P (z

−1)BT (z−1)A−T (z−1)

= A−1(z)B(z)BT (z−1)A−T (z−1). (71)

This means that the matrix Γ constructed from the two linear systems are identical. Therefore, we only need to consider
the necessary and sufficient conditions that make the matrix Γ derived from {A(z),B(z)} be of row-full-rank. SinceB0 is
of column-full-rank, by Theorem 2 the necessary and sufficient conditions for the row-full-rank of Γ is that [Ap Bq] is of
row-full-rank and A(z) andB(z)BT (z−1)zq have no common left factor.

By noticing

B(z)BT (z−1) =B(z)BP(z)BT
P (z

−1)BT (z−1) =B(z)BT (z−1), (72)

the conclusion of the theorem follows. �

Remark 2. For systems with stable A(z) the well-known result given in [12] is for the special case n = m, B0 = I , and
det B(z) ≠ 0 ∀|z| < 1, and it states that the matrix Γ defined by (15) is of row-full-rank if and only if A(z) and B(z) have no
common left factor and [Ap Bq] is of row-full-rank.Wenote that Theorems 2 and 2′ are for the general case n ≥ m and require
neither B0 = I nor det B(z) ≠ 0 ∀|z| < 1. It is worth noting that ‘‘A(z) and B(z) have no common left factor’’ and ‘‘ A(z) and
B(z)BT (z−1)zq have no common left factor’’ are equivalent for systems with stable A(z), whenever det B(z) ≠ 0,∀|z| < 1.
This is because ‘‘det B(z) ≠ 0 ∀|z| < 1’’ guarantees that all roots of det BT (z−1) are inside or on the unit disk.
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5. Conclusions

The row-full-rank of the Hankel matrices composed of impulse responses and of correlation functions is of crucial
importance for determining or estimating coefficients of the corresponding linear system. Whenever identifiability is
concerned, in most of existing papers ([2] may be among a few exceptions) the input and output of the system under
consideration usually have the same dimension and the minimum phase condition is normally required [12,5] etc. In this
paper, it is shown that such kind of restrictions are not necessary. As a matter of fact, the necessary and sufficient conditions
are presented for the row-full-rank of the Hankel matrices. With these new results applied, the corresponding results for
identifying a certain kind of block-oriented nonlinear systems containing linear subsystems may compatibly be improved.

Appendix

In the proof of Lemma 2 the Smith–McMillan diagonal decomposition for a square matrix polynomial is used. We
formulate the decomposition below. For details we refer to [4,13].

A square matrix polynomial is called unimodular if its determinant is a nonzero constant. From the definition it follows
that the inverse of a unimodular matrix is also a matrix polynomial.

The non-negative integer r is called the rank of a rational polynomial matrix if (1) there exists at least one subminor of
order r which does not vanish identically, and (2) all subminors of order greater than r vanish identically.

Lemma 3 ([4,13]). Let G(z) be an n×n rational matrix of rank r. Then there exist two n×n unimodular matrices U(z) and V (z)
such that

G(z) = U(z)diag

e1(z)
ψ1(z)

,
e2(z)
ψ2(z)

, . . . ,
er(z)
ψr(z)

, 0 . . . , 0

V (z)

= U(z)W (z)V (z), (73)

where

(a) ek(z) and ψk(z) are relatively prime polynomials with unit leading coefficients ∀k : 1 ≤ k ≤ r;
(b) each ek(z) divides ek+1(z) ∀k : 1 ≤ k ≤ r − 1, and each ψj(z) is a factor of ψj−1(z) ∀j : 2 ≤ j ≤ r;
(c) the diagonal matrix W (z) appearing in (73) satisfies (a) and (b), uniquely determined by G(z);
(d) if G(z) is real, then U(z),W (z) and V (z)may also be chosen to be real.

Lemma 4 ([6,7]). Let B(z) = B0 + B1z + · · · + Bqzq be an n × m (n ≥ m) matrix polynomial with rank m. Then B(z) can be
factorized as

B(z) = BI(z)BP(z) (74)

where BI(z) is an n×mmatrix polynomial such that deg[BI(z)] ≤ deg[B(z)] and its constant term BI(0) is of column-full-rank,
while BP(z) is an m × mmatrix polynomial satisfying BP(z)BT

P (z
−1) = Im.

Proof. Since B(z) is with rank m, any minor of order m being not identically zero must be of the form: zxg(z), where x ≥ 0
is an integer and g(z) is a polynomial with a nonzero constant term. Denote the greatest common factor of minors of order
m (GCF) by zrb(z). Without loss of generality, b(z)may be assumed to be monic. To emphasize the degree r in the common
factor zrb(z), we write B(z) as Br(z).

If r = 0, then the GCF of Br(z) is a monic polynomial b(z). Since the constant term of b(z) is nonzero (=1), B0 must be of
column-full-rank. Then, we may take BP(z) = I and BI(z) = B(z), which meet the requirements of the lemma.

If r > 0, then the GCF of Br(z) is zero at z = 0. This implies that all minors of order m are zero at z = 0. In other words,
the columns of B0 are linearly dependent. Therefore, there exists a nonzero unitm-vectorψ such that B0ψ = 0. This means
that

Br(z)ψ =

q
i=0

Biψz i = z


q−1
i=0

Bi+1z i

ψ. (75)

Let Tr be an orthogonal matrix with ψ serving as its last column.
Define the matrix polynomial Br−1(z) as follows:

Br−1(z) , Br(z)TrΥ (z),

where

Υ (z) ,


Im−1 0

0
1
z


.



508 B.-Q. Mu, H.-F. Chen / J. Math. Anal. Appl. 409 (2014) 494–508

Since Tr is an m × m orthogonal matrix, the GCF of Br(z)Tr coincides with that of Br(z). Further, Br(z)TrΥ (z) differs from
Br(z)Tr only at the last column by one degree of z less for the former. Therefore, the GCF of Br−1(z) is zr−1b(z), and
deg[Br−1(z)] ≤ deg[Br(z)].

If r − 1 > 0, as before, the columns of the constant term of Br−1(z) are linearly dependent. Proceeding as above for r
times, we arrive at

B0(z) , Br(z)TrΥ (z)Tr−1Υ (z) · · · T1Υ (z).

It is clear that B0(z) is still of rank m with deg B0(z) ≤ q, and the GCF of B0(z) is b(z). So, the constant term of B0(z) is of
column-full-rank.

Define

BI(z) , B0(z) (76)

BP(z) , Υ −1(z)T T
1 Υ

−1(z)T T
2 · · ·Υ −1(z)T T

r . (77)

It is clear that (74) holds, and all requirements of the lemma are satisfied. �

Lemma 5. Assume that an n × n rational polynomialD(z) =
q

i=−q
Diz i withD−i = DT

i is of rank m (m ≤ n), and is non-
negative definite on the unit circle |z| = 1. Then there exists an n × m matrix polynomialB(z) with deg[B(z)] ≤ q such thatD(z) =B(z)BT (z−1).

Proof. SinceD(z)withD−i =DT
i is of rankm, and is non-negative on the unit circle |z| = 1, then, there exists an n×m real

rational spectral factor B(z) with the poles being outside the unit circle such thatD(z) = B(z)B
T
(z−1) (see, e.g., [13,1,10]

among others).
Notice that the poles ofD(z) cannot be anything but 0 and ∞. Thus ∞ is the unique pole of B(z), which implies that B(z)

is a matrix polynomial.
We denote B(z) by B(z) = B0 + B1z + · · · + Bqzq. By Lemma 4, B(z) can be factored as

B(z) =B(z)BP(z) (78)

whereB(z) =B0 +B1z +· · ·+Bqzq is an n×mmatrix polynomial with degB(z) ≤ deg B(z) = q,B0 is of column-full-rank,
and BP(z) is an m × m matrix polynomial satisfying BP(z)BT

P (z
−1) = I . Hence, we obtain a different from B(z)B

T
(z−1) real

polynomial factorization ofD(z):
D(z) = B(z)B

T
(z−1) =B(z)BP(z)BT

P (z
−1)BT (z−1) =B(z)BT (z−1) (79)

andB0 is of column-full-rank.
We now show thatBs = 0 ∀s : q + 1 ≤ s ≤ q.
If q > q, then comparing the matrix coefficients of zq on both sides of (79) we obtainBqBT

0 = 0. SinceB0 is of column-
full-rank, we haveBq = 0. By the same argument for s : q+1 ≤ s ≤ q−1, we see thatBs = 0 ∀s : q+1 ≤ s ≤ q. Therefore,
deg[B(z)] ≤ q. �
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