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Spectral Analysis and Exponential Stability of One-Dimensional
Wave Equation with Viscoelastic Damping

Jing Wang§ , Jun-Min Wang

School of Mathematics, Beijing Institute of Technology, Beijing, 100081, P.R.China

Abstract

This paper presents the exponential stability of a one-dimensional wave equation with viscoelastic
damping. Using the asymptotic analysis technique, we prove that the spectrum of the system
operator consists of two parts: the point and continuous spectrum. The continuous spectrum is a
set of N points which are the limits of the eigenvalues of the system, and the point spectrum is a set
of three classes of eigenvalues: one is a subset of N isolated simple points, the second is approaching
to a vertical line which parallels to the imagine axis, and the third class is distributed around the
continuous spectrum. Moreover, the Riesz basis property of the generalized eigenfunctions of the
system is verified. Consequently, the spectrum-determined growth condition holds true and the
exponential stability of the system is then established.
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1. Introduction

It is known that the viscoelastic materials have been widely used in mechanics, chemical en-
gineering, architecture, traffic, information and so on [3, 16]. Many researchers have paid close
attention to the dynamic behavior and control of vibration for elastic structures with viscoelastic-
ity in the past several decades. In the early 1990’s, the existence and asymptotic stability of a linear
hyperbolic integro-differential equation are presented for the Hilbert state space in [4], where an
abstract version of the equation of motion for dynamic linear viscoelastic solids is established. The
well posedness for damped second order systems with unbounded input operators is considered in
[1], and the existence, uniqueness and continuous dependence of solutions in a weak or variational
setting are presented. Later on, using a frequency domain method and combining a contradiction
argument with the multiplier technique, the exponential stability for a vibrating Euler-Bernoulli
beam with Kelvin-Voigt damping distributed locally on any subinterval of the region is studied
in [8], and the stability for a vibrating string with local viscoelasticity, that is, one segment of
the string is made of viscoelastic material and the other segments are made of elastic material, is
discussed in [9]. In [11], the global existence and the asymptotic behaviour of the solution to a
non-linear one dimensional wave equation with a viscoelastic boundary condition are analyzed by
means of the energy method. Spectral analysis of a wave equation with Kelvin-Voigt damping is
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considered in [5] and it is shown that, with some assumption of the analyticity of the variable coef-
ficients, the continuous spectrum of the system is an interval on the left real axis in [5]. The Riesz
basis property of the generalized eigenfunctions of a one-dimensional hyperbolic system, which
describes a heat equation incorporating the effect of thermomechanical coupling and the effect of
inertia, is studied in [14]. The mathematical equation modelling a vibrating Timoshenko beam,
which is made of viscoelastic material of a Kelvin-Voigt type locally in one segment, is deduced and
the exponential stability is obtained under certain hypotheses of the smoothness and structural
condition of the coefficients of the system in [19]. In [15], a detailed spectral analysis for a heat
equation with thermoelastic memory type is presented. The spectrum-determined growth condition
and exponential stability are also concluded in [15]. A particular set of functions related to the
controllability of the heat equation with memory and finite signal speed, with suitable kernel, is
shown to be a Riesz system in [12]. Other studies from different aspects for elastic structures with
viscoelasticity can also be found in [2, 13, 17, 18] and the references therein.

In this paper, we are concerned with the following one-dimensional wave equation with vis-
coelastic damping under the Dirichlet boundary condition: for 0 < x < 1, t > 0,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
wtt(x, t) = a

2wxx(x, t)−
∫ t

0
κ(t− s)wxx(x, s)ds− cwt(x, t),

w(0, t) = w(1, t) = 0,

w(x, 0) = w0(x), wt(x, 0) = w1(x),

(1.1)

where the kernel is taken for the finite sum of exponential polynomials:

κ(t) =

N∑
i=1

aie
−bit, 0 < ai, bi ∈ R, 1 ≤ N ∈ N. (1.2)

Moreover, the following assumptions hold true for the coefficients:

0 < b1 < b2 < · · · < bN < c, a2 >
N∑

i=1

ai
bi
. (1.3)

In [6], a different model for a vibrating wave system with Boltzmann integrals is considered.
The spectral properties are analyzed and the Riesz basis for the system is verified. The spectrum-
determined growth conditions and the exponential stability are also concluded.

In this paper, with the viscous damping forced into system (1.1)-(1.2), the dynamic behavior
of the system is investigated. By introducing some new variables for the exponential polynomial
kernel, we set up a time-invariant system and prove the existence of solution, the distribution and
structure of the spectrum, and the basis property of the generalized eigenfunctions.

The paper is organized as follows. In Section 2, some new variables are introduced to transform
the system into a time-invariant one. The detailed spectral analysis of the newly formulated system
is presented in Section 3. By the asymptotic analysis technique, it is shown that the eigenvalues
have three classes: one is the set of the simple points {−bi, i = 1, 2, · · · , N}, the second approaches
a line that is parallel to the imaginary axis, the third is located around the continuous spectral
points which contains N isolated points of the complex plane. Moreover, the residual spectrum
is shown to be empty and the set of continuous spectrum is exactly characterized. Section 4 is
devoted to the Riesz basis generation and the exponential stability of the system.
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2. System operator setup

Set

yi(x, t) = ai

∫ t

0
e−bi(t−s)wx(x, s)ds, i = 1, 2, · · · , N. (2.1)

Then yi satisfies ⎧⎪⎨
⎪⎩

(yi)t(x, t) = aiwx(x, t)− biyi(x, t),

(yi)x(x, t) = ai

∫ t

0
e−bi(t−s)wxx(x, s)ds.

(2.2)

So we can rewrite (1.1)-(1.2) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t)− ∂

∂x

[
a2wx(x, t)−

N∑
i=1

yi(x, t)

]
+ cwt(x, t) = 0,

(yi)t(x, t) = aiwx(x, t)− biyi(x, t), i = 1, 2, · · · , N,
w(0, t) = w(1, t) = 0, t > 0,

w(x, 0) = w0(x), wt(x, 0) = w1(x), yi(x, 0) = 0, i = 1, 2, · · · , N.

(2.3)

Obviously, the system (2.3) is a time-invariant system. The system energy is given by

E(t) =
1

2

∫ 1

0

[
a2|wx(x, t)|2 + |wt(x, t)|2 +

N∑
i=1

|yi(x, t)|2
]
dx. (2.4)

Motivated by the energy function, we consider naturally the system (2.3) in the following Hilbert
space H given by: { H = H1

0 (0, 1)× (L2(0, 1))N+1

H1
0 (0, 1) = {f ∈ H1(0, 1) | f(0) = f(1) = 0}

equipped with the inner product: ∀ (w, v, y1, · · · , yN ), (f, g, h1, · · · , hN ) ∈ H,〈
(w, v, y1, · · · , yN ), (f, g, h1, · · · , hN )

〉
H

=

∫ 1

0
a2w′(x)f ′(x)dx+

∫ 1

0
v(x)g(x)dx+

N∑
i=1

∫ 1

0
yi(x)hi(x)dx.

Now, define the system operator A : D(A)(⊂ H)→ H by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w

v

y1
...
yN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�

=

⎛
⎜⎜⎜⎜⎜⎜⎝

v[
a2w′ −∑N

i=1 yi

]′ − cv
a1w

′ − b1y1
...

aNw
′ − bNyN

⎞
⎟⎟⎟⎟⎟⎟⎠

�

,

D(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w

v

y1
...
yN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�∣∣∣∣∣∣∣∣∣∣∣∣∣

w, v ∈ H1
0 (0, 1),

yi ∈ L2(0, 1), i = 1, · · · , N,[
a2w′ −

N∑
i=1

yi

]
∈ H1(0, 1).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
.

(2.5)

3



Then (2.3) can be formulated into an abstract evolution equation in H:

d

dt
Z(t) = AZ(t), Z(0) = Z0, (2.6)

where Z(t) =
(
w(·, t), wt(·, t), y1(·, t), · · · , yN (·, t)

)
is the state variable and Z0 =

(
w0(·), w1(·), 0,

· · · , 0
)
is the initial value.

Lemma 2.1. Let A be defined by (2.5). Then 0 ∈ ρ(A).
Proof. Let Z̃ = (w̃, ṽ, ỹ1, · · · , ỹN ) ∈ H. Solve AZ = Z̃ for Z = (w, v, y1, · · · , yN ) ∈ D(A), that is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(x) = w̃(x),[
a2w′(x)−

N∑
i=1

yi(x)

]′
− cv(x) = ṽ(x),

aiw
′(x)− biyi(x) = ỹi(x), i = 1, 2, · · · , N,

w(0) = w(1) = 0.

(2.7)

From (2.7), we have

v(x) = w̃(x), yi(x) =
ai
bi
w′(x)− 1

bi
ỹi(x), j = 1, 2, · · · , N (2.8)

and

a2w′(x)−
N∑

i=1

yi(x) = C1 +

∫ x

0

[
cw̃(τ) + ṽ(τ)

]
dτ, (2.9)

where C1 is a constant to be determined. Substituting (2.8) into (2.9) to yield

Aw′(x) = C1 −
N∑

i=1

ỹi(x)

bi
+

∫ x

0

[
cw̃(τ) + ṽ(τ)

]
dτ, (2.10)

where A = a2 −∑N
i=1

ai
bi
. Using the boundary condition w(0) = 0 gives

Aw(x) = C1x−
N∑

i=1

∫ x
0 ỹi(τ)dτ

bi
+

∫ x

0
(x− τ)

[
cw̃(τ) + ṽ(τ)

]
dτ, (2.11)

by the other boundary condition w(1) = 0, it yields

C1 =

N∑
i=1

∫ 1
0 ỹi(τ)dτ

bi
−
∫ 1

0
(1− τ)

[
cw̃(τ) + ṽ(τ)

]
dτ. (2.12)

Combining (2.11) and (2.12) to get

Aw(x) = −
[

N∑
i=1

∫ x
0 ỹi(τ)dτ

bi
+

∫ x

0
τ
[
cw̃(τ) + ṽ(τ)

]
dτ

]
(1− x)

−x
N∑

i=1

∫ 1
x ỹi(τ)dτ

bi
− x

∫ 1

x
(1− τ)

[
cw̃(τ) + ṽ(τ)

]
dτ. (2.13)

Collecting (2.8),(2.10) and (2.12)-(2.13), we get the unique solution Z = (w, v, y1, · · · , yN ) ∈ D(A)
and hence A−1 exists, or 0 ∈ ρ(A). �
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3. Spectral analysis of the system

In this section, we analyze the spectrum of A. Firstly, we consider the eigenvalue problem.
Suppose AZ = λZ for λ ∈ C and 0 �= Z = (w, v, y1, · · · , yN ) ∈ D(A). Then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(x) = λw(x),[
a2w′(x)−

N∑
i=1

yi(x)

]′
− cv(x) = λv(x),

aiw
′(x)− biyi(x) = λyi(x), i = 1, 2, · · · , N,

w(0) = w(1) = 0.

(3.1)

Proposition 3.1. Let A be defined by (2.5). Then λ = −bi, i = 1, 2, · · · , N are eigenvalues of
A, which correspond to eigenfunctions ei+2, i = 1, 2, · · · , N respectively, where ei is a constant
function whose element is the i-th element of the canonical basis of RN+2. Moreover, each of these
eigenvalues is algebraically simple.

Proof. We only give the proof for λ = −b1 because other cases can be treated similarly. Let
λ = −b1 and Z = (w, v, y1, · · · , yN ) ∈ D(A). Solve (A+ b1)Z = 0, that is, for 0 < x < 1,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(x) + b1w(x) = 0,[
a2w′(x)−

N∑
i=1

yi(x)

]′
+ (b1 − c)v(x) = 0,

a1w
′(x) = 0,

aiw
′(x) + (b1 − bi)yi(x) = 0, i = 2, · · · , N,

w(0) = w(1) = 0.

(3.2)

From the first and third equation of (3.2) and boundary condition w(0) = 0, we obtain w = v ≡ 0.
This together with the forth equation of (3.2) yields

(b1 − bi)yi(x) = 0, i = 2, · · · , N.
According to the assumption (1.3), we arrive at

yi(x) = 0, i = 2, · · · , N.
By the second equation of (3.2), it has

y′1(x) = 0, 0 < x < 1.

Therefore, e3 is an eigenfunction of A corresponding to −b1. Further computation of (b1I+A)Z1 =
−e3, where Z1 = (f, g, h1, · · · , hN ) ∈ D(A), it yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1f(x) + g(x) = 0,[
a2f ′(x)−

N∑
i=1

hi(x)

]′
+ (b1 − c)g(x) = 0,

a1f
′(x) = −1,

(b1 − bi)hi(x) + aif
′(x) = 0, i = 2, · · · , N,

f(0) = f(1) = 0.

(3.3)
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(3.3) has no solution since f must satisfy

f ′(x) = − 1

a1
, f(0) = f(1) = 0,

which is impossible. This shows that λ = −b1 is algebraically simple. �
When λ �= −bi, i = 1, · · · , N , it follows from (3.1) that⎧⎨

⎩
v(x) = λw(x),

yi(x) =
ai

λ+ bi
w′(x), i = 1, 2, · · · , N, (3.4)

and w satisfies ⎧⎪⎪⎨
⎪⎪⎩

[
a2 −

N∑
i=1

ai
λ+ bi

]
w′′(x) = (λ2 + cλ) w(x),

w(0) = w(1) = 0.

(3.5)

Lemma 3.2. Let A be defined by (2.5) and λ �= −bi, i = 1, 2, · · · , N . Then Reλ < 0 for each
λ ∈ σp(A), where σp(A) denotes the point spectrum of A.
Proof. Firstly, we show that Reλ ≤ 0. When λ ∈ σp(A), λ �= −bi, i = 1, 2, · · · , N , the eigenvalue
problem becomes (3.5). Multiply the first equation of (3.5) by w, the conjugate of w, and integrate
over [0, 1] with respect to x, to give

(λ2 + cλ)‖w‖2L2 +

[
a2 −

N∑
i=1

ai
λ+ bi

]
‖w′‖2L2 = 0.

Set λ = σ + iτ, σ, τ ∈ R. Then

(σ2 − τ2 + cσ)‖w‖2L2 +

[
a2 − σ

N∑
i=1

ai
(σ + bi)2 + τ2

−
N∑

i=1

aibi
(σ + bi)2 + τ2

]
‖w′‖2L2

+iτ

[
(2σ + c)‖w‖2L2 +

N∑
i=1

ai
(σ + bi)2 + τ2

‖w′‖2L2

]
= 0.

Let the real and imaginary part of the equation equal to zero to yield⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(σ2 − τ2 + cσ)‖w‖2L2 +

[
a2 −

N∑
i=1

ai(σ + bi)

(σ + bi)2 + τ2

]
‖w′‖2L2 = 0,

τ(2σ + c)‖w‖2L2 + τ

N∑
i=1

ai
(σ + bi)2 + τ2

‖w′‖2L2 = 0.

(3.6)

If τ = 0, from the first equation of (3.6), it has

(σ2 + cσ)‖w‖2L2 +

[
a2 −

N∑
i=1

ai
σ + bi

]
‖w′‖2L2 = 0.
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We need to prove σ ≤ 0. Suppose σ ≥ 0. Since
∑N

i=1

ai
σ + bi

is not increasing with respect to σ, we

have

σ = −
σ2‖w‖2L2 +

[
a2 −

N∑
i=1

ai
σ + bi

]
‖w′‖2L2

c‖w‖2
L2

≤ −
σ2‖w‖2L2 +

[
a2 −

N∑
i=1

ai
bi

]
‖w′‖2L2

c‖w‖2
L2

,

which shows σ ≤ 0 by (1.3). This is a contradiction.
If τ �= 0, from the second equation of (3.6), we have

(2σ + c)‖w‖2L2 +
N∑

i=1

ai
(σ + bi)2 + τ2

‖w′‖2L2 = 0.

Then

2σ + c = −
∑N

i=1

ai
(σ + bi)2 + τ2

‖w′‖2L2

‖w‖2
L2

≤ 0.

Hence,

σ ≤ − c
2
.

Secondly, we show that Reλ �= 0. If Reλ = 0 for λ ∈ σp(A) and λ �= −bi(i = 1, · · · , N), let
λ = iτ, τ ∈ R(τ �= 0). From (3.6) it has⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−τ2‖w‖2L2 +

[
a2 −

N∑
i=1

aibi
b2i + τ

2

]
‖w′‖2L2 = 0,

τc‖w‖2L2 + τ
N∑

i=1

ai
b2i + τ

2
‖w′‖2L2 = 0.

(3.7)

From the second equation of (3.7), we have τ = 0 only. This is a contradiction. �
The next lemma is straightforward.

Lemma 3.3. Let A be defined by (2.5) and

Δ =

{
λ ∈ C

∣∣∣ a2 − N∑
i=1

ai
λ+ bi

= 0

}
. (3.8)

Then
Δ �⊂ σp(A).

Lemma 3.4. Let A be defined as in (2.5) and Δ is given by (3.8). Then

Δ =
{
λck ∈ (−bk,−bk−1) ⊂ R, k = 1, 2, · · · , N, b0 = 0

}
. (3.9)
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Proof. Since −bi �∈ Δ, i = 1, 2, · · · , N , p(λ) = 0 is equivalent to q(λ) = 0, where

p(λ) = a2 −
N∑

i=1

ai
λ+ bi

, q(λ) = p(λ)ΠN
i=1(λ+ bi). (3.10)

However, q(λ) is a N -th order polynomial, and hence there are at most N number of zeros of p(λ).

Now we find all these zeros. Notice that p(λ) is continuous in (−b1,∞)
⋃(⋃N−1

i=1 (−bi+1,−bi)
)
, and

lim
λ→−b−i

p(λ) = +∞, lim
λ→−b+i

p(λ) = −∞, i = 1, 2, · · · , N,

p(0) > 0 by (1.3). It follows that there exists a solution to p(λ) = 0 in (−bi+1,−bi), i = 0, 1, · · · , N−
1, here b0 = 0. �

By Lemma 3.3, the eigenvalue problem (3.5) is equivalent to the following problem:⎧⎪⎨
⎪⎩
w′′(x) =

λ2 + cλ

p(λ)
w(x),

w(0) = w(1) = 0,

(3.11)

where p(λ) is given by (3.10). Hence

w(x) = e

√
λ2+cλ
p(λ)

x − e−
√

λ2+cλ
p(λ)

x
. (3.12)

By the boundary condition w(1) = 0, (3.11) has non-trivial solution if and only if

e

√
λ2+cλ
p(λ) − e−

√
λ2+cλ
p(λ) = 0, (3.13)

that is

e
2

√
λ2+cλ
p(λ) = 1,

which is equivalent to
λ2 + cλ

p(λ)
= −n2π2, n = 1, 2, · · · . (3.14)

Substituting (3.14) into (3.12), we obtain the eigenfunction(
w(x), λw(x),

a1
λ+ b1

w′(x), · · · , aN
λ+ bN

w′(x)
)

corresponding to λ, where
w(x) = sinnπx, (3.15)

for some n ∈ N+. When |λ| is large enough, since

λ2 + cλ

p(λ)
=

λ2 + cλ

a2 −
N∑

i=1

ai
λ+ bi

=
λ2 + cλ

a2
· 1

1− 1

a2

N∑
i=1

ai
λ+ bi

8



=
1

a2

⎡
⎣λ2 +

(
c+

1

a2

N∑
i=1

ai

)
λ+

1

a2

N∑
i=1

aibi − c

a2

N∑
i=1

ai +
1

a4

(
N∑

i=1

ai

)2
⎤
⎦+O(|λ|−1),

we obtain

λ2 +

(
c+

1

a2

N∑
i=1

ai

)
λ+

1

a2

N∑
i=1

aibi − c

a2

N∑
i=1

ai +
1

a4

(
N∑

i=1

ai

)2

+ a2n2π2 +O(|λ|−1) = 0.

Thus, the eigenvalues of A in this case are found to be

λn = −1

2

(
c+

1

a2

N∑
i=1

ai

)
± ianπ +O(n−1), n→∞.

Obviously, −1

2

(
c+

1

a2

N∑
i=1

ai

)
< 0.

For any λc ∈ Δ, when λ→ λc, μ = λ− λc → 0. Since

p(λ) = a2 −
N∑

i=1

ai
λ+ bi

= a2 −
N∑

i=1

ai
λc + bi

1

1 +
λ− λc

λc + bi

= μ
N∑

i=1

ai

[
1

(λc + bi)2
− μ

(λc + bi)3
+O(μ2)

]
,

it has

λ2 + cλ

p(λ)
=

λ2c + λc(2μ+ c) + μ
2 + cμ

p(λ)

=
1

μ

λ2c

[(
1 +

c

λc

)
+

(
2

λc
+
c

λ2c

)
μ+

1

λ2c
μ2
]

N∑
i=1

ai
(λc + bi)2

⎡
⎢⎢⎢⎣1−

N∑
i=1

ai
(λc + bi)3

N∑
i=1

ai
(λc + bi)2

μ+O(μ2)

⎤
⎥⎥⎥⎦

=

λ2c

[(
1 +

c

λc

)
+

(
2

λc
+
c

λ2c

)
μ+

1

λ2c
μ2
]

μ
N∑

i=1

ai
(λc + bi)2

⎡
⎢⎢⎢⎣1 +

N∑
i=1

ai
(λc + bi)3

N∑
i=1

ai
(λc + bi)2

μ

⎤
⎥⎥⎥⎦+O(μ)

=
1

μ

λ2c
Λ

[(
1 +

c

λc

)
+

(
λc + c

λc

Λ̃

Λ
+

2λc + c

λ2c

)
μ

]
+O(μ),
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where

Λ =
N∑

i=1

ai
(λc + bi)2

, Λ̃ =
N∑

i=1

ai
(λc + bi)3

.

This together with (3.14) yields

1

μ

λ2c
Λ

[(
1 +

c

λc

)
+

(
λc + c

λc

Λ1

Λ
+

2λc + c

λ2c

)
μ

]
+O(μ) = −n2π2, n→∞.

Thus

μn = − 1

n2π2
λ2c + cλc

Λ
+O(n−3), n→∞,

or

λn = λc + μn = λc − 1

n2π2
λ2c + cλc

Λ
+O(n−3), n→∞.

We summarize these results as Proposition 3.5.

Proposition 3.5. Let A be defined by (2.5) and λ be an eigenvalue of A, satisfying λ �= −bi,
i = 1, · · · , N . Then the eigenfunction corresponding to λ is of the form(

w(x), λw(x),
a1

λ+ b1
w′(x), · · · , aN

λ+ bN
w′(x)

)
,

where w(x) = sinnπx, for some n ∈ N+. Moreover,

(i) For any 1 ≤ k ≤ N , there is a sequence of eigenvalues {λnk} of A, which have the following
asymptotic expressions:

λnk = λck − 1

n2π2
λ2ck + cλck

Λk
+O(n−3), n→∞, (3.16)

where

Λk =
N∑

i=1

ai
(λck + bi)2

.

The corresponding eigenfunctions(
wn(x), λnkwn(x),

a1
λnk + b1

w′
n(x), · · · ,

aN
λnk + bN

w′
n(x)

)

satisfy

wn(x) =
1

nπ
sinnπx. (3.17)

(ii) When |λ| → ∞, the eigenvalues {λn0, λn0} of A have the following asymptotic expressions:

λn0 = −1

2

(
c+

1

a2

N∑
i=1

ai

)
+ ianπ +O(n−1), n→∞, (3.18)

where λn0 denotes the complex conjugate of λn0. In particular,

Reλn0 → −1

2

(
c+

1

a2

N∑
i=1

ai

)
< 0, n→∞, (3.19)
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that is to say, Reλn0 = −1

2

(
c+

1

a2

N∑
i=1

ai

)
is the asymptote of the eigenvalues λn0 given by

(3.18). Furthermore, the corresponding eigenfunctions(
wn, λn0wn,

a1
λn0 + b1

w′
n, · · · ,

aN
λn0 + bN

w′
n

)
satisfy (3.17).

The following result is a direct consequence of Proposition 3.1 and Proposition 3.5.

Theorem 3.6. Let A be defined as in (2.5). Then

(i) A has the eigenvalues{
− bi, i = 1, 2, · · · , N

}⋃ {
λn1, λn2, · · · , λnN , n ∈ N+

}⋃{
λn0, λn0, n ∈ N+

}
, (3.20)

where λnk, 1 ≤ k ≤ N and λn0 have the asymptotic expressions (3.16)and (3.18), respectively.
(ii) The eigenfunction corresponding to −bi is ei+2 for any i = 1, 2, · · · , N .
(iii) The eigenfunctions corresponding to λnk, k = 1, 2, · · · , N are given by

Wnk(x) =

(
1

nπ
sinnπx, 0,

a1
λnk + b1

cosnπx, · · · , aN
λnk + bN

cosnπx

)

+
(
0,O(n−1), · · · ,O(n−1)

)
, n→∞. (3.21)

(iv) The eigenfunctions corresponding to λn0 and λn0 are given by

Wn0(x) =

(
1

nπ
sinnπx, ia sinnπx, 0, · · · , 0

)
+
(
0,O(n−1), · · · ,O(n−1)

)
, (3.22)

and

Wn0(x) =

(
1

nπ
sinnπx,−ia sinnπx, 0, · · · , 0

)
+
(
0,O(n−1), · · · ,O(n−1)

)
, (3.23)

for n→∞,respectively.
In order to investigate the residual and continuous spectrum of A, we need the adjoint operator

A∗.

Lemma 3.7. Let A be defined by (2.5). Then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A∗

⎛
⎜⎜⎜⎜⎜⎝

w
v
y1
...
yN

⎞
⎟⎟⎟⎟⎟⎠

�

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

a2

N∑
i=1

∫ x

0
aiyi(τ)dτ − v

−a2w′′ − cv
v′ − b1y1

...
v′ − bNyN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

,

D(A∗) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

w
v
y1
...
yN

⎞
⎟⎟⎟⎟⎟⎠

�∣∣∣∣∣∣∣∣∣∣∣∣

w, v ∈ H1
0 (0, 1),

w′′ ∈ L2(0, 1),
N∑

i=1

∫ x
0 aiyi(τ)dτ ∈ H1

0 (0, 1),

yi ∈ L2(0, 1), i = 1, · · · , N.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.24)
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Theorem 3.8. Let A be defined by (2.5). Then σr(A) = ∅, where σr(A) denotes the set of residual
spectrum of A.
Proof. Since λ ∈ σr(A) implies λ ∈ σp(A∗), the proof will be accomplished if we can show that
σp(A) = σp(A∗). This is because obviously, the eigenvalues of A are symmetric on the real axis.
From (3.24), the eigenvalue problem A∗Z = λZ for λ ∈ C and 0 �= Z = (w, v, y1, · · · , yN ) ∈ D(A∗)
reads: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

a2

N∑
i=1

∫ x

0
aiyi(τ)dτ − v(x) = λw(x),

a2w′′(x) = −(λ+ c)v(x),
v′(x)− biyi(x) = λyi(x), i = 1, · · · , N,
v(0) = v(1) = 0.

(3.25)

Obviously, λ = −bi, i = 1, 2, · · · , N are the eigenvalues of A∗.
When λ �= −bi, i = 1, · · · , N , it has

yi(x) =
v′(x)
λ+ bi

, i = 1, 2, · · · , N.

This together with the first equation of (3.25) yields[
a2 −

N∑
i=1

ai
λ+ bi

]
v(x) = −a2λw(x). (3.26)

Then combining (3.26) with the second equation of (3.25) shows⎧⎪⎪⎨
⎪⎪⎩

[
a2 −

N∑
i=1

ai
λ+ bi

]
v′′(x) = (λ2 + cλ)v(x),

v(0) = v(1) = 0.

(3.27)

(3.27) is the same as (3.5) by setting v = w. Hence A∗ has the same eigenvalues with A. �

Theorem 3.9. Let A be defined as in (2.5) and Δ is given by (3.8). Then

σc(A) = Δ =
{
λc1, λc2, · · · , λcN

}
, (3.28)

where σc(A) is the set of the continuous spectrum of A, λck ∈ (−bk,−bk−1), k = 1, 2, · · · , N and
b0 = 0.

Proof. Let λ �∈ σp(A). For any Z̃ = (w̃, ṽ, ỹ1, · · · , ỹN ) ∈ H, since −bi ∈ σp(A), i = 1, · · · , N , solve
(λI −A)Z = Z̃ for Z = (w, v, y1, · · · , yN ); that is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λw(x)− v(x) = w̃(x),

λv(x)−
[
a2w′(x)−

N∑
i=1

yi(x)

]′
+ cv(x) = ṽ(x),

λyi(x)−
[
aiw

′(x)− biyi(x)
]
= ỹi(x), i = 1, 2, · · · , N,

w(0) = w(1) = 0,

(3.29)
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to get ⎧⎨
⎩
v(x) = λw(x)− w̃(x),

yi(x) =
ai

λ+ bi
w′(x) +

1

λ+ bi
ỹi(x), i = 1, 2, · · · , N,

(3.30)

and ⎧⎪⎪⎨
⎪⎪⎩
θ(x) = a2w′(x)−

N∑
i=1

yi(x) = p(λ)w
′(x)− ỹ(λ, x),

θ′(x) = (λ2 + cλ)w(x)− ṽ(x)− (λ+ c)w̃(x),

(3.31)

where p(λ) is given by (3.10), and

ỹ(λ, x) =

N∑
i=1

ỹi(x)

λ+ bi
. (3.32)

We claim that Δ ⊆ σc(A). In fact, when λ ∈ Δ, it has p(λ) = 0. By (3.31), we have⎧⎨
⎩ w(x) =

1

λ2 + cλ

[
ṽ(x) + (λ+ c)w̃(x)− ỹ′(λ, x)

]
,

w(0) = w(1) = 0,

(3.33)

Since w̃ ∈ H1
0 (0, 1), (3.33) means that (3.29) admits a solution if and only if ỹ(λ, x) is differentiable,

and
ṽ(0)− ỹ′(λ, 0) = ṽ(1)− ỹ′(λ, 1) = 0,

which is impossible. Thus λ �∈ ρ(A), or Δ ⊆ σc(A) by Lemma 3.2 and Theorem 3.8.
Now we show that σc(A) ⊆ Δ, or equivalently, for any λ �∈ σp(A)∪Δ, we deduce λ ∈ ρ(A). To

do this, assume that λ �∈ σp(A) ∪Δ. By Lemma 2.1, 0 ∈ ρ(A), we need only consider the case of
λ �= 0. Now, we can rewrite (3.31) as the following first-order system of differential equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
d

dx

[
w
θ

]
= A(λ)

[
w
θ

]
−
⎡
⎣ − 1

p(λ)
ỹ

ṽ + (λ+ c)w̃

⎤
⎦ ,

w(0) = w(1) = 0,

(3.34)

where

A(λ) =

⎡
⎢⎣ 0

1

p(λ)

λ2 + cλ 0

⎤
⎥⎦ .

Note that

eA(λ)x =

[
a11(λ, x) a12(λ, x)
a21(λ, x) a22(λ, x)

]
,

where ⎧⎪⎪⎨
⎪⎪⎩
a11(λ, x) = cosh

(√
μ(λ) x

)
, a12(λ, x) =

1

p(λ)
√
μ(λ)

sinh
(√
μ(λ) x

)
,

a21(λ, x) = p(λ)
√
μ(λ) sinh

(√
μ(λ) x

)
, a22(λ, x) = cosh

(√
μ(λ) x

)
and

μ(λ) =
λ2 + cλ

p(λ)
. (3.35)
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The general solution of (3.34) is given by

[
w(x)
θ(x)

]
= eA(λ)x

[
w(0)
θ(0)

]
−
∫ x

0
eA(λ)(x−τ)

⎡
⎢⎣ − 1

p(λ)
ỹ(λ, τ)

ṽ(τ) + (λ+ c)w̃(τ)

⎤
⎥⎦ dτ

=

[
a12(λ, x)θ(0)
a22(λ, x)θ(0)

]

+

∫ x

0

⎡
⎢⎢⎣

1

p(λ)
a11(λ, x− τ)ỹ(λ, τ)− a12(λ, x− τ)

(
ṽ(τ) + (λ+ c)w̃(τ)

)
1

p(λ)
a21(λ, x− τ)ỹ(λ, τ)− a22(λ, x− τ)

(
ṽ(τ) + (λ+ c)w̃(τ)

)
⎤
⎥⎥⎦ dτ,

that is {
w(x) = a12(λ, x)θ(0) + ξ1(λ, x),

θ(x) = a22(λ, x)θ(0) + ξ2(λ, x),
(3.36)

where

ξj(λ, x) =

∫ x

0

[
ỹ(λ, τ)

p(λ)
aj1(λ, x− τ)− aj2(λ, x− τ)

(
ṽ(τ) + (λ+ c)w̃(τ)

)]
dτ, j = 1, 2.

When Z̃ = (w̃, ṽ, ỹ1, · · · , ỹN ) = 0, (3.35) reduces to the eigenvalue problem

w(x) = a12(λ, x)θ(0), θ(x) = a22(λ, x)θ(0).

So when λ ∈ σp(A), λ �= −bi, i = 1, 2, · · · , N if and only if a12(λ, 1) = 0, that is

a12(λ, 1) =
1√

p(λ)(λ2 + cλ)
sinh

⎛
⎝
√
λ2 + cλ

p(λ)

⎞
⎠ = 0,

which yields

sinh

⎛
⎝
√
λ2 + cλ

p(λ)

⎞
⎠ = 0.

This is the characteristic determinant of A, which satisfies (3.14).
Now since λ �∈ σp(A) ∪Δ, by w(1) = 0, we have

θ(0) =
1

a12(λ, 1)

∫ 1

0

[
− ỹ(λ, τ)
p(λ)

a11(λ, 1− τ) + a12(λ, 1− τ)
(
ṽ(τ) + (λ+ c)w̃(τ)

)]
dτ. (3.37)

So w is uniquely determined by (3.36). By the first equation of (3.31) and the second equation
of (3.36), w′ ∈ L2(0, 1). This together with (3.30) shows that (λI − A)−1 exists and is bounded.
Hence λ ∈ ρ(A). �
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4. Riesz basis generation and exponential stability

In this section, we study the Riesz basis property for system (2.3). To do this, we need the
following result mentioned in [6] (see also [7]).

Theorem 4.1. Let A be a densely closed linear operator in a Hilbert space H with isolated eigen-
values {λi}∞1 and σr(A) = ∅. Let {φn}∞1 be a Riesz basis for H. Suppose that there are N0 ≥ 1
and a sequence of generalized eigenvectors {ψn}∞N0

of A such that

∞∑
n=N0

‖ψn − φn‖2H <∞. (4.1)

Then there existM(≥ N0) number of generalized eigenvectors {ψn0}M1 such that {ψn0}M1
⋃{ψn}∞M+1

forms a Riesz basis for H.

Theorem 4.2. Let A be defined by (2.5). Then

(i) There is a sequence of generalized eigenfunctions of A, which forms a Riesz basis for the state
space H.

(ii) All eigenvalues with large modulus are algebraically simple.

(iii) A generates a C0−semigroup eAt on H.
Therefore, for the semigroup eAt, the spectrum-determined growth condition holds true: s(A) =

ω(A), where s(A) = sup{Reλ | λ ∈ σ(A)} is the spectral bound of A and ω(A) = lim
t→∞

ln ‖eAt‖
t

is

the growth order of eAt.

Proof. By Lemma 3.2, all eigenvalues are located in left half complex plane, the other parts follow
directly from (i) and (ii). So we need only to prove (i) and (ii). For any n ∈ N+, set

Un0(x) =

(
1

nπ
sinnπx, ia sinnπx, 0, · · · , 0

)
, (4.2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕn0 = (a cosnπx, ia sinnπx, 0, · · · , 0) + (0, 1, 1, · · · , 1)O(n−1),

ϕnk(x) =

(
a, 0,

a1
λnk + b1

, · · · , aN
λnk + bN

)
cosnπx+ (0, 1, · · · , 1)O(n−1),

k = 1, 2, · · · , N.

(4.3)

Let the reference sequence be given by⎧⎪⎨
⎪⎩
ψn0 = (a cosnπx, ia sinnπx, 0, · · · , 0),

ψnk(x) =

(
0, 0,

a1
λnk + b1

, · · · , aN
λnk + bN

)
cosnπx, k = 1, 2, · · · , N.

(4.4)

Since bj �= bk, λnj �= λnk, 1 ≤ j < k ≤ N , a direct computation shows that

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
λn1 + b1

a1
λn2 + b1

· · · a1
λnN + b1

a2
λn1 + b2

a2
λn2 + b2

· · · a2
λnN + b2

· · · · · · · · · · · ·
aN

λn1 + bN

aN
λn2 + bN

· · · aN
λnN + bN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
�= 0.
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Hence, {
ψn0, ψn0, ψn1, ψn2, · · · , ψnN

}∞
1

(4.5)

forms a Riesz basis for H1 =
[
L2(0, 1)

]N+2
. By (4.3), (4.4) and Theorem 3.6, there exists an

N0 ∈ N+, such that

∞∑
n=N0

[
‖Wn0 − Un0‖2H +

∥∥Wn0 − Un0

∥∥2
H
]
+

N∑
k=1

∥∥∥∥Wnk − Wn0 +Wn0

2
− ψnk

∥∥∥∥
2

H

=
∞∑

n=N0

[
‖ϕn0 − ψn0‖2H1

+
∥∥ϕn0 − ψn0

∥∥2
H1

]
+

N∑
k=1

∥∥∥∥ϕnk − ϕn0 + ϕn0

2
− ψnk

∥∥∥∥
2

H1

< ∞. (4.6)

So by Theorem 4.1, we conclude that the generalized eigenfunctions of A forms a Riesz basis in
H. Next, we need to prove the algebraic simplicity for the eigenvalues of A. From the proof of
the second part of Theorem 3.9, the order of each λ ∈ σp(A)\{−bi, i = 1, 2, · · · , N}, as a pole of
R(λ,A), with sufficiently large modulus is less than or equal to the multiplicity of λ as a zero of
the entire function sinh(

√
μ(λ)), where μ(λ) is given by (3.35). Since λ is geometrically simple and

from (3.13) all roots of sinh(
√
μ(λ)) = 0, which satisfies (3.14), with large moduli are simple, the

result then follows from the formula: ma ≤ p ·mg (see e.g. [10],p.148), where p denotes the order
of the pole of the resolvent operator and ma, mg denote the algebraic and geometric multiplicities,
respectively. Hence (ii) holds true. �

Now we establish the exponential stability of the system (2.3).

Theorem 4.3. Let A be defined by (2.5). Then the spectrum-determined growth condition ω(A) =
s(A) holds true for the C0 Semigroup e

At generated by A. Moreover, the system (2.3) is expo-
nentially stable, i.e., there exist two positive constants M and ω such that the C0 Semigroup e

At

satisfies
‖eAt‖ ≤Me−ωt, (4.7)

for some M,ω > 0.

Proof. The spectrum-determined growth condition follows from Theorem 4.2. By Lemma 3.2,
Lemma 3.4, (3.20) and Theorem 3.8, Theorem 3.9, for each λ ∈ σ(A), we have Reλ < 0. This,
together with (3.16), (3.18) and the spectrum-determined growth condition, shows that eAt is
exponentially stable. �
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