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In this paper, by constructing Bochner–Fejér polynomials for piecewise continuous almost
periodic functions (PCAP, for short), the authors establish Favard’s theorem of PCAP
functions, which illustrates when the primitive function of PCAP function is a PCAP
function. As its application, combining coincidence degree theory, we consider the
existence of PCAP solution of impulsive single population model with hereditary effects.
To our best knowledge, it is the first time when coincidence degree theory is used to study
the existence of PCAP solution of impulsive differential equation.
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1. Introduction

The theory of almost periodic functions (AP, for short) [2,3] was mainly created by the Danish mathematician H. Bohr
during 1925–1926. Almost periodic functions, with a superior spatial structure, are a generalization of periodic functions.
The development of almost periodic functions concentrates on two directions, that is, the broader study of almost periodic
functions and the application of almost periodic type functions in equations (see [1,7,9,19,24] etc.). Thereinto, the broader
study of almost periodic functions includes bringing up some new function types, such as asymptotically almost periodic
functions, pseudo almost periodic functions [24], Stepanov almost periodic functions [20], piecewise continuous almost
periodic functions [11] (PCAP, for short). More function types and related topics can be found in [5,6,13,21,23] and the
references therein.

PCAP function was considered for the first time by Halanay and Wexler [11] in connection with the determination of
a piecewise continuous almost periodic solution for impulsive system. According to [11], a piecewise continuous function f
with first kind discontinuities at the points of a fixed sequence {tk} is called a piecewise continuous almost periodic func-
tion if:

(1) The sequence {tk} is such that the derived sequence {t j
i = ti+ j − ti}, j = 0,±1,±2, . . . is equipotentially almost periodic;

(2) ∀ε > 0, ∃δ = δ(ε) > 0 such that if the points t1 and t2 belong to the same interval of continuity and |t1 − t2| < δ, then
| f (t1) − f (t2)| < ε;

(3) For any ε > 0, there exists a relatively dense set Γ ( f , ε) such that if τ ∈ Γ ( f , ε), then | f (t + τ )− f (t)| < ε for all t ∈ R

which satisfy the condition |t − ti | > ε, i = 0,±1,±2, . . . .

✩ This research is supported by the Mathematical Tianyuan Foundation of China (Grant No. 11126027), NPU Foundation for Fundamental Research (NPU-
FFR-JC20100220, NPU-FFR-JC20110229).

* Corresponding author.
E-mail address: lwangmath@nwpu.edu.cn (L. Wang).
0022-247X/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jmaa.2013.11.029

http://dx.doi.org/10.1016/j.jmaa.2013.11.029
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:lwangmath@nwpu.edu.cn
http://dx.doi.org/10.1016/j.jmaa.2013.11.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2013.11.029&domain=pdf


36 L. Wang, M. Yu / J. Math. Anal. Appl. 413 (2014) 35–46
Many people make intensive study on the property of PCAP functions. Samoilenko and Trofimchukt [16,17] studied
the boundedness of PCAP functions, the limit of uniformly convergent PCAP function sequences, rational arithmetic of
PCAP functions, and so on. The relationship between PCAP functions and its discontinuous points was illuminated in [15].
Stamov [18] showed some equivalent definitions for PCAP functions. Liu [14] investigated the Fourier expansion of PCAP
functions, and obtained the uniqueness theorem for PCAP functions.

In this paper, we will search for some conditions under which the primitive function of PCAP function is a PCAP function.
To our best knowledge, there is no published paper considering similar property for PCAP functions. In fact, this paper
is partly inspired by Favard’s theorem of AP functions [13]. Favard’s theorem of AP functions shows that if the Fourier
exponents of almost periodic function aren’t dense in zero, then the primitive function of AP function is an AP function. The
main result (Theorem 2.3) obtained in this paper shows that if the Fourier exponents of PCAP function are bounded and
they aren’t dense in zero, the Fourier coefficients are absolutely convergent, then the primitive function of PCAP function is
an AP function. Because Theorem 2.3 and Favard’s theorem of AP functions solve the problem of the same nature, in this
sense, we might as well call the main result (Theorem 2.3) of this paper: Favard’s theorem of PCAP functions.

As an application of Favard’s theorem of PCAP functions, we consider impulsive single population model with hereditary
effects:{

N ′(t) = N(t)
[
a(t) − b(t)N(t) − d(t)N

(
t − τ (t)

)]
, t �= tk,

N
(
t+
k

) = (1 + ck)N(tk).

By means of Favard’s theorem of PCAP functions and coincidence degree theory, the existence of strictly positive PCAP solu-
tion is obtained. Coincidence degree theory has been widely used to prove the existence of periodic solution of differential
equation, regardless of the equation is impulsive or not (see e.g. [4,8]). For almost periodic cases, there are rarely papers
applying coincidence degree theory to investigate the existence of almost periodic solution of differential equation without
impulse except [22]. In this paper, we firstly establish Favard’s theorem of PCAP functions, then apply coincidence degree
theory and Favard’s theorem of PCAP functions to study the existence of PCAP solution of impulsive single population model
with hereditary effects. To our best knowledge, it is the first time applying coincidence degree theory to study the existence
of PCAP solution of impulsive differential equation.

The paper is organized as follows: after introducing some preliminaries in the next section, we present Favard’s theorem
of PCAP functions. Then, in Section 3, we firstly show how to use Favard’s theorem of PCAP functions and coincidence
degree theory to study the existence of PCAP solution of impulsive single population model with hereditary effects, and
then, two examples are provided to show the results obtained in this section.

2. Favard’s theorem of piecewise continuous almost periodic functions

In this section, we will introduce some preliminaries firstly, and then prove Favard’s theorem of PCAP functions.
Suppose f ∈ PCAP, the discontinuous points of f are denoted by tk , infk t1

k = θ > 0. It follows from [14] that the limit

mean of f (m( f ) = limT →∞ 1
2T

∫ T +a
−T +a f (t)dt) exists uniformly with respect to a ∈ R. Furthermore, the limit is independent

of a. Let

a(λ, f ) = lim
T →∞

1

2T

T∫
−T

f (t)e−iλt dt.

The set Λ f = {λ ∈ R: a(λ, f ) �= 0} is called the frequency set of f . Members of Λ f are called the Fourier exponents of f
and a(λ, f ) are called the Fourier coefficients of f . Liu [14] has proved that there exists at most a countable set of λ for
which a(λ, f ) �= 0. Let Λ f = {λk} and Ak = a(λk, f ), hence, there exists a Fourier series associated with f

f (t) ∼
∞∑

k=1

Akeiλkt .

Furthermore, the uniqueness theorem holds for PCAP functions, that is, two distinct piecewise continuous almost periodic
functions have distinct Fourier series.

Next, we consider R as a Q vectorial space. The linear independence of countable set in R, and the basis for the set can
be defined similarly. A lemma of interest is the following

Lemma 2.1. (See [5].) Any countable set of real numbers admits a basis, whose elements belong to the given set.

Similar to the almost periodic case [13], we will define the Bochner–Fejér polynomials for piecewise continuous almost
periodic function f .

From above, we know that with f one can associate a Fourier series and the frequency set of f is countable. According
to Lemma 2.1, we choose β1, β2, β3, . . . , which belong to the frequency set of f , as a basis of frequency set of f . Let r, m,
n1,n2, . . . ,nr be positive integers. Define Fejér synthetic kernel for f
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K (m)
(n1,n2,...,nr , β1,β2,...,βr)

(t) = Kn1

(
β1t

m!
)

Kn2

(
β2t

m!
)

· · · Knr

(
βrt

m!
)

,

where Kni (
βi t
m! ), i = 1,2, . . . , r are Fejér kernels of f which have the form

Kn(βt) = sin2 nβ
2 t

n sin2 β
2 t

=
n∑

ν=−n

(
1 − |ν|

n

)
e−iνβt .

For convenience, let B = (n1,n2, . . . ,nr, β1, β2, . . . , βr).
Obviously, the Fejér synthetic kernels of f satisfy the following two properties: (1) it is nonnegative; (2) m(K (m)

B ) = 1. In
fact,

K (m)
B (t) =

∑
|νi |�ni , i=1,2,...,r

(
1 − |ν1|

n1

)(
1 − |ν2|

n2

)
· · ·

(
1 − |νr |

nr

)
e−i(

ν1
m! β1+ ν2

m! β2+ νr
m! βr)t

=
∑

|νi |�ni , i=1,2,...,r

kn1,n2,...,nr , β1,β2,...,βr e−i(
ν1
m! β1+ ν2

m! β2+ νr
m! βr)t .

By virtue of the linear independence of β1, β2, . . . , βr , we obtain m(K (m)
B ) = 1.

Now, we give the Bochner–Fejér polynomials of PCAP function f . Since Bochner–Fejér polynomials only associate with
the Fourier expansion, the Bochner–Fejér polynomials of PCAP functions have the same form as the Bochner–Fejér polyno-
mials of AP functions. Specifically, define

P (m)
B (x) = m

{
f (x + t)K (m)

B (t)
}

= lim
T →∞

T∫
−T

f (x + t)K (m)
B (t)dt

=
∑

|νi |�ni , i=1,2,...,r

kn1,...,nr , β1,...,βr a

(
ν1

m!β1 + ν2

m!β2 + νr

m!βr, f

)
ei(

ν1
m! β1+ ν2

m! β2+ νr
m! βr)x.

P (m)
B (x) are called the Bochner–Fejér polynomials of PCAP function f . According to the properties of the Fejér synthetic

kernel of f , we obtain∣∣P (m)
B (x)

∣∣ � m
{∣∣ f (x + t)

∣∣K (m)
B (t)

}
� sup

x

∣∣ f (x)
∣∣, (2.1)

∣∣P (m)
B (x + h) − P (m)

B (x)
∣∣ � m

{∣∣ f (x + h + t) − f (x + t)
∣∣K (m)

B (t)
}

� sup
x

∣∣ f (x + h) − f (x)
∣∣. (2.2)

Since r, m, n1,n2, . . . ,nr appearing in P (m)
B (x) are countable, when r, m, n1,n2, . . . ,nr change, the Bochner–Fejér polynomials

of f form a function sequence. For convenience, we denote this sequence by {Pn(x)}. Concerning {Pn(x)}, we have the
following lemma:

Lemma 2.2. Suppose f ∈ PCAP, there exists α1 > 0 such that for any λ ∈ Λ f , α1 > |λ| and Σ∞
i=1|a(λi, f )| < +∞, then there exist the

subsequences of Bochner–Fejér polynomials {Pn(x)} of f , which converge to f uniformly.

Proof. Since f ∈ PCAP, for any
infk t1

k
2 > ε > 0, ∃δ(ε), ε > δ > 0 such that if the points t1 and t2 belong to the same interval

of continuity and |t1 − t2| < δ, then∣∣ f (t1) − f (t2)
∣∣ < ε,

besides, there exists an l > 0 with the property that any interval of length l contains a τ such that∣∣ f (t + τ ) − f (t)
∣∣ < ε, ∀t ∈R, |t − ti| > ε, i = 0,±1,±2, . . . .

Inequality (2.1) implies that {Pn(x)} is uniformly bounded. Let x1, x2, . . . be a countable and dense set on R, using the
diagonal argument, we can choose a subsequence of {Pn(x)} (we still use {Pn(x)} to denote the subsequence) such that
{Pn(x)} is convergent in xi , i = 1,2, . . . . The interval [0, l ] (l is mentioned above) can be covered by finite small intervals of
length δ. In each small interval, we choose a number from {xi} and denote those numbers by x1, x2, . . . , xk . Since {Pn(xi)}n
is a Cauchy sequence, for any ε > 0 there exists N = N(ε) such that for any n > N , p > 0∣∣Pn+p(xi) − Pn(xi)

∣∣ < ε, i = 1,2, . . . ,k. (2.3)

In fact, inequality (2.3) holds for any x ∈ R. The proof can be divided into three steps.
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Firstly, for δ mentioned above, set

fδ(t) = 1

δ

t+δ∫
t

f (u)du.

The uniform continuity of fδ can be derived from the boundedness of f . Since f ∈ PCAP, f is a Stepanov almost periodic
function. It follows from [13] that fδ is an almost periodic function. By means of approximation theorem of AP functions,
there exists a trigonometric polynomial

S(t) =
n(ε)∑
k=1

bk,εa(λk, fδ)eiλkt

such that∣∣S(t) − fδ(t)
∣∣ � ε, ∀t ∈R,

where 0 � bk,ε � 1. Besides, the following equalities hold: Λ f = Λ fδ , a(0, f ) = a(0, fδ), and for any λ �= 0

a(λ, fδ) = lim
T →∞

1

T δ

T∫
0

t+δ∫
t

f (u)e−iλt du dt

= lim
T →∞

1

T δ

( δ∫
0

u∫
0

f (u)e−iλt dt du +
T∫

δ

u∫
u−δ

f (u)e−iλt dt du +
T +δ∫
T

T∫
u−δ

f (u)e−iλt dt du

)

= lim
T →∞

−1

iλδT

( T∫
0

f (u)e−iλu du −
δ∫

0

f (u)du −
T +δ∫
δ

f (u)e−iλ(u−δ) du +
T +δ∫
T

f (u)e−iλT du

)

= −1

iλδ
lim

T →∞
1

T

( T∫
0

f (u)e−iλu du − eiλδ

T +δ∫
δ

e−iλu f (u)du

)

= eiλδ − 1

iλδ
lim

T →∞
1

T

T∫
0

f (u)e−iλu du

= eiλδ − 1

iλδ
a(λ, f ).

Secondly, since Γ ( f , ε)∩Γ (S, ε) is relatively dense in R, i.e., there exists τ ∈ Γ ( f , ε)∩Γ (S, ε) in any interval of length l
(without loss of generality, we suppose l here is the same as above) such that∣∣S(t) − S(t + τ )

∣∣ < ε, ∀t ∈R, and
∣∣ f (t + τ ) − f (t)

∣∣ < ε, ∀t ∈R, |t − ti | > ε.

For any x, taking τ ∈ Γ ( f , ε) ∩ Γ (S, ε) and τ ∈ [−x,−x + l ], we have∣∣Pn(x) − Pn+p(x)
∣∣ �

∣∣Pn(x) − Pn(x + τ )
∣∣ + ∣∣Pn(x + τ ) − Pn(xi)

∣∣ + ∣∣Pn(xi) − Pn+p(xi)
∣∣

+ ∣∣Pn+p(xi) − Pn+p(x + τ )
∣∣ + ∣∣Pn+p(x) − Pn+p(x + τ )

∣∣. (2.4)

Notice that ∀λ ∈ Λ f , |λ| < α1, Σ∞
i=1|a(λi, f )| < +∞ and for any x, y ∈ R,∣∣eix − eiy

∣∣ � |x − y|.
It follows from the expression of Bochner–Fejér polynomials of PCAP function f that∣∣Pn(x + τ ) − Pn(xi)

∣∣ �
∑

k

∣∣a(λk, f )
∣∣∣∣eiλk(x+τ ) − eiλkxi

∣∣
�

∑∣∣a(λk, f )λkδ
∣∣ �

∑∣∣a(λk, f )
∣∣α1ε. (2.5)
k k
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Similarly, we can show that∣∣Pn+p(x + τ ) − Pn+p(xi)
∣∣ �

∑
k

∣∣a(λk, f )
∣∣α1ε. (2.6)

At last, we firstly estimate the first item on the right-hand side of (2.4). The last item on the right-hand side of (2.4) can
be obtained similarly. Inequality (2.2) implies that∣∣Pn(x) − Pn(x + τ )

∣∣ � sup
t

∣∣ f (t) − f (t + τ )
∣∣

� sup
|t−tk|�ε

∣∣ f (t) − f (t + τ )
∣∣ + sup

|t−tk|>ε

∣∣ f (t) − f (t + τ )
∣∣

� sup
0�t−tk�ε

∣∣ f (t) − f (t + τ )
∣∣ + sup

−ε�t−tk�0

∣∣ f (t) − f (t + τ )
∣∣ + ε.

Now, we estimate sup0�t−tk�ε | f (t) − f (t + τ )|. Since 0 � t − tk � ε, then

∣∣ f (t) − fδ(t)
∣∣ � 1

δ

t+δ∫
t

∣∣ f (t) − f (u)
∣∣du � ε.

If −ε � t + τ − tk � 0, then the points t + τ and u, u ∈ (t + τ − δ, t + τ ), belong to the same interval of continuity of f ,
hence, | f (t + τ ) − fδ(t + τ − δ)| � ε. As for S , we have

∣∣S(t + τ ) − S(t + τ − δ)
∣∣ �

n(ε)∑
k=1

∣∣a(λk, fδ)
∣∣∣∣eiλk(t+τ ) − eiλk(t+τ−δ)

∣∣
�

∑
k

∣∣∣∣eiλkδ − 1

λkδ
a(λk, f )λkδ

∣∣∣∣
�

∑
k

∣∣λkδa(λk, f )
∣∣

� α1

∑
k

∣∣a(λk, f )
∣∣ε.

Hence, for any 0 � t − tk � ε∣∣ f (t) − f (t + τ )
∣∣ �

∣∣ f (t) − fδ(t)
∣∣ + ∣∣ fδ(t) − S(t)

∣∣ + ∣∣S(t) − S(t + τ )
∣∣ + ∣∣S(t + τ ) − S(t + τ − δ)

∣∣
+ ∣∣S(t + τ − δ) − fδ(t + τ − δ)

∣∣ + ∣∣ fδ(t + τ − δ) − f (t + τ )
∣∣

�
(

5 + α1

∑
k

∣∣a(λk, f )
∣∣)ε.

If tk � t + τ � tk+1 − ε, then the points t + τ and u, u ∈ (t + τ , t + τ + δ), belong to the same interval of continuity of f ,
hence, | f (t + τ ) − fδ(t + τ )| � ε. Now,∣∣ f (t) − f (t + τ )

∣∣ �
∣∣ f (t) − fδ(t)

∣∣ + ∣∣ fδ(t) − S(t)
∣∣ + ∣∣S(t) − S(t + τ )

∣∣
+ ∣∣S(t + τ ) − fδ(t + τ )

∣∣ + ∣∣ fδ(t + τ ) − f (t + τ )
∣∣

�
(

5 + α1

∑
k

∣∣a(λk, f )
∣∣)ε.

To sum up,

sup
0�t−tk�ε

∣∣ f (t) − f (t + τ )
∣∣ �

(
5 + α1

∑
k

∣∣a(λk, f )
∣∣)ε.

For sup−ε�t−tk�0 | f (t) − f (t + τ )|, by a similar argument as above, we can obtain

sup
−ε�t−tk�0

∣∣ f (t) − f (t + τ )
∣∣ �

(
5 + α1

∑∣∣a(λk, f )
∣∣)ε.
k
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Hence, for any x ∈ R

∣∣Pn(x) − Pn(x + τ )
∣∣ �

(
11 + 2α1

∑
k

∣∣a(λk, f )
∣∣)ε. (2.7)

Similarly, we have

∣∣Pn+p(x) − Pn+p(x + τ )
∣∣ �

(
11 + 2α1

∑
k

∣∣a(λk, f )
∣∣)ε, ∀x ∈R. (2.8)

Combining inequalities (2.3)–(2.8), we know that for any ε > 0 there exists N = N(ε) such that for any n > N , p > 0

∣∣Pn+p(x) − Pn(x)
∣∣ <

(
23 + 6α1

∑
k

∣∣a(λk, f )
∣∣)ε, ∀x ∈R.

Consequently, {Pn(x)} is a Cauchy sequence. We denote the limit of {Pn(x)} by ψ(x). Since kn1,...,nr , β1,...,βr appearing in the
Bochner–Fejér polynomials of f tend to 1 as n1, . . . ,nr tend to infinity, it is obvious that the Fourier series of ψ is the same
as the Fourier series of f , it follows from the uniqueness theorem of PCAP function that ψ = f . Therefore, there exist the
subsequences of Bochner–Fejér polynomials {Pn(x)} of f , which converge to f uniformly. The proof is complete. �

Now, we are in the position to give the main theorem (Theorem 2.3) in this paper. Because Theorem 2.3 shows that
under some conditions, the primitive function of PCAP function is an AP function, and is similar to Favard’s theorem of AP
functions, it might as well be called Favard’s theorem of PCAP functions.

Theorem 2.3 (Favard’s theorem of PCAP functions). Suppose f ∈ PCAP, there exist α1 > α > 0 such that ∀λ ∈ Λ f , α1 > |λ| > α,
Σ∞

i=1|a(λi, f )| < +∞, then the primitive function of f is an almost periodic function.

Proof. The proof of this theorem is similar to the proof of Favard’s theorem of almost periodic functions. We give a simple
description here. The details can be found in Ref. [13].

Set

φ(x) =
{

1
iα2 x, 0 � x � α,

1
ix , x > α,

−φ(x) = φ(−x).

From [13], we know that φ(x) is square-integrable on the interval (−∞,+∞). The Fourier transform formula of φ(x) is

ψ(u) = 1

2π

+∞∫
−∞

φ(x)e−ixu dx = −1

πα2

α∫
0

x sin xu dx − 1

π

∞∫
α

sin xu

x
dx.

ψ is an odd and bounded function, continuous on the intervals (−∞,0] and [0,+∞). Furthermore, ψ ∈ L(−∞,∞). Ac-
cording to the Fourier inversion formula, we get

φ(x) =
+∞∫

−∞
ψ(u)eixu du. (2.9)

Considering the function

F (x) =
+∞∫

−∞
f (x + u)ψ(u)du,

for any τ ∈ R, we have

sup
x

∣∣F (x + τ ) − F (x)
∣∣ � sup

t

∣∣ f (t + τ ) − f (t)
∣∣ +∞∫
−∞

∣∣ψ(u)
∣∣du.

Similar to the proof of Lemma 2.2, we can obtain that F (x) is an almost periodic function. Using (2.9) and the expression
of φ(x), we get the Fourier series associated with F

F (x) ∼
∑ a(λk, f )

eiλkx.

iλk
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We use P (m)
B (x, f ) and P (m)

B (x, F ) to denote the Bochner–Fejér polynomials for f and F , respectively. Obviously,
dP (m)

B (x,F )

dx =
P (m)

B (x, f ). Hence

P (m)
B (x, F ) − P (m)

B (0, F ) =
x∫

0

P (m)
B (t, f )dt.

Taking the limit on both sides of the equality, combining Lemma 2.2, we obtain

F (x) − F (0) =
x∫

0

f (t)dt,

hence, the almost periodic function F is the primitive function of f . The proof is complete. �
Inequality (2.1) implies that if the Fourier coefficients of f don’t change sign, then its Fourier coefficients are absolutely

convergent. Consequently, we have the following lemma:

Lemma 2.4. Suppose f ∈ PCAP, there exist α1 > α > 0 such that ∀λ ∈ Λ f , α1 > |λ| > α, and the Fourier coefficients of f don’t
change sign, then the primitive function of f is an almost periodic function.

3. The application of Favard’s theorem of piecewise continuous almost periodic functions

In this section, by means of Favard’s theorem of PCAP functions and coincidence degree theory, we investigate the
existence of strictly positive PCAP solution of impulsive single population model with hereditary effects:{

N ′(t) = N(t)
[
a(t) − b(t)N(t) − d(t)N

(
t − τ (t)

)]
, t �= tk,

N
(
t+
k

) = (1 + ck)N(tk),
(3.1)

where a(·), b(·), d(·), τ (·) are positive almost periodic functions, m(a) > 0, {ck} is an almost periodic sequence, {tk} is
an equipotentially almost periodic sequence. We consider functions

∏
0<tk<t(1 + ck) and

∏
0<tk<t−τ (t)(1 + ck), namely,

∏
0<tk<t

(1 + ck) =
{

1, t ∈ (−∞, t1],
(1 + c1)(1 + c2) · · · (1 + ck), t ∈ (tk, tk+1], k = 1,2,3, . . . ,

∏
0<tk<t−τ (t)

(1 + ck) =
{

1, t − τ (t) ∈ (−∞, t1],
(1 + c1)(1 + c2) · · · (1 + ck), t − τ (t) ∈ (tk, tk+1], k = 1,2,3, . . . .

We suppose the following condition (H) is satisfied, that is

(H)
∏

0<tk<t(1 + ck),
∏

0<tk<t−τ (t)(1 + ck) are positive piecewise continuous almost periodic functions, and

inf
t∈R

∏
0<tk<t

∣∣(1 + ck)
∣∣ > 0.

Remark. There exist a great number of functions satisfying the assumption (H). For instance, we suppose {ck} is a periodic
sequence with period K (K is a positive integer), (1 + c1)(1 + c2) · · · (1 + cK ) = 1, 1 + ci > 0, ∀i ∈ Z.

(1) Let {tk} be an arbitrary equipotentially almost periodic sequence, τ (t) = τ > 0, then
∏

0<tk<t(1 + ck) is a positive PCAP
function with discontinuous points tk , and inft∈R

∏
0<tk<t |(1 + ck)| > 0.

∏
0<tk<t−τ (t)(1 + ck) is also a positive PCAP

function with discontinuous points tk + τ .
(2) Let {tk} = {1,2,3, . . .},

τ (t) =
{

t − 2n, t ∈ [2n,2n + 1),

−t + 2n + 2, t ∈ [2n + 1,2n + 2), n = 0,±1,±2, . . . .

τ (t) is a positive periodic function.
∏

0<tk<t(1 + ck) is a positive PCAP function with discontinuous points tk ,
and inft∈R

∏
0<tk<t |(1 + ck)| > 0.

∏
0<tk<t−τ (t)(1 + ck) is also a positive PCAP function with discontinuous points

3
2 ,3, 7

2 ,5, 11
2 ,7, 15

2 , . . . , which is an equipotentially almost periodic sequence.
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Before studying the existence of strictly positive PCAP solution of system (3.1), we firstly introduce a few concepts and
the continuous theorem, which are summarized in [10].

Let X and Z be real Banach spaces, L : dom L ⊂ X → Z be a linear mapping, N : X → Z be a continuous mapping. L is
called a Fredholm mapping of index zero if dim Ker L = codim Im L < ∞ and Im L is close in Z . If L is a Fredholm mapping of
index zero, there are continuous projects P : X → X , Q : Z → Z such that Im P = Ker L, Im L = Ker Q = Im(I − Q ). It follows
that L|dom L ∩ Ker P : (I − P )X → Im L is invertible. We denote the inverse of that map by K p . If Ω is an open subset of X ,
the mapping N will be called L-compact on Ω if Q N(Ω̄) is bounded and K p(I − Q )N : Ω̄ → X is compact. Since Im Q is
isomorphic to Ker L, there exists isomorphism J : Im Q → Ker L. The following continuous theorem holds:

Lemma 3.1 (Continuous theorem). Let Ω ⊂ X be an open bounded set, let L be a Fredholm mapping of index zero and N be L-compact
on Ω̄ . Assume

(1) For each λ ∈ (0,1), every solution x of Lx = λNx is such that x /∈ ∂Ω;
(2) For each x ∈ Ker L ∩ ∂Ω , Q Nx �= 0;
(3) deg( J Q N,Ker L ∩ Ω,0) �= 0.

Then Lx = Nx has at least one solution in dom L ∩ Ω̄ .

Consider the following equation

y′(t) = y(t)
[
a(t) − B(t)y(t) − D(t)y

(
t − τ (t)

)]
, (3.2)

where B(t) = ∏
0<tk<t(1 + ck)b(t), D(t) = ∏

0<tk<t−τ (t)(1 + ck)d(t). The solutions of Eqs. (3.1) and (3.2) satisfy the following
relationships:

Lemma 3.2. Suppose (H) is satisfied, the following results hold:

(1) If N(·) ∈ PCAP is a solution of Eq. (3.1), then y(·) = ∏
0<tk<t(1 + ck)

−1N(·) is an AP solution of Eq. (3.2);
(2) If y(·) ∈ AP is a solution of Eq. (3.2), then N(·) = ∏

0<tk<t(1 + ck)y(·) is a PCAP solution of Eq. (3.1).

From [15] we know that if
∏

0<tk<t(1 + ck) is a positive piecewise continuous almost periodic function and

inft∈R
∏

0<tk<t |(1 + ck)| > 0, then
∏

0<tk<t(1 + ck)
−1 is a positive piecewise continuous almost periodic function. Besides,

the scalar product of two piecewise continuous almost periodic functions which have a common sequence of points of dis-
continuity is also a piecewise continuous almost periodic function. Similar to [12], the proof of Lemma 3.2 can be obtained
easily, we omit it here.

Let y(t) = ex(t) , Eq. (3.2) is translated to

x′(t) = a(t) − B(t)ex(t) − D(t)ex(t−τ (t)). (3.3)

Obviously, if Eq. (3.3) has an almost periodic solution, then Eq. (3.2) has a strictly positive almost periodic solution. It
follows from Lemma 3.2 that Eq. (3.1) has a strictly positive piecewise continuous almost periodic solution. Due to this, we
concentrate on solving the existence of almost periodic solution of Eq. (3.3).

Lemma 3.3. If (H) is satisfied, m(B) + m(D) �= 0, then Eq. (3.3) has at least one almost periodic solution.

Proof. We divide the proof into four steps.

Step 1. Let

X1 = {
x(·) ∈ AP: mod(x) ⊂ mod(F1), ∀λ ∈ Λx, α1 > |λ| > α

} ∪ {0},

Z1 =
{

z(·) ∈ PCAP with discontinuous points {tk}, mod(z) ⊂ mod(F1),

∀λ ∈ Λz, α1 > |λ| > α,

∞∑
i=1

∣∣a(λi, z)
∣∣ < +∞

}
∪ {0},

Z2 = X2 = {
x(·), x(·) = h ∈R

}
,

where α and α1 are given positive constants, and
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F1(t) = a(t) − b(t)eϕ(0) − d(t)eϕ(−τ (t)), ϕ(·) ∈ C
([

− sup
t∈R

τ (t),0
])

.

Define X = X1 ⊕ X2, Z = Z1 ⊕ Z2 with the norm ‖φ‖ = supt∈R |φ(t)|, φ ∈ X or Z . Similar to [22], we know that X is
a Banach space. In fact, Z is also a Banach space. If {zn} ⊂ Z and zn converges to z uniformly, it follows from the property
of PCAP functions that z ∈ PCAP with discontinuous points {tk}. According to [22], it is easy to show that mod(z) ⊂ mod(F1),
∀λ ∈ Λz , α1 > |λ| > α. Besides, we assert that

∑∞
i=1 |a(λi, z)| < +∞. If not, ∀M > 0, ∃k > 0 such that

∑k
i=1 |a(λi, z)| > M .

Since {zn} is a Cauchy sequence, for 1/2k , ∃K such that for any m,n > K ,

∣∣a(λ, zm) − a(λ, zn)
∣∣ <

1

2k
, ∀λ ∈R.

Since zn converges to z uniformly,

for λ1 ∈ Λz and
1

2
, ∃n1 > K , s.t.,

∣∣a(λ1, z)
∣∣ <

∣∣a(λ1, zn1)
∣∣ + 1

2
,

for λ2 ∈ Λz and
1

4
, ∃n2 > K , s.t.,

∣∣a(λ2, z)
∣∣ <

∣∣a(λ2, zn2)
∣∣ + 1

4
,

...

for λk ∈ Λz and
1

2k
, ∃nk > K , s.t.,

∣∣a(λk, z)
∣∣ <

∣∣a(λk, znk )
∣∣ + 1

2k
.

Since n1,n2, . . . ,nk > K , then

∣∣a(λi, zni )
∣∣ <

∣∣a(λi, zn1)
∣∣ + 1

2k
, i = 1,2, . . . ,k.

Hence,

M <

k∑
i=1

∣∣a(λi, z)
∣∣ <

k∑
i=1

∣∣a(λi, zni )
∣∣ + 1

2
+ 1

4
+ · · · + 1

2k

<

k∑
i=1

∣∣a(λi, zni )
∣∣ + 1 <

k∑
i=1

∣∣a(λi, zn1)
∣∣ + 1 + k

2k
<

∞∑
i=1

∣∣a(λi, zn1)
∣∣ + 3

2
.

The arbitrariness of M leads to a contradiction, so the assertion holds. Therefore, Z is a Banach space.

Step 2. Let

L : X → Z , Lx = dx

dt
.

We prove that L is a Fredholm mapping of index zero.
Obviously, Ker L = X2. We claim that Im L = Z1. Firstly, for any ϕ ∈ Im L ⊂ Z , ϕ = ϕ1 + ϕ2, ϕ1 ∈ Z1, ϕ2 ∈ Z2. Since∫ t

0 ϕ(s)ds ∈ AP,
∫ t

0 ϕ1(s)ds ∈ AP, then ϕ2 = 0. Thus, Im L ⊂ Z1. Secondly, for any ϕ ∈ Z1 (without loss of generality, we

suppose ϕ �= 0),
∫ t

0 ϕ(s)ds ∈ AP, since

Λ∫ t
0 ϕ(s) ds−m(

∫ t
0 ϕ(s) ds) = Λϕ,

∫ t
0 ϕ(s)ds − m(

∫ t
0 ϕ(s)ds) ∈ X is the primitive function of ϕ . Hence, ϕ ∈ Im L, Z1 ⊂ Im L. To sum up, Z1 = Im L. Besides, one

can easily show that Im L is closed in Z and dim Ker L = 1 = codim Im L. Therefore, L is a Fredholm mapping of index zero.

Step 3. We define some operators:

N : X → Z , Nx(t) = a(t) − B(t)ex(t) − D(t)ex(t−τ (t)),

P : X → X, P x = m(x), Q : Z → Z , Q z = m(z).

Firstly, it is easy to show that P and Q are continuous projectors such that

Im P = Ker L, Im L = Im(I − Q ) = Ker Q ,

where I is an identity mapping. Thus, L|dom L ∩ Ker P : (I − P )X → Im L is invertible. We denote the inverse of that map
by K p . K p : Im L → Ker P ∩ dom L has the form
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K p z(t) =
t∫

0

z(s)ds − m

( t∫
0

z(s)ds

)
,

then,

Q Nx(t) = m
(
a(t) − B(t)ex(t) − D(t)ex(t−τ (t))),

K p(I − Q )Nx(t) = f
(
x(t)

) − Q f
(
x(t)

)
,

where,

f
(
x(t)

) =
t∫

0

(
Nx(s) − Q Nx(s)

)
ds.

Obviously, Q N and (I − Q )N are continuous. In fact, K p is also continuous. For any 1 > ε > 0, let l1 be the inclusion interval
of Γ (F1, ε). Suppose z ∈ Z1 = Im L, then

∫ t
0 z(s)ds ∈ AP. Since

Λ∫ t
0 z(s) ds = Λ∫ t

0 z(s) ds−m(
∫ t

0 z(s) ds) ∪ {0} = Λz ∪ {0}, mod(z) ⊂ mod(F1),

then mod(
∫ t

0 z(s)ds) ⊂ mod(F1). Therefore, there exists δ, 0 < δ < ε such that Γ (F1, δ) ⊂ Γ (
∫ t

0 z(s)ds, ε). Let l be the inclu-

sion interval of Γ (F1, δ), then l � l1. For any t /∈ [0, l ], there exists ξ ∈ Γ (F1, δ) ⊂ Γ (
∫ t

0 z(s)ds, ε) such that t + ξ ∈ [0, l ],

sup
t∈R

∣∣∣∣∣
t∫

0

z(s)ds

∣∣∣∣∣ � sup
t∈[0,l ]

∣∣∣∣∣
t∫

0

z(s)ds

∣∣∣∣∣ + sup
t /∈[0,l ]

∣∣∣∣∣
t∫

0

z(s)ds

∣∣∣∣∣
�

l∫
0

∣∣z(s)
∣∣ds + sup

t /∈[0,l ]

∣∣∣∣∣
t∫

0

z(s)ds −
t+ξ∫
0

z(s)ds

∣∣∣∣∣ + sup
t /∈[0,l ]

∣∣∣∣∣
t+ξ∫
0

z(s)ds

∣∣∣∣∣
� 2

l∫
0

∣∣z(s)
∣∣ds + sup

t /∈[0,l ]

∣∣∣∣∣
t∫

0

z(s)ds −
t+ξ∫
0

z(s)ds

∣∣∣∣∣
� 2

l∫
0

∣∣z(s)
∣∣ds + ε.

Thus, we can conclude that K p is continuous, and consequently, K p(I − Q )N is also continuous. In addition, we can easily
obtain that K p(I − Q )N is uniformly bounded in Ω̄ , Q N(Ω̄) is bounded and K p(I − Q )N is equicontinuous in Ω̄ . By using

the Arzela–Ascoli theorem, we can immediately conclude that K p(I − Q )NΩ̄ is compact, thus N is L-compact on Ω̄ .

Step 4. Let the isomorphism J : Im Q → Ker L be an identity mapping. We search an appropriate bounded open subset Ω

for the application of Lemma 3.1. Corresponding to operator equation Lx = λNx, λ ∈ (0,1), we have

x′(t) = λ
(
a(t) − B(t)ex(t) − D(t)ex(t−τ (t))). (3.4)

If x ∈ X is a solution of system (3.4), taking the limit mean for system (3.4), we obtain m(a(t)) = m(B(t)ex(t) + D(t)ex(t−τ (t))).
Since m(a)

m(B)+m(D)
> 0, then supt∈R x(t) � ln m(a)

m(B)+m(D)
� inft∈R x(t). Hence there exists at least one t∗ ∈ R such that

∣∣x(t∗)∣∣ �
∣∣∣∣ln m(a)

m(B) + m(D)

∣∣∣∣ + 1. (3.5)

Since Lx ∈ Z1, by a similar argument as in Step 3, we can derive that

‖x‖ = sup
t∈R

∣∣x(t)∣∣ �
∣∣x(t∗)∣∣ + sup

t∈R

∣∣∣∣∣
t∫

t∗
x′(s)ds

∣∣∣∣∣ � x
(
t∗) + 2

t∗+l∫
t∗

∣∣x′(s)
∣∣ds + 1. (3.6)

Taking τ̄ ∈ [l,2l ] ∩ Γ (F1, δ) ⊂ Γ (
∫ t x′(s)ds, ε), we have
0
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t∗+l∫
t∗

∣∣x′(s)
∣∣ds �

t∗+τ̄∫
t∗

∣∣x′(s)
∣∣ds � λ

t∗+τ̄∫
t∗

∣∣a(s)
∣∣ds + λ

t∗+τ̄∫
t∗

∣∣B(s)ex(s) + D(s)ex(s−τ (s))
∣∣ds

� 2λ

t∗+τ̄∫
t∗

∣∣a(s)
∣∣ds − λ

t∗+τ̄∫
t∗

x′(s)ds � 2

t∗+2l∫
t∗

∣∣a(s)
∣∣ds + 1. (3.7)

Combining (3.5)–(3.7), we obtain

‖x‖ �
∣∣∣∣ln m(a)

m(B) + m(D)

∣∣∣∣ + 4 + 4

t∗+l∫
t∗

∣∣x′(s)
∣∣ds. (3.8)

Take Ω = {x ∈ X, ‖x‖ � 4| ln m(a)
m(B)+m(D)

| + 4 + 4
∫ t∗+l

t∗ |x′(s)|ds}, then it is clear that Ω verifies all the requirements in
Lemma 3.1, hence system (3.3) has at least one almost periodic solution. The proof is complete. �
Remark. If f ∈ AP and ∀λ ∈ Λ f , |λ| > α > 0, then the primitive function of f is an AP function. It doesn’t hold for PCAP
functions. Theorem 2.3 implies that if f ∈ PCAP, ∀λ ∈ Λ f , α1 > |λ| > α > 0,

∑∞
i=1 |a(λi, f )| < +∞, then the primitive

function of f is an AP function. That is the reason why in Lemma 3.3 we take Z1 like that.

Combining Lemmas 3.2 and 3.3, for Eq. (3.1), we have the result

Theorem 3.4. If (H) is satisfied, m(B)+m(D) �= 0, then Eq. (3.1) has at least one strictly positive piecewise continuous almost periodic
solution.

In the following, we present two examples to demonstrate the result obtained in this section.

Example 1. Consider the following impulsive single population model with hereditary⎧⎨
⎩

N ′(t) = N(t)
[
(3 − cos

√
3t) − (2 − cos 2πt)N(t) − (2 + sin 2πt)N(t − 1)

]
, t �= 1,2,3, . . . ,

N
(
2k+) = 2N(2k), N

(
(2k + 1)+

) = 1

2
N(2k + 1), k = 0,1,2, . . . .

(3.9)

Obviously, a(·), b(·), d(·), τ (·) are positive almost periodic functions, m(a) = 3 > 0, {ck} is an almost periodic sequence, {tk} is
an equipotentially almost periodic sequence. The assumption (H) holds. Besides, m(B) + M(D) = 15

4 > 0. From Theorem 3.4,
we know that system (3.9) has at least one strictly positive piecewise continuous almost periodic solution.

Example 2. If ck = 0,
∏

0<tk<t(1 + ck),
∏

0<tk<t−τ (t)(1 + ck) are constant functions, then the assumption (H) holds. Sys-
tem (3.1) can be rewritten as the following system [22]

N ′(t) = N(t)
[
a(t) − b(t)N(t) − d(t)N

(
t − τ (t)

)]
.

Similar result as in Theorem 3.4 is given in [22].

References

[1] J.O. Alzabut, J.J. Nieto, G.T. Stamov, Existence and exponential stability of positive almost periodic solutions for a model of hematopoiesis, Bound. Value
Probl. 2009 (2009), 127510.

[2] H. Bohr, Zur Theorie der Fastperiodischen Funktionen I–III, Acta Math. 45 (1925) 29–127, Acta Math. 46 (1925) 101–127, Acta Math. 47 (1926) 237–281.
[3] H. Bohr, Almost Periodic Functions, Chelsea Publishing Company, New York, 1951.
[4] L. Chen, L. Chen, Positive periodic solution of a nonlinear integro-differential prey-competition impulsive model with infinite delays, Nonlinear Anal.

11 (2010) 2273–2279.
[5] C. Corduneanu, Almost Periodic Functions, Chelsea Publishing Company, New York, 1989.
[6] T. Diagana, Pseudo Almost Periodic Functions in Banach Spaces, Nova Science Publishers, 2006.
[7] H.S. Ding, G.M. N’Guérékata, J.J. Nieto, Weighted pseudo almost periodic solutions for a class of discrete hematopoiesis model, Rev. Mat. Complut.

26 (2) (2013) 427–443.
[8] M. Fan, K. Wang, Periodic solutions of single population model with hereditary effects, Math. Appl. 2 (2000) 58–61.
[9] A.M. Fink, Almost Periodic Differential Equations, Springer-Verlag, Berlin, 1974.

[10] R.E. Gaines, J.L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag, Berlin, 1977.
[11] A. Halanay, D. Wexler, The Qualitative Theory of Systems with Impulses, Mir, Moscow, 1971, Russian translation.
[12] M. He, F. Chen, Z. Li, Almost periodic solution of an impulsive differential equation model of plankton allelopathy, Nonlinear Anal. 11 (2010) 2296–2301.
[13] B.M. Levitan, Almost Periodic Functions, Gostekhizdat, Moscow, 1953.
[14] Q. Liu, Almost periodic type functions on time scales, Master degree thesis, Harbin Institute of Technology, 2009.
[15] A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.

http://refhub.elsevier.com/S0022-247X(13)01040-8/bib37s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib37s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib31s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib32s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3231s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3231s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3130s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3131s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib36s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib36s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3230s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib33s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3233s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib39s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3234s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3132s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3139s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3137s1


46 L. Wang, M. Yu / J. Math. Anal. Appl. 413 (2014) 35–46
[16] A.M. Samoilenko, S.I. Trofimchukt, Spaces of piecewise-continuous almost-periodic functions and of almost-periodic sets on the line I, Ukrain. Mat. Zh.
43 (1991) 1613–1619.

[17] A.M. Samoilenko, S.I. Trofimchukt, Spaces of piecewise-continuous almost-periodic functions and of almost-periodic sets on the line II, Ukrain. Mat. Zh.
44 (1992) 389–400.

[18] G.T. Stamov, Seperated and almost periodic solutions for impulsive differential equations, Note Mat. 20 (2000/2001) 105–113.
[19] G.T. Stamov, J.O. Alzabut, Almost periodic solutions in the PC-space for uncertain impulsive dynamical systems, Nonlinear Anal. 74 (2011) 4653–4659.
[20] V.V. Stepanov, Über einige Verallgemeinerungen der fast periodischen Funktionen, Math. Ann. 95 (1926) 473–498.
[21] M. Tarallo, A Stepanov version for Favard theory, Arch. Math. 90 (2008) 53–59.
[22] Y. Xie, X. Li, Almost periodic solutions of single population model with hereditary effects, Appl. Math. Comput. 203 (2008) 690–697.
[23] R. Yuan, On Favard’s theorems, J. Differential Equations 249 (2010) 1884–1916.
[24] C. Zhang, Almost Periodic Type Functions and Ergodicity, Science Press/Kluwer, New York, Beijing, 2003.

http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3135s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3135s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3136s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3136s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3138s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib35s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib38s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3134s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3232s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib3133s1
http://refhub.elsevier.com/S0022-247X(13)01040-8/bib34s1

	Favard's theorem of piecewise continuous almost periodic functions and its application
	1 Introduction
	2 Favard's theorem of piecewise continuous almost periodic functions
	3 The application of Favard's theorem of piecewise continuous almost periodic functions
	References


