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1. Introduction

The upper and lower local dimensions of a locally finite Borel measure μ, denoted by dimloc(μ, x) and
dimloc(μ, x) respectively, are the lim sup and lim inf of the ratio

logμ(B(x, r))
log r ,

as r → 0. When they agree, we say that the local dimension, denoted by dimloc(μ, x), exists and equals to this
common value. If the local dimension is constant almost everywhere, we say that μ is exactly dimensional.
The local dimension does not only give information about the geometry of the measure, but also about the
support of the measure. For example, if the upper local dimension of μ is smaller than t for all x ∈ A, then
the packing dimension of A is at most t, see e.g. [6, Proposition 2.3(d)].

Our main interest is to study the local dimensions of the canonical projection πμ of an invariant Borel
probability measure μ onto a self-affine set. In 2009, Feng and Hu [10] showed that the local dimension
of πμ exists almost everywhere if the underlying iterated function system, IFS for short, is conformal.
They also showed that the local dimension exists if the mappings of the IFS satisfy fi(x) = Aix + ai
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and the matrices Ai commute. When μ is ergodic, these results give that μ is exactly dimensional. The
general affine case remained open. In 2011, Falconer and Miao [8] calculated the local dimension in a
specific affine case. They showed that πμ is exactly dimensional for Lebesgue almost all translation vectors
a ∈ R

dκ, where κ is the number of mappings in the IFS, assuming that μ is a Bernoulli measure and that
supi ‖Ai‖ < 1

2 , see [8, Theorem 6.1]. By taking a minor change in the proof of [11, Theorem 4.3] we can
have the same result for any ergodic measure. This was noted in a very restrictive case by Feng and Barral
in [9, Theorem 2.6] and giving the general proof was one of our motivations at the beginning of this work.
In [1], the published version of [9], it is mentioned that this generalization is also known by the authors of
[11]. However the proof is not written out. All the works mentioned here assume that the IFS is finitely
generated.

Our main result, Theorem 1.2, generalizes the results mentioned above. We show that even in the infinitely
generated case, the local dimension of an invariant Borel measure exists, assuming again that supi ‖Ai‖ < 1

2 .
As a corollary we get that ergodic measures are exactly dimensional. We also remark how to obtain esti-
mates for the local dimensions that hold for all translations, with only assuming that the mappings Ai

are contractive. Finally, we make remarks on the connections of our results to the dimensions of the limit
set.

Let us now introduce some notation. Let I be a finite or countable set. We define I∗ =
⋃∞

n=1 I
n. If I is

finite, we say that IN is finitely generated and otherwise IN is infinitely generated. When i ∈ I∗, we denote
by ij the symbol obtained by juxtaposing i and j. Furthermore, for i ∈ I∗, we set [i] = {ij: j ∈ IN}
and call this set a cylinder of i. When i = (i1, i2, . . .) we denote i|n = (i1, . . . , in). On the symbol space
IN we consider the left shift σ, defined by σ(i1, i2, i3, . . .) = (i2, i3, . . .) and study Borel measures that are
invariant with respect to this shift, that is μ(B) = μ(σ−1B) for all Borel sets B. An invariant measure is
called ergodic, if for all Borel sets B with B = σ−1B, we have μ(B) = 0 or μ(B) = 1. We denote the set
of invariant and ergodic Borel probability measures on IN by Mσ(IN) and Eσ(IN) respectively. Throughout
the paper, μ denotes a Borel probability measure. By πμ, we mean the push-forward measure μ ◦ π−1.

For each i ∈ I, we fix an invertible d× d matrix Ai and a translation vector ai ∈ Q, where Q = [−1
2 ,

1
2 ]d.

Due to Kolmogorov extension theorem QN supports a natural probability measure m = (Ld|Q)N. We assume
that supi∈I ‖Ai‖ = α < 1 and consider the IFS {fi}i∈I , where fi(x) = Aix+ai, and the canonical projection
πa : IN → R

d defined by {πa(i)} =
⋂

n∈N
fi|n(B(0, R)), where fi|n = fi1 ◦ · · · ◦ fin and R is so large that

fi(B(0, R)) ⊂ B(0, R) for all i ∈ I. We call Fa =
⋃

i∈IN πa(i) the limit set of this IFS. It is not restrictive to
assume that each ai is in the cube Q, since this is just a matter of scaling the limit set. This only excludes
the case where supi |ai| = ∞.

The singular values ‖Ai|n‖ = α1(i|n) � · · · � αd(i|n) > 0 of Ai|n = Ai1 · · ·Ain are the lengths of the
principal semiaxis of the ellipsoid Ai|n(B(0, 1)). For 0 � s < d, the singular value function is defined as

φs(i|n) = α1(i|n) · · ·αk(i|n)αk+1(i|n)s−k,

where k is the integer part of s. When s � d, we set φs(i|n) = (α1(i|n) · · ·αd(i|n))s/d.
For convenience, fix partitions Pn = {[i]}i∈In , and set Hμ(Pn) = −

∑
i∈In μ[i] logμ[i]. Entropy and

energy of μ ∈ Mσ(IN), defined by

hμ = − lim
n→∞

1
n
H(Pn) and Λμ(s) = lim

n→∞
1
n

∫
IN

log φs(i|n) dμ

respectively, are the basic tools in the study of ergodic measures in the field of iterated function systems.
In order to work with invariant measures, we need to localize these concepts. By theorems [18, Theorem 7
in Section 2] and [22, Theorem 10.1], for μ ∈ Mσ(IN), there exist L1(μ) functions hμ(i) and Λμ(s, i) so
that
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hμ(i) = − lim
n→∞

1
n

logμ[i|n] and Λμ(s, i) = lim
n→∞

1
n

logφs(i|n), (1.1)

for μ almost all i ∈ IN and

∫
IN

hμ(i) dμ = hμ and
∫
IN

Λμ(s, i) dμ = Λμ(s). (1.2)

Furthermore, for μ ∈ Eσ(IN), we have hμ(i) = hμ and Λμ(s, i) = Λμ(s) for μ almost all i ∈ IN. We call
hμ(i) the local entropy of μ at i and Λμ(s, i) the local energy of μ at i. In order to use [18, Theorem 7 in sec-
tion 2], we need to assume that H(Pn) < ∞ at some level n. Since hμ = limn→∞

1
nH(Pn) = infn∈N

1
nH(Pn)

we can equivalently assume that hμ < ∞.
We define the measure-theoretical pressure function Pμ(·, i) : [0,∞] → R by

Pμ(s, i) = − lim
n→∞

1
n

log μ[i|n]
φs(i|n) ,

when i is so that both equations in (1.1) hold. If hμ < ∞ the limit exists for μ almost all i ∈ IN. When
hμ(i) < ∞ or Λμ(s, i) > −∞, then Pμ(s, i) is just hμ(i) + Λμ(s, i).

It is not yet said, that there exists i ∈ IN, so that limn→∞
1
n logφs(i|n) exists for all s. Fortunately,

this happens for μ almost all i ∈ IN. By repetitive use of the second equation in (1.1), we get that for μ

almost all i ∈ IN, the limit limn→∞
1
n logαl(i|n) exists for all 1 � l � d. We call these values the Lyapunov

exponents of μ at i and denote them by λl(μ, i). For s < d, it now easily follows that

Λμ(s, i) = λ1(μ, i) + · · · + λk(μ, i) + (s− k)λk+1(μ, i), (1.3)

where k is the integer part of s, with the interpretation that 0 · (−∞) = 0. If s � d, we get Λμ(s, i) =
s
d (λ1(μ, i) + · · ·+ λd(μ, i)). From this we see that Λμ(·, i) is strictly decreasing function with Λμ(0, i) = 0.
Also we see that Λμ(·, i) has at most one point of discontinuity and at this point it is continuous from left.
The point of discontinuity equals to min{k: λk+1(μ, i) = −∞}.

With the assumption hμ < ∞, we have that for μ almost all i ∈ IN, the equations in (1.1) hold for all s.
Also, the first equation in (1.2) gives that hμ(i) < ∞ for μ almost all i ∈ IN. In this light, we give the
following definition.

Definition 1.1. Let μ ∈ Mσ(IN) and hμ < ∞. When i is so that hμ(i) < ∞ and both equations in (1.1)
hold, the local Lyapunov dimension of μ at i, denoted by dimLY (μ, i), is defined to be the infimum of the
numbers s, for which Pμ(s, i) < 0.

We remark that, for ergodic μ, the above functions hμ(i), λl(μ, i), Λμ(s, i), Pμ(s, i) and dimLY (μ, i)
are constants for μ almost all i. In such case, we use the notations hμ, λl(μ), Λμ(s), Pμ(s) and dimLY (μ)
to emphasize the independence of i. We are now ready to state our main result.

Theorem 1.2. Assume that μ ∈ Mσ(IN), hμ < ∞, supi∈I ‖Ai‖ < 1
2 and that there exists s ∈ [0,∞) so that

0 > Pμ(s, i) > −∞. Then dimloc(πaμ, πa(i)) = min{d, dimLY (μ, i)} for μ almost all i ∈ IN and m almost
all a ∈ QN.

We only need the assumption 0 > Pμ(s, i) > −∞ in the proof of the upper bound to ensure that
λk+1(μ, i) > −∞, where k is the integer part of dimLY (μ, i).
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2. Local dimensions of invariant measures

In this section we prove Theorem 1.2. The proof is divided into upper and lower estimates, namely to
Theorems 2.1 and 2.2. We remark that Theorem 2.1 was proven in [11, Proposition 4.4] for an ergodic
measure on a finitely generated affine IFS.

Theorem 2.1. Assume that μ ∈ Mσ(IN), hμ(i) < ∞ and supi∈I α1(i) < 1
2 . Then we have that

dimloc(πaμ, πa(i)) � min{d, dimLY (μ, i)} for μ almost all i ∈ IN and m almost all a ∈ QN.

Proof. Assume first that dimLY (μ, i) � d. For arbitrary ε > 0, we choose γ(i) = dimLY (μ, i) − 2ε and
θ(i) = dimLY (μ, i) − ε. Since Pμ(·, i) is strictly decreasing, we find ε′ > 0, so that Λμ(θ(i), i) � −hμ(i) +
2ε′. By Egoroff’s theorem, for each δ > 0 there is a measurable set Hδ ⊂ IN and integer Nδ, such that
μ(IN \Hδ) < δ and

1
n

logμ[i|n] � −hμ(i) + ε′ � Λμ

(
θ(i), i

)
− ε′ � 1

n
log φθ(i)(i|n)

for all n � Nδ and i ∈ Hδ. Therefore we find a constant c′ > 0, independent of i, so that

μ[i|n] � c′φθ(i)(i|n) (2.1)

for all n ∈ N and i ∈ Hδ. Next we consider the integral

∫
QN

dm(a)
|πa(i) − πa(j)|γ(i) =

∫
QN

∫
Q

dLd(a1)
|πa(i) − πa(j)|γ(i) dm

(
a′),

where a = (a1,a
′) ∈ QN. We can make the change of variable in the inner integral as in [3, Lemma 3.1]. By

using this lemma with Fubini’s theorem, and then inequality (2.1) and the properties of the singular value
function, we get

∫
QN

∫
Hδ

∫
IN

dμ(j) dμ(i) dm(a)
|πa(i) − πa(j)|γ(i) � c

∫
Hδ

∫
IN

(
φγ(i)(i ∧ j)

)−1
dμ(j) dμ(i)

� c

∫
Hδ

∞∑
n=1

(
φγ(i)(i|n)

)−1
μ[i|n] dμ(i)

� cc′
∫
Hδ

∞∑
n=1

(
φγ(i)(i|n)

)−1
φθ(i)(i|n) dμ(i)

� cc′
∫
Hδ

∞∑
n=1

2n(γ(i)−θ(i)) dμ(i)

� cc′
∞∑

n=0
2−nε

∫
Hδ

dμ(i) < ∞,

where i∧j = i|min{k−1: ik �=jk} and c is the constant from [3, Lemma 3.1], independent of i and j. Originally,
the bound of the norms of the linear maps in [3, Lemma 3.1] is 1

3 , but by [21, Proposition 3.1], 1
2 suffices.

Now we have that
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∫
Hδ

∫
IN

dμ(j) dμ(i)
|πa(i) − πa(j)|γ(i) < ∞ (2.2)

for m almost all a ∈ QN. Next we fix a so that (2.2) holds. We deduce that the integral
∫
IN |πa(i) −

πa(j)|−γ(i) dμ(j) is finite for μ almost all i ∈ Hδ and so we find constants M(i) for μ almost every i ∈ Hδ,
so that

∫
IN |πa(i)−πa(j)|−γ(i) dμ(j) < M(i). This implies that πaμ(B(πa(i), r)) � rγ(i)M(i) for all r > 0

and for μ almost all i ∈ Hδ.
We have obtained that dimloc(πaμ, πa(i)) � γ(i) for μ almost all i ∈ Hδ and m almost all a ∈ QN.

Since δ was arbitrary, this also holds for μ almost all i ∈ IN.
If dimLY (μ, i) > d, then we get the proof by choosing θ(i) = d and γ(i) = d− ε. �

Theorem 2.2. If μ ∈ Mσ(IN), hμ < ∞ and Λμ(s, i) > −∞ for some s > dimLY (μ, i), then
dimloc(πaμ, πa(i)) � min{d, dimLY (μ, i)} for μ almost all i ∈ IN and for all a ∈ QN.

Proof. As mentioned in the Introduction, we follow the lines of the proof of [11, Theorem 4.3].
We may assume that dimLY (μ, i) < d. Fix an integer k, so that k � dimLY (μ, i) < k + 1. We have that

πa[i|n] ∈ fi|n(B(0, R)) for some R ∈ N. The ellipsoid fi|n(B(0, R)) can be covered by a rectangular box, call
it B(i|n), with side-lengths 2Rα1(i|n), . . . , 2Rαd(i|n). We can cover B(i|n) with N(i|n) non-overlapping
“half-open” boxes with side-lengths

αk+1(i|n), . . . , αk+1(i|n), αk+2(i|n), . . . , αd(i|n),

where N(i|n) � (2R)dα1(i|n) · · ·αk(i|n)αk+1(i|n)−k. Let Pn(i) be the box that contains πa(i), and let
Qn(i) := [i|n]∩ π−1

a (Pn(i)). In other words, Qn(i) is the part of the cylinder [i|n] that gets projected into
Pn(i). For fixed j we define

Aj
n :=

{
i ∈ IN: μ

(
Qn(i)

)
� 2−n/j μ[i|n]

N(i|n)

}

for all n ∈ N. Now we have

μ
(
IN \Aj

n

)
= μ

( ⋃
i∈IN

Qn(i) \Aj
n

)
=

∑
Qn(i) �⊂Aj

n

μ
(
Qn(i)

)
�

∑
i∈In

N(i)2−n/j μ[i]
N(i) = 2−n/j .

Thus for the set Aj :=
⋃

N∈N

⋂∞
n=N Aj

n we have

μ
(
Aj

)
= lim

N→∞
μ

( ∞⋂
n=N

Aj
n

)
= 1 − lim

N→∞
μ

( ∞⋃
n=N

(
IN \Aj

n

))
� 1 − lim

N→∞

∞∑
n=N

2−n/j = 1.

By definition, for all i ∈ Aj , we find M(i) ∈ N such that the inequality

μ
(
Qn(i)

)
� 2−n/j μ[i|n]

N(i|n) (2.3)

holds for all n � M(i).
We assumed that Λμ(s, i) > −∞ for some s > dimLY (μ, i). This implies that λl(μ) > −∞ for all

1 � l � k + 1. For γ(i) > dimLY (μ, i), we have
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lim
n→∞

logμ[i|n] − logN(i|n)
logαk+1(i|n−1)

= lim
n→∞

1
n (logμ[i|n] −

∑k
l=1 logαl(i|n) − logαk+1(i|n)−k)

n−1
n

1
n−1 logαk+1(i|n−1)

� hμ(i) + λ1(μ, i) + · · · + λk(μ, i)
−λk+1(μ, i)

+ k < γ(i) (2.4)

for μ almost all i ∈ IN. The first inequality follows by the definition of N(i|n) and the fact that hμ(i)
and λl(μ, i) are finite for 1 � l � k + 1 and 0 > λk+1(μ, i). The second inequality follows by (1.3), since
Pμ(γ(i), i) < 0. In the calculation, we have omitted the constant (2R)d from N(i|n), since it has no effect
on the result.

Let rl be any sequence of positive numbers converging to zero. For each l, we find an integer nl, so that√
dαk+1(i|nl

) � rl <
√
dαk+1(i|nl−1). To avoid complicated notation, we only write n instead of nl. We

have i ∈ Qn(i) and πaQn(i) ⊂ Pn(i) and the greatest side-length of Pn(i) is αk+1(i|n). Therefore we have
πaQn(i) ⊂ B(πa(i),

√
dαk+1(i|n)). Using this and (2.3) and (2.4), we get that

lim sup
l→∞

log πaμB(πa(i), rl)
log rl

� lim sup
n→∞

log πaμB(πa(i),
√
dαk+1(i|n))

log
√
dαk+1(i|n−1)

� lim sup
n→∞

logμQn(i)
logαk+1(i|n−1)

� lim sup
n→∞

(
log 2−

n
j

logαk+1(i|n−1)
+ logμ[i|n] − logN(i|n)

logαk+1(i|n−1)

)

� j−1 log 2
− logα + γ(i),

where α = supi∈I α1(i) < 1. Since j and the sequence rl were arbitrary and μ(Aj) = 1 for all j ∈ N, we
have obtained dimloc(πaμ, πa(i)) � γ(i) for μ almost all i ∈ IN. �
Remark 2.3. It is natural to ask, what can be said of the local dimensions, when one only assumes
supi∈I α1(i) � α < 1, and what results can be obtained for all translations a. Observe that Theorem 2.2
already applies to this case. By using an essentially identical proof as the proof of [10, Theorem 2.6], one
can get the following estimates.

Assume that μ ∈ Mσ(IN), hμ < ∞ and logαd(i|1) ∈ L1(μ). Then we have for μ almost all i ∈ IN and
for all a ∈ QN that

hπ
μ(i)

−Eμ(logαd(i|1) | I) � dimloc
(
πμ, π(i)

)
� dimloc

(
πμ, π(i)

)
�

hπ
μ(i)

−Eμ(logα1(i|1) | I) , (2.5)

where hπ
μ(i) is the local projection entropy defined as in [10, Definition 2.1], m is so that H(Pm) < ∞, and

I is the σ-algebra of σ invariant sets. For the definition of the conditional expectation Eμ, see [18]. If the
index set I is finite then (2.5) is strictly included in [10, Theorem 2.6].

The assumptions hμ < ∞ and logαd(i|1) ∈ L1(μ) are needed in the ergodic theorems that are used in
the proof and the number m can be chosen to be the least integer for which H(Pm) < ∞. In the finitely
generated case these assumptions are of course satisfied and m = 1. We also note that the proof of [10,
Theorem 6.2], which is a more general version of [10, Theorem 2.6], deals with a direct product of two IFS
and the conditional measures used there are not needed to obtain (2.5).

In most cases, the upper bound in Eq. (2.5) is not as good as the result of Theorem 2.2. However, in the
exceptional case, where Theorem 2.1 does not hold, the upper estimate in (2.5) might give a better estimate
since hπ

μ � hμ, see [10, Proposition 4.1].
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3. Pressure function and dimensions of the limit set

In order to determine the Hausdorff dimension of the limit set Fa, one often considers the pressure
function defined by

P (s) = lim
n→∞

1
n

log
∑
i∈In

φs(i).

In the finitely generated setting it is known that if maxi∈I ‖Ai‖ < 1
2 , then the Hausdorff dimension of Fa

equals to the zero of the pressure for Ldκ almost all a ∈ R
dκ, where κ denotes cardinality of the index set I,

see [3]. In [13, Theorem B], Käenmäki and Reeve generalize this result for an infinitely generated affine IFS,
with the extra assumption of quasi-multiplicativity, see [13, (2.1)] for the definition. Since their results on
the Hausdorff dimension of the limit set are closely related to our results on measures, we give some notes
on this paper.

The pressure function satisfies P (s) � Pμ(s) for all μ ∈ Mσ(IN) and all s ∈ [0,∞), see [13, Lemma 2.2].
Furthermore, if the singular value function is quasi-multiplicative and s > s∞ = inf{s: P (s) < ∞}, then
there exists an ergodic measure μs, called the Gibbs measure, satisfying P (s) = Pμs

(s), hμs
< ∞ and

Λμs
(s) > −∞, [13, Theorems 3.5 and 3.6 and Lemma 4.2]. In Example 4.2 we show that P (s) can be

nonzero everywhere. In this case, any ergodic measure μ with hμ < ∞ satisfies dimLY (μ) < s∞. This
follows since P (s∞) � Pμ(s∞) and Pμ is continuous from left. The next theorem gives a necessary and
sufficient condition for the existence of the zero of the pressure function under the quasi-multiplicativity
assumption.

Lemma 3.1. Suppose that the singular value function φs(i) is quasi-multiplicative for all 0 � s � d. Then
P (s) is continuous and strictly decreasing on the interval [s∞,∞). Furthermore if P (s∞) � 0, then there
exists a unique s satisfying P (s) = 0.

Käenmäki and Vilppolainen have proved a similar result, [15, Lemma 2.1], and we will make use of that
proof. Their lemma deals with a finitely generated IFS, but some parts of the proof apply directly to the
infinitely generated case.

Proof of Lemma 3.1. It is easy to see that P (s) is decreasing and thus it is finite for all s > s∞. As in [15,
Lemma 2.1], we deduce that for any s > s∞, we have

P (s) − P (s + δ) � −δ log sup
i∈I

α1(i),

which gives that P (s) is strictly decreasing for s > s∞ and that lims→∞ P (s) = −∞. Now we only need
to show the continuity. By inspecting the proof of [15, Lemma 2.1], we get that P (s) is convex on intervals
[m,m + 1]. Since P (s) is also decreasing, we get that P (s) is left-continuous for all s > s∞. Since φs(i) is
quasi-multiplicative, P (s) can be approximated pointwise by continuous functions from below, namely by
the pressures of finite sub-systems, see [13, Proposition 3.2]. Again, using the fact that P (s) is decreasing,
we get right-continuity. Especially, P (s) is right-continuous at s∞. Note also that quasi-multiplicativity was
only used to get the right-continuity. �

The lower local dimension of the Gibbs measure is also estimated in [13, Theorem 4.1]. By Lemma 3.1
and Theorem 1.2 we get the following corollary. Due to Lemma 3.1 the assumption of the existence of s0 in
[13, Theorem 4.1] can be relaxed to P (s∞) � 0.
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Corollary 3.2. Suppose that the singular value function φs(i) is quasi-multiplicative for all 0 � s � d and
P (s∞) > 0. Then there exists s0 so that P (s0) = 0 and the Gibbs measure μs0 satisfies Λμs0

(s0) > −∞. If
in addition Λμs0

(s0 + δ) > −∞ for some δ > 0, then

dimloc
(
πaμs0 , πa(i)

)
= s0,

for μ almost all i ∈ IN and m almost all a ∈ QN.

Proof. The existence of s0 is clear by Lemma 3.1. The assumption Λμs0
(s0 + δ) > −∞ is only needed when

s is an integer, to ensure that we may use Theorem 1.2. The result follows since s0 = dimLY (μ, i). �
By [13, Theorem B], dimH Fa = sup{dimH πa(JN): J ⊂ I is finite} for m almost all a. We do not know

whether a similar approximation holds for dimP and dimB. Recalling [6, Theorem 10.1], one could use
Corollary 3.2 and hope for results on packing dimension of the limit set. The problem is that we only know
the local dimension of μs0 for almost all i and not for all i. Mauldin and Urbański have given an example of
an infinitely generated self similar set F satisfying the open set condition, for which dimH F < dimP F , see
[16, Example 5.2]. On the other hand, for all finite subsystems it holds that dimH πa(JN) = dimP πa(JN),
see [4]. Therefore the dimension approximation property does not hold for this, or similar examples. Note
also that dimBFa = dimP Fa for infinitely generated self-affine sets Fa by [16, Theorem 3.1]. The following
theorem gives an estimate for the relation between Hausdorff and packing dimensions of infinitely generated
self affine sets. For x ∈ Fa, we set the notation Ln(x) = {fi(x): i ∈ In}.

Theorem 3.3. Let {fi}i∈I , be an infinitely generated affine IFS. Then we have that

sup
x∈Fa
n∈N

{
dimH Fa,dimBLn(x)

}
� dimP Fa � sup

x∈Fa
n∈N

{
s0,dimBLn(x)

}
,

where s0 = inf{s: limn→∞
1
n log

∑
i∈In α1(i)s = 0}.

Proof. We have dimP Fa = dimBFa by [16, Theorem 3.1] and so the first inequality is trivial. The proof of
the last inequality is essentially the same as the proof of [17, Lemma 2.8], since ‖f ′

i‖ = α1(i). �
Note that if s0 � 1, then s0 = inf{s: P (s) < 0} = dimH Fa = dimP Fa for m almost all a ∈ QN by [13,

Theorem B].

4. Examples and final remarks

Here we give some examples on the entropies and pressures of measures. In Example 4.1 we show that
the measure-theoretical pressure function can be non-zero everywhere and in Example 4.2 we show that
the pressure function can be non-zero everywhere, as mentioned earlier. In the examples, we make use of
Bernoulli measures: Fix reals 0 � pi � 1 so that

∑∞
i=1 pi = 1. The unique measure satisfying μ[i|n] =

pi1pi2 · · · pin is called a Bernoulli measure. It is well known that Bernoulli measures are ergodic. It is also
easy to see that the entropy of a Bernoulli measure can be infinite.

Example 4.1. (Pμ(s) �= 0 everywhere.) Let μ be a Bernoulli measure with μ[i] = c(i + 1)−2, where c =
(π

2

6 − 1)−1. Let

Ai =
[

2μ[i] 0
0 c4−i

]
.
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We can now calculate

hμ = −
∞∑
i=2

ci−2 log ci−2 = log c + 2c
∞∑
i=2

i−2 log i < ∞

and thus μ is a probability measure with finite entropy. Also, by induction we see that λ1(μ) =∑∞
i=1 μ[i] log 2μ[i] = log 2 − hμ and

λ2(μ) = c

∞∑
i=1

(i + 1)−2 log c4−i = −∞.

Thus μ is a Bernoulli measure with finite entropy and Pμ(t) � log 2 for all t � 1 and Pμ(t) = −∞ for all
t > 1. Since supi∈I α1(i) = 2μ[1] = 2c

4 < 1
4 , Theorem 2.1 gives that dimloc(πaμ, πa(i)) � 1 for μ almost all

i ∈ IN and m almost all a ∈ QN.

Example 4.2. (P (s) �= 0 everywhere.) Let ci = i−
1
2 , di = i−1 and Ai =

[ ci 0
0 di

]
for all i ∈ N. Now Ai =

[ ci 0
0 di

]
for all i ∈ In, where ci = ci1 · · · cin and di = di1 · · · din . Therefore, for all t = 1 + s, we have

φt(i) = 1

i
1
2
1

· · · 1

i
1
2
n

· 1
is1

· · · 1
isn

,

which implies

∑
i∈In

φt(i) =
(∑

i∈N

1
i
1
2+s

)n

and P (t) = log
∑
i∈N

1
i
1
2+s

.

Choose I = {�i(log i)2
: i � n0}. Now we have that

P

(
3
2

)
= log

∑
i∈I

1
i
1
2+ 1

2
= log

∞∑
i=n0

1
�i(log i)2
 < 0

for n0 large enough. For all t < 3
2 we get P (t) = ∞, since log i � iδ for large i when δ > 0.

We end with final remarks on the assumptions and results of this paper.

Remarks 4.3.

(1) Considering the proof of Theorem 2.2, suppose that λk+1(μ, i) = −∞. We face difficulties at (2.4) since
we are to calculate the limit

lim
n→∞

logαk+1(i|n)
logαk+1(i|n−1)

.

Since αk+1(i) → 0 as i → ∞, there are sequences for which the above limit is infinite. If one has
extra information about the support of the measure then the set of these sequences can be studied. For
example, if μ(IN\

⋃
JN) = 0, where the union is over all finite sets J ⊂ I, then we find constants c(i) for

almost all i so that αk+1(i|n) � c(i)αk+1(i|n−1) and the set of the exceptional sequences is of measure
zero. Unfortunately these measures are rather trivial. This can be seen from [14, Lemma 2.3]. Note that
one can always use the sequence αk+1(i|n) to obtain the estimate dimloc(πaμ, πa(i)) � dimLY (μ, i).
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(2) Since we assumed that the limit set F is bounded it is reasonable to also assume that αd(i) → 0 as
i → ∞. Therefore we could have −

∑
i∈I μ[i] logαd(i|1) = ∞ and so the assumption logαd(i|1) ∈ L1 in

Eq. (2.5) is necessary.
(3) Considering the finitely generated case, suppose that #I = κ and that s0 is the zero of the pressure

function. Käenmäki proved the existence of an equilibrium measure μs0 in [12]. For this measure,
dimLY (μs0) equals to s0. By Theorem 1.2, we get that dimH(F ) � s0 for Lebesgue almost all a ∈ R

dκ.
This shows that we cannot remove the assumption supi∈I ‖Ai‖ < 1

2 from Theorem 1.2. For examples
where dimH(F ) < s0, see [2,19,20]. Also there are examples showing that for particular a, Theorem 1.2
cannot hold, see e.g. [5, Example 9.11]. The size of the set of these exceptional translations has been
studied by Falconer and Miao in [7].

(4) Supposing that hπ
μ(i) < ∞, we may slightly modify the definition of the Lyapunov dimension, namely

by setting

dimπ
LY (μ, i) = inf

{
s: hπ

μ(i) − Λμ(s, i) < 0
}
.

Perhaps we could have dimloc(πaμ, πa(i)) = min{d, dimπ
LY (μ, i)} for μ almost all i ∈ IN and all a ∈ QN,

when μ ∈ Eσ(IN), hπ
μ < ∞ and supi∈I ‖Ai‖ < 1.
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