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1. Introduction

The scalar differential equation

dN

dt
= f

(
N(t− τ)

)
− d

(
N(t)

)
(1.1)

with a constant delay τ has been extensively studied in literature, in particular, in the case when there
is only one positive equilibrium point K where f(K) = d(K), and f(x) > d(x) for 0 < x < K, while
f(x) < d(x) for x > K. Such equations occur in population dynamics, where K is interpreted as a carrying
capacity of the environment.

In our paper [6] we investigated equations with delays in the production term, while mortality is defined by
the present population size only, and there is a positive equilibrium K such that f(x) > d(x) for 0 < x < K,
f(x) < d(x) for x > K. The delay was assumed to be of the general form
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dN

dt
=

t∫
h(t)

f
(
N(s)

)
dsR(t, s) − d

(
N(t)

)
, (1.2)

including both concentrated and distributed delays, and it was demonstrated that, once f(x) is monotone
increasing and limt→∞ h(t) = ∞, all positive solutions tend to the positive equilibrium. Moreover, if the
initial function is less (greater) than the equilibrium, so is the solution.

The proofs in [6] used some ideas previously developed in [10,11]. Logistic-type equations with concen-
trated delays in the production part were considered in [3,4], they illustrated the monotone behaviour and
inspired the study of more general models in [6,11].

In this note, we explore the situation when the equation has at least two positive equilibrium points
m < K and f(x) < d(x) for 0 < x < m; this can correspond to the case of the Allee effect in population
dynamics when some minimal initial population size is required to survive, see, for example, [2,9,14,15].
Also, other multistability cases with several positive equilibrium points will be considered.

Multistability of systems of delay equations describing real-world phenomena has attracted a lot of
attention, see, for example, the recent papers [12,17,19,24]. The simplest example of a model with the Allee
effect is the equation

dx

dt
= rx(a− x)(x− b), a > b > 0, (1.3)

where a is the carrying capacity of the environment, b is the minimal size providing population survival: for
lower population sizes, extinction is due to possible problems with finding mates, group defence, or social
functioning.

Eq. (1.3) can also be rewritten in the form

dx

dt
= f(x) − d(x), (1.4)

where f(x) = r(a + b)x2, d(x) = rx(x2 + ab), f is a monotone increasing function, f(x) > 0, d(x) > 0,
x > 0, f(0) = d(0) = 0, and

f(x) < d(x), x ∈ (0, b) ∪ (a,∞); f(x) > d(x), x ∈ (b, a).

We can apply the same functions to consider a similar equation with a delay in the production term

ẋ = f
(
x
(
h(t)

))
− d(x), (1.5)

or with the functions f and d

f(x) = r(a + b)x2

1 + xn
, d(x) = r(x3 + abx)

1 + xn
, 0 � n � 2

corresponding to the Mackey–Glass equation.
The paper is organized as follows. Section 2 discusses persistence and boundedness of solutions for models

with a distributed delay. An existence and uniqueness result is also presented but its proof is postponed to
Appendix A. Section 3 includes the main results of the present paper: multistability, attractivity of some
of the positive equilibrium points and possible convergence to zero of solutions with initial values below a
certain threshold. In Section 4 non-oscillation about all positive equilibrium points is studied and justified in
some sense. Section 5 involves examples of general models investigated in the present paper, some discussion
of the results and relevant open problems.
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2. Persistence of solutions

We consider the equation with a distributed delay

x′(t) = r(t)
[ t∫
h(t)

f
(
x(s)

)
dsR(t, s) − d

(
x(t)

)]
, t � 0, (2.1)

where
∫ t

h(t) dsR(t, s) ≡ 1 and r : R+ → R
+, R+ = [0,∞), with the initial condition

x(t) = ϕ(t), t � 0. (2.2)

Definition 2.1. An absolutely continuous in R
+ function x : R → R is called a solution of problem (2.1),

(2.2) if it satisfies Eq. (2.1) for almost all t ∈ R
+ and conditions (2.2) for t � 0.

The initial condition should be chosen in a certain class of functions which would guarantee the existence
of the integral in the right hand side of (2.1) almost everywhere in t. In particular, for integro-differential
equations where R(t, ·) is absolutely continuous, ϕ can be any Lebesgue measurable essentially bounded
function, for equations with several concentrated delays where R(t, ·) is a step function, the initial func-
tion ϕ should be a Borel measurable bounded function. For any distribution R(t, s), the integral exists
if ϕ is bounded and continuous (f is continuous for all the models considered). Besides, as is widely
assumed in population dynamics models, ϕ(t) is nonnegative and the value at the initial point is posi-
tive.

Consider (2.1), (2.2) under some of the following assumptions:

(a1) f : R+ → R
+ and d : R+ → R

+ are continuous functions, f is monotone increasing in its domain,
f(x) > 0 and d(x) > 0 for any x > 0;

(a2) h : R+ → R is a Lebesgue measurable function, h(t) � t, limt→∞ h(t) = ∞;
(a3) r is a Lebesgue measurable essentially bounded on R

+ function, r(t) � 0 for any t � 0,
∫∞
0 r(s) ds = ∞;

(a4) R(t, ·) is a left continuous non-decreasing function for any t, R(·, s) is locally integrable for any s,
R(t, s) = 0, s � h(t), R(t, t+) = 1; here u(t+) is the right-side limit of function u at the point t;

(a5) ϕ : (−∞, 0] → R is a continuous bounded function, ϕ(t) � 0, ϕ(0) > 0;
(a6) f and d satisfy local Lipschitz conditions: for any interval [a, b] ⊂ R

+ there exist positive numbers
α[a,b] and β[a,b] such that |f(x) − f(y)| � α[a,b]|x − y| and |d(x) − d(y)| � β[a,b]|x − y| for any x, y ∈
[a, b].

For some distributed delays we can relax (a5): ϕ can be a Borel measurable bounded function for variable
concentrated delays and a Lebesgue measurable locally integrable function for an integral equation with a
locally essentially bounded Lebesgue measurable kernel and a bounded initial memory. Also, a solution will
exist even if (a6) is omitted. However, if (a1)–(a6) are satisfied then the solution of (2.1), (2.2) exists and
is unique, for any delay distributions.

The proof of the existence and uniqueness theorem is similar to the proofs in [5,6] and thus will be
presented in Appendix A.

Theorem 2.2. Suppose (a1)–(a6) hold and there exists K > 0 such that f(x) < d(x) for x > K. Then (2.1),
(2.2) has a unique global solution which is positive for t � 0.

Example 2.3. The assumption that f(x) < d(x) in Theorem 2.2 for any x > K is necessary. For instance,
the solution of the initial value problem
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Fig. 1. Illustration of lower solution bounds in the proof of Theorem 2.6.

dx

dt
= 2x2(t) − x2(t), x(0) = 1

3 (2.3)

is x(t) = (3 − t)−1 and thus cannot be extended for t � 3.

Remark 2.4. In (a1) it is assumed that the functions f , d map the open interval (0,∞) to itself, however
the proof of Theorem 2.2 is readily adapted to the case when f : R → (0,∞) and d : R → (0,∞).

Definition 2.5. The solution x(t) of (2.1), (2.2) is persistent if there exists A > 0 such that lim inft→∞ x(t) �
A. Solutions of (2.1) are uniformly persistent if there exists A > 0 such that lim inft→∞ x(t) � A for any
initial function in (2.2) satisfying (a5).

Let us prove persistence of Eq. (2.1) with a positive initial function, under certain conditions.

Theorem 2.6. Suppose (a1)–(a6) hold and there exists m > 0 such that f(x) > d(x) for 0 < x < m. Then
solutions of (2.1) are uniformly persistent; moreover, lim inft→∞ x(t) � m.

Proof. By the assumption of the theorem and Theorem 2.2 the solution x(t) of (2.1), (2.2) is positive.
By (a2), there exists t0 � 0 such that h(t) > 0 for any t > t0. Since x(t) > 0 for t ∈ [0, t0], and it is
continuous, its lower bound on [0, t0] is also positive

m0 := inf
t∈[0,t0]

x(t) > 0. (2.4)

Without loss of generality we can assume that m0 < m: if x(t) � m0 � m on any [0, t0], this implies the
statement of the theorem.

Since d(x) < f(x) for m0 < x < m and f is increasing, there is

m1 := inf
{
x
∣∣ d(x) � f(m0)

}
> m0.

First, let us prove that x(t) � m0 for any t � 0. By (a1) and (2.4), there exists μ1 =
f−1(supx∈[0,m0] d(x)) < m0, thus d(x) < f(μ1) for x ∈ [0,m0], see Fig. 1.

Assume the contrary that for some t we have x(t) = μ2 < m0; without loss of generality we can take
μ2 > μ1, then d(x) < f(y) for any x ∈ [0,m0], y ∈ [μ2,∞). Let t∗ = inf{t > 0: x(t) = μ2} and
t̂ = sup{0 < t < t∗: x(t) = m0}. Then on [t̂, t∗] the function x(t) is changing from m0 to a smaller value
of μ2, thus d(x(t)) � f(μ1) and f(x(t)) � f(μ2) > f(μ1), while its derivative on (t, t∗) is positive:
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x′(t) = r(t)
[ t∫
h(t)

f
(
x(s)

)
dsR(t, s) − d

(
x(t)

)]
> r(t)

[
f(μ1) − d

(
x(t)

)]
� 0,

which leads to a contradiction. Thus, x(t) � m0 for any t � 0.
Next, let us justify that there is a point t1 > t0 such that x(t) � m1 for t � t1. Obviously d(m1) = f(m0).

Let t∗ be such that h(t) � t0 for t � t∗. Due to monotonicity of f and the fact that d(m1) = f(m0), for any
x < m1 we have for any t � t∗ and x(t) < m1

x′(t) = r(t)
[ t∫
h(t)

f
(
x(s)

)
dsR(t, s) − d

(
x(t)

)]
� r(t)

[
f(m0) − d

(
x(t)

)]
> 0, (2.5)

i.e. the solution increases as long as it is less than m1. There is a possibility that x(t) � m1 for any t � t∗;
then m1 becomes a new lower bound. Let x(t∗) < m1. The solution x(t) can either tend to a number
q � m1 or can be equal to m1 at a certain point t∗. Let us demonstrate that the former case is impossible.
Assuming limt→∞ x(t) = q � m1 and defining an arbitrary q1 ∈ (m0, q), we obtain x(t) > q1 for t � t̄;
moreover, h(t) � t̄ for t � t̂. Then x′(t) � r(t)[f(q1)− d(m1)] > 0 for t � t̂ yields that limt→∞ x(t) = ∞, as
r satisfies (a3). This immediately implies x(t) � m1 for t large enough.

Further, once the solution satisfies x(t) � m1, it cannot become less than m1 since the derivative is
nonnegative for any x � m1 due to d(m1) � f(x), x � m0. Thus, we obtain a new eventual lower solution
bound m1: x(t) � m1 for t > t1.

We are now in the position to verify the induction step. Denote

mk := inf
{
x
∣∣ d(x) � f(mk−1)

}
> m0, k ∈ N. (2.6)

Similar to the transition from the inequality x(t) > m0, t > t0 to x(t) > m1, t > t1, we can prove that as
long as mk < m, there is tk > tk−1 such that x(t) > mk for t > tk.

We have an increasing sequence

m0 < m1 < · · · < mk < · · · , f−1(d(m1)
)

= m0, . . . , f−1(d(mk+1)
)

= mk, (2.7)

where x(t) > mk, t > tk. The monotone increasing sequence {mk} has a positive limit μ = limk→∞ mk. If
this limit is finite then (2.7) implies f(μ) = d(μ), by continuity of f and d. As f(x) > d(x) for x < m, this
implies μ � m, or lim inft→∞ x(t) � m. The same is valid in the case μ = ∞, which concludes the proof. �
Theorem 2.7. If (a1)–(a6) hold and f(x) > d(x) for any x > 0, then limt→∞ x(t) = ∞.

Proof. As in the proof of Theorem 2.6, define t0 � 0 such that h(t) > 0 for any t > t0 and denote
m0 := inft∈[0,t0] x(t) > 0. Using the same argument, it is possible to construct a sequence {mk} for which
(2.7) holds, and x(t) > mk, t > tk. The sequence {mk} is monotone increasing and due to the assumption
f(x) > d(x) for any x > 0 tends to infinity, so limt→∞ x(t) = ∞. �
3. Multistability and equations with the Allee effect

Further, let us proceed to models with multiple positive equilibrium points. We start with the case of
two positive fixed points.

Theorem 3.1. Suppose (a1)–(a6) hold, f(x) > d(x) for m < x < K and f(x) < d(x) for 0 < x < m and
x > K.
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Fig. 2. Illustration of solution bounds in the proof of Theorem 3.1.

If x(t) is a positive solution of (2.1), (2.2) with supt�0 ϕ(t) < m then limt→∞ x(t) = 0. If x(t) is a
solution of (2.1), (2.2) with inft�0 ϕ(t) > m then limt→∞ x(t) = K.

Proof. Let x(t) be a positive solution of (2.1), (2.2).
First, consider the case when m0 = supt�0 ϕ(t) < m. Let us prove that x(t) � m0 for any t � 0. By

the assumption of the theorem, the value m−1 = f−1(infx∈[m0,m] d(x)) is in the interval (m0,m] since
d(x) � f(m0) for x ∈ [m0,m], d is continuous, f(m) = d(m), and f is monotone increasing.

Assume the contrary that for some t > 0 we have x(t) = c > m0; without loss of generality we can take
c < m−1. Then d(x) > f(y) for any x ∈ [m0, c] and y ∈ (0, c).

Let t∗ = inf{t > 0: x(t) = c} and t̂ = sup{0 < t < t∗: x(t) = m0}. Then on [t̂, t∗] the function x(t) is
changing from m0 to a greater value of c. However, by the choice of m−1 and c we have d(x(t)) � f(m−1)
and f(x(t)) � f(c) < f(m−1), so the derivative of x(t) on [t̂, t∗] is non-positive

x′(t) = r(t)
[ t∫
h(t)

f
(
x(s)

)
dsR(t, s) − d

(
x(t)

)]
� r(t)

[
f(m−1) − d

(
x(t)

)]
� 0,

which leads to a contradiction. Thus, x(t) � m0 for any t � 0.
Next, denote

m1 := inf
{
x � m0: d(x) > f(m0)

}
, (3.1)

here m1 < m0 since d(m1) = f(m0) and f(x) < d(x) for x ∈ (0,m), see Fig. 2. Moreover, f(x(t)) < d(m1)
for any x ∈ (m1,m0], since x(t) � m0 for any t, as demonstrated above, thus

x′(t) = r(t)
[ t∫
h(t)

f
(
x(s)

)
dsR(t, s) − d

(
x(t)

)]
< r(t)

[
f(m0) − d

(
x(t)

)]
� 0

as long as x(t) � m1. There may be two options: either x(t) � m1 for any t, while the solution is monotone
decreasing, or x(t0) = m1 for some t0 > 0. Let us prove that the former option is impossible.

A monotone decreasing solution should have a limit limt→∞ x(t) = b � m1. Then d(b) > f(m0) and for
any ε ∈ (0, 0.5(d(b)− f(m0))) and t large enough, x′(t) < f(m0)− d(b) + ε < 0.5(f(m0)− d(b)) < 0, which
leads to the equality limt→∞ x(t) = −∞ contradictory to the positivity of a solution. Thus x(t0) = m1 for
some t0 > 0. Since x′(t) � 0 for any x(t) � m1, we have x(t) � m1 for any t � t0. By (a2), there exists
t1 > t0 such that h(t) � t0 for t � t1. Thus, for t � t1, we have x(t) � m1, x(h(t)) � m1, which becomes a
new solution estimate, similar to m0.
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Continuing this process, we define the decreasing positive sequence of upper solution limits

mk := inf
{
x � m0: d(x) > f(mk−1)

}
< mk−1, k ∈ N (3.2)

which has a nonnegative limit and a sequence of points 0 < t0 < t1 < · · · such that

x(t) � mk, t � tk. (3.3)

Due to the equalities d(mk) = f(mk−1) this limit is a point x∗ < m where d(x∗) = f(x∗). By the conditions
of the theorem x∗ = 0, so (3.3) implies limt→∞ x(t) = 0.

Next, let μ0 := inft�0 ϕ(t) > m, M0 := supt�0 ϕ(t), here M0 is finite by (a5). Without loss of generality,
we can assume the upper bound M0 > K.

Since f and d are continuous, f is increasing, f(μ0) > d(μ0) and f(M0) < d(M0), there exist μ1 and M1
such that

μ1 = sup
{
x � μ0: d(x) < f(μ0)

}
, K > μ1 > μ0, (3.4)

M1 = inf
{
x � M0: d(x) > f(M0)

}
, K < M1 < M0, (3.5)

see Fig. 2.
The derivative x′(t) becomes positive if the solution first changes from μ0 to some μ∗, μ0 < μ∗ < μ1,

which leads to a contradiction, so x(t) � μ0 for any t, as in the proof of Theorem 2.6. Similarly, x(t) � M0
for any t, and we have the estimate

μ0 � x(t) � M0, t � 0. (3.6)

Also,

d(μ1) = f(μ0), d(M1) = f(M0). (3.7)

Let t∗ be such that h(t) � t0 for t � t∗. Due to monotonicity of f and (3.6), for any x(t) < μ1, where t � t∗,
we have

x′(t) = r(t)
[ t∫
h(t)

f
(
x(s)

)
dsR(t, s) − d

(
x(t)

)]
� r(t)

[
f(μ0) − d

(
x(t)

)]
> 0,

i.e. the solution increases as long as it is less than μ1. There is a possibility that x(t) > μ1 for any t � t∗;
then μ1 becomes a new lower bound. Let x(t∗) < μ1. This solution can either tend to some number
q � μ1 or can be equal to μ1 at a certain point t∗. Let us demonstrate that the former case is impossible.
Assuming limt→∞ x(t) = q � μ1 and defining an arbitrary q1 ∈ (μ, q), we obtain x(t) > q1 for t � t3;
moreover, h(t) � t3 for t � t4. Then x′(t) � r(t)[f(q1) − d(μ1)] > 0 for t � t4, as f is increasing and thus
limt→∞ x(t) = ∞, since r satisfies (a3). This contradiction with (3.6) implies x(t) = μ1 for some t > t∗.
Next, once the solution satisfies x(t) � μ1, it cannot become less than μ1 since the derivative is nonnegative
for any x � μ1 due to d(μ1) � f(x), x � μ0. Thus, we obtain a new eventual lower solution bound μ1:
x(t) � μ1, t > t∗.

Similarly, we justify that there exists a point t̄ such that x(t) � M1 for t � t̄. Let us choose t1 =
max{t∗, t̄ }. Then

μ1 � x(t) � M1, μ0 < μ1 < K < M1 < M0, t � t1. (3.8)



880 L. Berezansky, E. Braverman / J. Math. Anal. Appl. 415 (2014) 873–888
Further, constructing monotone sequences of lower and upper bounds

μk+1 := sup
{
x � μk: d(x) < f(μk)

}
, K > μk+1 > μk > · · · > μ1 > μ0, k ∈ N, (3.9)

Mk+1 := inf
{
x � Mk: d(x) > f(Mk)

}
, K < Mk+1 < Mk < · · · < M1 < M0, k ∈ N, (3.10)

where

μk � x(t) � Mk, t � tk,

d(μk+1) = f(μk), d(Mk+1) = f(Mk), (3.11)

we deduce that both sequences have positive limits. By (3.11), these limits should satisfy f(x) = d(x) and
lie in the interval (m,∞); the only possible point is K. Thus lim inft→∞ x(t) = lim supt→∞ x(t) = K, and
K attracts any solution x(t), which completes the proof. �
Remark 3.2. Similarly to existence and uniqueness Theorem 2.2, the stability result of Theorem 3.1 is easily
extended to the case when f : R → (0,∞), d : R → (0,∞) instead of f, d : (0,∞) → (0,∞), all other
conditions of Theorem 3.1 being satisfied.

Theorem 3.3. Suppose (a1)–(a6) hold, and there exist numbers M and K, M > K > 0 such that f(x) > d(x)
for 0 < x < K and x > M and f(x) < d(x) for K < x < M .

If x(t) is a positive solution of (2.1), (2.2) with supt�0 ϕ(t) ∈ (0,M) then limt→∞ x(t) = K. If x(t) is a
positive solution of (2.1), (2.2) with inft�0 ϕ(t) > M then limt→∞ x(t) = ∞.

Proof. The proof of the case supt�0 ϕ(t) ∈ (0,M) coincides with the proof of the main stability result in [6].
The case inft�0 ϕ(t) > M is considered similarly to the proof of Theorem 2.7. �
Remark 3.4. The conditions of Theorem 3.3 can describe the case when for the population or cell density
initiated at the levels below a certain critical value, the process converges to some positive equilibrium. As
long as the solution exceeds this critical level, the uncontrolled growth begins: this can correspond to either
a population outbreak or spread of malignant tumour cells.

Similarly to the proof of Theorem 3.1, we can prove the result for the case when there are more than two
positive equilibrium points 0 = K0 < K1 < K2 < · · · < Kn where f(Kj) = d(Kj), j = 1, . . . , n, and the
zero point may be an attractor as in Theorem 3.1, or a repeller, as well as for the cases when f(x) − d(x)
is either always positive or always negative for x > 0.

Theorem 3.5. Let (a1)–(a6) hold and f(Kj) = d(Kj), j = 0, 1, . . . , n.
If in addition f(x) < d(x) for K2j < x < K2j+1 and f(x) > d(x) for K2j+1 < x < K2j+2, j = 0, 1, . . . ,

then all solutions of (2.1), (2.2) with the initial function ϕ(t) ∈ (K0,K1) tend to zero, all the solutions with
the initial function ϕ(t) ∈ (K2j−1,K2j+1) tend to K2j, j = 1, 2, . . . .

If f(x) > d(x) for K2j < x < K2j+1 and f(x) < d(x) for K2j+1 < x < K2j+2, j = 0, 1, . . . , then all
solutions of (2.1), (2.2) with the initial function ϕ(t) ∈ (K2j−2,K2j) tend to K2j−1 for any j = 1, 2, . . . .

Theorem 3.6. Let (a1)–(a6) hold and f(K) = d(K), K > 0. If f(x) < d(x) for x > 0, x �= K, then K is
semi-stable, all solutions of (2.1), (2.2) with the initial function ϕ(t) ∈ (K,∞) tend to the equilibrium K

while all the solutions with the initial function ϕ(t) ∈ (0,K) tend to zero. If f(x) > d(x) for x > 0, x �= K,
then all solutions of (2.1), (2.2) with the initial function ϕ(t) ∈ (K,∞) tend to infinity while all the solutions
with the initial function ϕ(t) ∈ (0,K) tend to K.
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Theorem 3.7. Let (a1)–(a6) hold. If d(x) > f(x) for any x > 0 then any solution of (2.1), (2.2) tends to
zero. If d(x) < f(x) for any x > 0 then any solution of (2.1), (2.2) tends to infinity.

Example 3.8. By Theorem 3.1, all solutions of the equation

ẋ(t) = 3x2(t− τ) −
(
x3(t) + 2x(t)

)
with the initial function exceeding m = 1 converge to K = 2. If the initial function is less than m = 1, the
solution converges to zero as t → ∞.

By Theorem 3.3, any solution of the equation

ẋ(t) = x3(t− τ) + 2x(t− τ) − 3x2(t)

with the initial function in (0, 2) tends to K = 1, all solutions with the initial function greater than 2 tend
to infinity.

By Theorem 3.6, all positive solutions of the equation

ẋ(t) = 2x2(t− τ) −
(
x3(t) + x(t)

)
with ϕ(t) ∈ (1,∞) tend to 1, but with ϕ(t) ∈ (0, 1) tend to 0.

All positive solutions of the equation

ẋ(t) = x3(t− τ) + x(t− τ) − 2x2

with ϕ(t) ∈ (1,∞) tend to infinity, but with ϕ(t) ∈ (0, 1) tend to 1.
By Theorem 3.7, all positive solutions of the equation

ẋ(t) = 2x2(t− τ) −
(
x3(t) + 2x(t)

)
tend to zero, while of the equation

ẋ(t) = x3(t− τ) + 2x(t− τ) − 2x2(t)

tend to infinity.

Next, let us illustrate that the results of the present section are applicable to equations with a distributed
and, generally, unbounded delays.

Example 3.9. The equation with a pantograph-type unbounded delay

ẋ(t) = 1
(1 − α)t

t∫
αt

(
x(s) + sin

(
x(t)

))
ds− x(t), t � 1, 0 < α < 1

by Theorem 3.1 is multistable: if ϕ(t) ∈ (2π(n−1), 2πn), then x(t) → π(2n−1), n ∈ N, while the equilibrium
points 2π(n− 1) are unstable, including the zero equilibrium. The equation

ẋ(t) = 1
(1 − α)t

t∫ (
x(s) − sin

(
x(t)

))
ds− x(t), t � 1, 0 < α < 1,
αt
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has the Allee effect: all solutions with 0 � ϕ(t) < π tend to zero while if ϕ(t) ∈ (π(2n− 1), π(2n + 1)), the
solution converges to 2πn, n ∈ N, and the equilibrium points π(2n − 1) are unstable, n ∈ N. It is easy to
check that the functions x± sin x are monotone increasing.

Using Theorem 3.3, we obtain that all solutions of the equation

ẋ(t) =
t∫

t−1

(
x3(s) + 2x(s)

)
ds− 3x2(t), t � 0

with ϕ(t) ∈ (0, 2) tend to K = 1, all solutions with the initial function greater than 2 tend to infinity.
Similarly, applying Theorem 3.6, we get that all positive solutions of the equation

ẋ(t) = 1
τ

t∫
t−τ

2x2(s) ds−
(
x3(t) + x(t)

)

with ϕ(t) ∈ (1,∞) tend to 1, but with ϕ(t) ∈ (0, 1) tend to zero. Any positive solution of the equation

ẋ(t) = 1
τ

t∫
t−τ

(
x3(s) + x(s)

)
ds− 2x2(t)

with ϕ(t) ∈ (1,∞) tends to infinity, while with ϕ(t) ∈ (0, 1) tends to 1.
By Theorem 3.7, all positive solutions of the equation

ẋ(t) = 1
2 − cos t

t∫
t−2+cos t

(
2x(s) + sin

(
x(t)

))
ds− x(t), t � 0

tend to zero, while of the equation

ẋ(t) = 1
2 − cos t

t∫
t−2+cos t

(
x(s) − sin

(
x(t)

))
ds− 2x(t), t � 0

tend to infinity.

4. Oscillation

In this section, we discuss non-oscillation properties of (2.1).

Definition 4.1. A solution x(t) of (2.1), (2.2) is non-oscillatory about the set Kj , j = 1, . . . , n, if there exists
t0 > 0 such that either x(t) > Kj or x(t) < Kj is satisfied for all t � t0. Otherwise, x(t) oscillates about Kj .
Eq. (2.1) is non-oscillatory about the set Kj , j = 1, . . . , n, if for any Kj there exists an initial function such
that the solution of (2.1), (2.2) is non-oscillatory about Kj .

Definition 4.2. An oscillating solution of (2.1) is called slowly oscillating about K if for any t0 > 0 there
exist three points t3 > t2 > t1 > t0 such that h(t) � t1 for any t � t2, and x(t) −K preserves its sign on
[t1, t3) and vanishes at the point t3:(

x(s) −K
)(
x(t) −K

)
> 0, s, t ∈ [t1, t3), x(t3) = K.

Otherwise, the solution is rapidly oscillating.
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Remark 4.3. The relation of existence of slowly oscillating solutions and oscillation is not very simple even
in the case of one equilibrium point (or oscillation about zero). Generally, nonoscillation does not imply
nonexistence of slowly oscillating about this unique equilibrium solutions. However, a dichotomy is observed
for a wide class of delay equations: either there are no slowly oscillating solutions, or all solutions oscillate,
see [1] for some results of this type.

If for all Kj an equation has no slowly oscillating about Kj solutions, then it is nonoscillatory: nonex-
istence of slowly oscillating about any of Kj > 0 solutions guarantees that any solution with a positive
initial function in an interval not containing equilibrium points is non-oscillatory about Kj . This certainly
does not exclude the existence of rapidly oscillating about Kj solutions, where oscillation is a result of the
oscillatory nature of the initial function.

Theorem 4.4. Suppose (a1)–(a6) hold and 0 = K0 < K1 < · · · < Kn be equilibrium points where f(Kj) =
d(Kj). Then (2.1) is non-oscillatory about the set Kj, j = 1, . . . , n. Moreover, for any Kj, j = 1, . . . , n,
Eq. (2.1) has no slowly oscillating about Kj solutions. If ϕ(t) ∈ (Kj ,Kj+1) then the solution x(t) of (2.1),
(2.2) for any t � 0 satisfies x(t) ∈ (Kj ,Kj+1).

Proof. By Theorem 2.2, any solution x(t) of (2.1), (2.2) is positive. Choose t0 such that h(t0) > 0 for t � t0
and t1, t2, t2 > t1 > t0 such that h(t) � t1 for any t � t2.

Let Kj < x(t) < Kj+1 for t ∈ [t1, t3), where t3 > t2, and x(t3) = Kj+1. First we assume that f(x) > d(x)
for x ∈ (Kj ,Kj+1). Let us compare the solution x(t) of (2.1), (2.2) and y(t) of the initial-value problem for
the ordinary differential equation

y′(t) = r(t)
[
f(Kj+1) − d

(
y(t)

)]
= r(t)

[
d(Kj+1) − d

(
y(t)

)]
, y(t2) = x(t2). (4.1)

On the one hand, since y(t) ≡ Kj+1 is a solution of the equation involved in (4.1) and, by (a6), problem (4.1)
has a unique increasing solution, y(t) < Kj+1 for any t � t2. On the other hand, on [t2, t3] the solution x(t)
of (2.1), (2.2) satisfies

x′(t) = r(t)
[ t∫
h(t)

f
(
x(s)

)
dsR(t, s) − d

(
x(t)

)]

� r(t)
[ t∫
h(t)

f(Kj+1) dsR(t, s) − d
(
x(t)

)]

= r(t)
[
d(Kj+1) − d

(
x(t)

)]
, x(t2) = y(t2).

Moreover, on [t2, t3) the strict inequality is valid, so

x(t3) � y(t3) < Kj+1,

which contradicts the assumption x(t3) = Kj+1, thus x(t) is nonoscillatory about Kj+1.
Due to monotonicity of f the solution x(t) is also nonoscillatory about Kj .
Similarly, assuming f(x) < d(x) for x ∈ (Kj ,Kj+1), we compare the solution with a decreasing solution

of the initial value problem

y′(t) = r(t)
[
f(Kj) − d

(
y(t)

)]
= r(t)

[
d(Kj) − d

(
y(t)

)]
, y(t2) = x(t2), (4.2)

this solution tends to Kj and exceeds Kj for any t � t2. The argument similar to the previous case completes
the proof. �
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Remark 4.5. First, let us note that all positive solutions considered in Examples 3.8 and 3.9 are nonoscillatory
about the set of their equilibrium points, moreover, any solution is nonoscillatory, once the initial function
is positive and all its values belong to an open interval which does not include any of the equilibrium points.
It is easy to check that this is no longer true if f(x) is non-monotone, there are solutions slowly oscillating
about the equilibrium K, see the details for the Nicholson blowflies

Ṅ(t) = −δN(t) + PN
(
h(t)

)
e−N(h(t)), P > δe

and the Mackey–Glass equations

ẋ(t) = −r(t)
[
γx(t) − β(t) x(h(t))

1 + xn(h(t))

]
, n > 1

in the review papers [7] and [8], respectively.

5. Applications, summary and discussion

As an application of the results of the present paper, population dynamics models with the Allee effect
can be designed in such a way that m is the minimal survival level and K is another positive equilibrium,
0 < m < K. For instance, Eq. (2.1) with

f(x) = (m + K)x2

1 + xn
, d(x) = x3 + mKx

1 + xn
, 0 � n � 2

or, more generally, with

f(x) = (m + K)x2

g(x) , d(x) = x3 + mKx

g(x) , g(x) > 0, x � 0,

where x2

g(x) is a monotone increasing function, can be considered.
The idea to study systems with a monotone production function was first proposed in [22] and imple-

mented in detail for autonomous equations, see also [18,20,21,16]. As an example, the equation

x′(t) = −x(t) + h
(
x(t− τ)

)
was considered in [22] under the assumption that h is strictly monotone increasing and h(x) < λx for some
λ ∈ (0, 1) and all x large enough. According to [22, Proposition 4.2], there is an open and dense set of initial
conditions corresponding to solutions which converge to an equilibrium. If there is only one equilibrium,
then all solutions converge to it; if there are only two equilibrium points, then all solutions converge to one
of these.

Compared to this model, we consider a more general type of the mortality function (non-necessarily
monotone), which leads to more options (semi-stable equilibrium points are possible), and also a more
general delay (distributed or concentrated, or both).

The results of the present paper illustrate the fact that asymptotic properties of Eq. (2.1) are very similar
to the properties of the same equation without delay. This effect for equations with monotone nonlinearities
was first noticed in the papers [21,23]. We have obtained similar results for rather general models with an
arbitrary number of positive equilibrium points.

The global attractivity results can be extended to the case when f : R → (0,∞) is monotone increas-
ing and is continuous together with d : R → (0,∞), see Remarks 2.4 and 3.2. This allows to study the
model
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x′(t) = r(t)x(t)
[ t∫
h(t)

f
(
x(s)

)
dsR(t, s) − d

(
x(t)

)]
, (5.1)

where in addition (a2)–(a6) are valid. In fact, after the substitution

x(t) = ey(t) (5.2)

we have the equation

y′(t) = r(t)
[ t∫
h(t)

f
(
ey(s)) dsR(t, s) − d

(
ey(t))], (5.3)

where f1(y) = f(ey) is still monotone increasing, and Eq. (5.3) has the equilibrium lnK for any positive
equilibrium K of (5.1), so the results of Theorems 3.1, 3.3, 3.5, and 3.6 can be applied.

Let us outline some open problems.

1. What is an asymptotic behaviour of solutions without the assumption that values of an initial function
belong to the interval between two successive equilibrium points?

2. Consider the vector equation

x′(t) = r(t)
[ t∫
h(t)

f
(
x(s)

)
dsR(t, s) − d

(
x(t)

)]
, t � 0, (5.4)

with initial condition (2.2), where the vector functions

x = {x1, . . . , xn}, f = {f1, . . . , fn},

d = {d1, . . . , dn}, ϕ = {ϕ1, . . . , ϕn},

the matrix-function R(t, s) = {Rij , i, j = 1, . . . , n} and r, fj , dj , Rij , h, ϕj satisfy conditions (a1)–(a6)
including monotonicity properties of functions fj , j = 1, . . . , n.
Generalize and extend the results obtained for scalar equation (2.1) in [6] and in the present paper to
vector equation (5.4).

3. Consider the differential inequalities

y′(t) � r(t)
[ t∫
h(t)

f
(
y(s)

)
dsR(t, s) − d

(
y(t)

)]
, t � 0, (5.5)

z′(t) � r(t)
[ t∫
h(t)

f
(
z(s)

)
dsR(t, s) − d

(
z(t)

)]
, t � 0, (5.6)

with initial conditions (2.2). Assume that conditions (a1)–(a6) hold for inequalities (5.5) and (5.6).
Prove or disprove:
If x, y, z are solutions of (2.1), (5.5) and (5.6) such that x(t) = y(t) = z(t) for t � 0, then y(t) �
x(t) � z(t), t � 0.
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Appendix A

Denote by L2([t0, t1]) the space of Lebesgue measurable functions x(t) such that Q =
∫ t1
t0

(x(t))2 dt < ∞,
with the usual norm ‖x‖L2([t0,t1]) =

√
Q, by C([t0, t1]) the space of continuous on [t0, t1] functions with the

sup-norm, by L∞([t0, t1]) the space of Lebesgue measurable essentially bounded on [t0, t1] functions with
the essential supremum norm.

The following result from the book of Corduneanu [13, Theorem 4.5, p. 95] will be applied. We recall that
an operator N is causal (or Volterra) if for any two functions x and y and each t the fact that x(s) = y(s),
s � t, implies (Nx)(s) = (Ny)(s), s � t.

Lemma A.1. (See [13].) Consider the equation

y′(t) = (Ly)(t) + (Ny)(t), t ∈ [t0, t1], (A.1)

where L : C([t0, t1]) → L2([t0, t1]) is a linear bounded causal operator, N : C([t0, t1]) → L2([t0, t1]) is a
nonlinear causal operator which satisfies

‖Nx−Ny‖L2([t0,t1]) � λ‖x− y‖C([t0,t1]) (A.2)

for λ sufficiently small. Then there exists a unique absolutely continuous on [t0, t1] solution of (A.1), with
the initial function being equal to zero for t < t0.

Proof of Theorem 2.2. To reduce (2.1) to the equation with the zero initial function, for any t0 � 0 we can
present the integral as a sum of two integrals

x′(t) = −r(t)d
(
x(t)

)
+ r(t)

t∫
t0

f
(
x(s)

)
dsR(t, s) + r(t)

t∫
h(t)

f
(
ϕ(s)

)
dsR(t, s), (A.3)

where x(t) = 0, t < t0, ϕ(t) = 0, t � t0.
Let α = α[t0,t1] and β = β[t0,t1] defined in (a6) be the appropriate Lipschitz constants. Then in (A.1)

(Lx)(t) = 0, (Nx)(t) = r(t)
t∫

t0

f
(
x(s)

)
dsR(t, s) − r(t)d

(
x(t)

)
+ F (t),

where

F (t) = r(t)
t∫

h(t)

f
(
ϕ(s)

)
dsR(t, s), ϕ(t) = 0, t � t0.

By (a5) and (a6), for any λ > 0 there is t1, such that

‖Nx−Ny‖L2([t0,t1])

�
∥∥∥∥∥r(t)

t∫
t0

[
f
(
x(s)

)
− f

(
y(s)

)]
dsR(t, s)

∥∥∥∥∥
L2([t0,t1])

+
∥∥r(t)[d(x(t)

)
− d

(
y(t)

)]∥∥
L2([t0,t1])

� ‖r‖L∞([t0,t1])

[∥∥∥∥∥
t∫ ∣∣f(x(s)

)
− f

(
y(s)

)∣∣ dsR(t, s)

∥∥∥∥∥
2

+
∥∥d(x(t)

)
− d

(
y(t)

)∥∥
L2([t0,t1])

]

t0 L ([t0,t1])
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� ‖r‖L∞([t0,t1])

[
α‖x− y‖C([t0,t1])

∥∥∥∥∥
t∫

t0

dsR(t, s)

∥∥∥∥∥
L2([t0,t1])

+ β‖x− y‖C([t0,t1])
√

|t1 − t0|
]

� (α + β)‖r‖L∞([t0,∞))
∥∥x(s) − y(s)

∥∥
C([t0,t1])

√
|t1 − t0| � λ‖x− y‖C([t0,t1])

for t1−t0 � λ2/((α+β) ess supt�0 |r(t)|)2, where λ can be chosen small enough. By Lemma A.1, this implies
existence and uniqueness of a local solution for (2.1).

This solution is either global or there exists t2 such that either

lim inf
t→t2

x(t) = −∞ (A.4)

or

lim sup
t→t2

x(t) = ∞. (A.5)

The initial value is positive, so as far as x(t) > 0, the solution is not less than the solution of the initial
value problem

x′(t) + r(t)d
(
x(t)

)
= 0, x(t0) = x0 > 0. (A.6)

Assuming that the solution of (A.6) becomes negative, letting t1 be the smallest number exceeding t0,
where x(t1) = 0, and taking into account that d(0) = 0, we obtain that there are two solutions (the solution
of (A.6) and x(t) ≡ 0) through the point (t1, 0) which contradicts the uniqueness theorem for ordinary
differential equations. Thus all solutions of (2.1), (2.2) are positive, which excludes the possibility of (A.4).

Next, we demonstrate that (A.5) also cannot be satisfied. Let us fix some ε > 0 and denote M =
max{K + ε, sups�0 ϕ(s) + ε}. Since f(x) < d(x) for x > K by the assumption of the theorem and f is
increasing, we have

M1 = sup
{
x > K

∣∣ d(x) � f(M)
}
< M.

Assume that x(t) > M for some t > 0, then the points t∗ = inf{t > 0 | x(t) � M} and t̂ = sup{t < t∗ |
x(t) � M1} exist, x(t̂ ) = M1, x(t∗) = M and M1 � x(t) � M for t ∈ [t̂, t∗]. However, for t ∈ [t̂, t∗], due to
monotonicity of f we have

x′(t) = r(t)
[ t∫
h(t)

f
(
x(s)

)
dsR(t, s) − d

(
x(t)

)]
� r(t)

[
f(M) − d(x)

]
� r(t)

(
f(M) − d(M1)

)
= 0.

Non-positivity of the derivative of x on [t̂, t∗] together with x(t̂ ) = M1 < x(t∗) = M lead to a contradiction.
Thus, (A.5) is impossible, which concludes the proof. �
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