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We prove mean and sectional curvature estimates for submanifolds confined into 
either a horocylinder of N ×L or a horoball of N , where N is a Cartan–Hadamard 
manifold with pinched curvature. Thus, these submanifolds behave in many respects 
like submanifolds immersed into compact balls and into cylinders over compact balls. 
The proofs rely on the Hessian comparison theorem for the Busemann function.
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1. Introduction

A classical problem in the Riemannian geometry is to obtain curvature estimates for submanifolds under 
extrinsic constraints. Jorge and Xavier [7], showed that any complete m-dimensional Riemannian manifold 
M with scalar curvature bounded below isometrically immersed into a normal ball BN(R) of a Riemannian 
manifold N of radius R has mean curvature of M satisfying

sup
M

|H| ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
A coth(

√
AR) if KN ≤ −A on BN (R), A > 0

1
R

if KN ≤ 0 on BN (R)
√
A cot(

√
AR) if KN ≤ A on BN (R) and AR < π/2, A > 0.

(1)
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This result was then generalized relaxing the scalar curvature condition [8], and ultimately shown to hold 
provided M is stochastically complete, [11,12]. As a result, there are no minimal bounded immersions of a 
stochastically complete manifold into a Cartan–Hadamard manifold.

In another direction the result was extended even to the case of immersions into cylinders BN(R) × R
�, 

� < m, in a product manifold [1].
In our first theorem we prove mean curvature estimates valid for immersions of a stochastically complete 

manifold into (suitable) cylinders over unbounded bases. More precisely, let N be an n-dimensional Cartan–
Hadamard manifold and let σ be a ray in N , with the associated Busemann function bσ. The horoball in 
N determined by σ is the set

Bn
σ,R = {bσ ≤ R} , R > 0,

and, if L is an arbitrary �-dimensional manifold, we say that the region

Bn,�
σ,R = {bσ ≤ R} × L

is a (generalized solid) horocylinder in N × L. With this notation we have

Theorem 1.1. Let (N, gN ) be an n-dimensional Cartan–Hadamard manifold with sectional curvature sat-
isfying −B ≤ SecN ≤ −A and let σ : [0, +∞) → N be a ray of N . Let (L, gL) be any �-dimensional 
Riemannian manifold and let f = (fN , fL) : Σ ↪→ N × L be an m-dimensional isometric immersion with 
mean curvature vector field H. Assume that m > �. If Σ is stochastically complete and f(Σ) is contained in 
the horocylinder Bn,�

σ,R, then

sup
Σ

|H| ≥ m− �

m

√
A.

We explicitly note that the result remains true when the fibre L degenerates to a 0-dimensional point 
and, hence, the horocylinder reduces to a horoball.

Since bounded mean curvature submanifolds properly immersed into a complete ambient manifold 
of bounded sectional curvature are stochastically complete, see for instance [12], as a corollary we 
have

Theorem 1.2. Let (N, gN ) be an n-dimensional Cartan–Hadamard manifold with sectional curvature sat-
isfying −B ≤ SecN ≤ −A < 0 and let (L, gL) be any complete �-dimensional Riemannian manifold with 
sectional curvature SecL ≥ −C2, where A, B, C are positive constants. If f : Σ ↪→ N×L is an m-dimensional 
properly immersed submanifold with f(Σ) inside a horocylinder of N×L and m > � then the mean curvature 
vector H of the immersion satisfies

sup
Σ

|H| ≥ m− �

m

√
A.

Our second result is the following sectional curvature lower estimate in the spirit of the classical theorem 
by Jorge–Koutroufiotis, [6]. We point out that, although it is stated for submanifolds in a horoball, one can 
prove a version for submanifolds contained in a horocylinder of N × L, where SecL ≥ −B, under suitably 
modified assumptions on the dimensions.

Theorem 1.3. Let (N, gN ) be an n-dimensional Cartan–Hadamard manifold with sectional curvature sat-
isfying −B ≤ SecN ≤ −A < 0 where A, B are positive constants. Let f : Σ ↪→ N be an m-dimensional 
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submanifold properly immersed with f(M) inside a horoball of N and n ≤ 2m − 1 then the sectional curva-
ture of Σ satisfies the estimate

sup
Σ

SecΣ ≥ A−B.

As the geometric setting suggests, the main tool to obtain the results is the analysis of the Busemann 
function in Cartan–Hadamard manifolds which will be described in the next section.

2. Busemann functions in Cartan–Hadamard spaces

Throughout this section we let (N, gN ) be a Cartan–Hadamard manifold, i.e., a simply connected, com-
plete Riemannian manifold of non-positive sectional curvature. Further assumptions on N will be introduced 
when required. First, we are going to collect some of the basic differentiable properties of the Busemann 
function of N with respect to a fixed geodesic ray. Since we are not aware of any specific reference we 
decided to provide fairly detailed proofs.

Let σ : [0, +∞) → N be a geodesic ray issuing from σ(0) = o. Recall that, by its very definition, the 
Busemann function of N with respect to σ is the function bσ : N → R defined by

bσ(x) = lim
t→+∞

bσ(t)(x)

where, for any fixed t ≥ 0,

bσ(t)(x) = rσ(t)(x) − rσ(t)(o) = rσ(t)(x) − t.

Here and below, rp(x) = d(p, x) denotes the distance function from a point p. In some sense, the Busemann 
function measures the distance of the points of N from the point σ(+∞) in the ideal boundary ∂N . 
Since t �−→ bσ(t)(x) is monotone decreasing and bounded by 

∣∣bσ(t)(x)
∣∣ ≤ ro(x), the limit bσ(x) exists and 

is finite. Moreover, the convergence is uniform on compacts by Dini’s theorem. Clearly, by the triangle 
inequality, each bσ(t) is 1-Lipschitz (in fact, |∇bσ(t))| = 1 by the Gauss Lemma) and, therefore, so is also bσ. 
In particular, bσ is differentiable a.e. Actually, in the special case of Cartan–Hadamard manifolds it was 
proved by P. Eberlein, [5], that bσ is a function of class C2. To begin with we observe that the gradient ∇bσ
of the Busemann function can be obtained via a limit procedure from ∇bσ(t) as t → +∞.

Lemma 2.1 (Limit of gradients). Assume that the sectional curvature of N is bounded, namely, there exists 
B > 0 such that −B ≤ SecN ≤ 0. Then, for every x ∈ N ,

lim
t→+∞

∇bσ(t)(x) = ∇bσ(x)

and the convergence is locally uniform.

Proof. By the Hessian comparison theorem, [10], we know that, having fixed a compact ball K ⊂ N , there 
exist T = T (K) > 0 and C = C(K, B) > 0 such that

∣∣Hess bσ(t)
∣∣ ≤ C,

for every x ∈ K and for every t ≥ T . It follows that for any sequence {tk} → +∞ the corresponding 
sequence of gradients 

{
∇bσ(tk)

}
is eventually equi-continuous on K. Since it is equi-bounded as observed 

above, we deduce that there exists a subsequence {∇bσ(tk )} that converges uniformly on K to a continuous 

j
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vector field ξ on K. On the other hand, the sequence {∇bσ(tk)} converges weakly to ∇bσ on compact sets. 
Indeed, if V is a smooth vector field supported in a ball BR, then, by dominated convergence,

∫
BR

〈
∇bσ(tk), V

〉
= −

∫
BR

bσ(tk) divV → −
∫
BR

bσ divV =
∫
BR

〈∇bσ, V 〉 ,

as claimed. It follows that

ξ = ∇bσ

a.e. on K and, in fact, everywhere on K by continuity. Since the selected sequence {tk} was arbitrary, the 
required conclusion follows. �

In the above proof the conclusion is obtained using the weak definition of the gradient, which behaves 
well under limits, together with the fact the weak gradient agrees with the classical gradient for sufficiently 
regular functions. A similar trick will be used in the next result where we deduce a comparison principle for 
the Hessian of the Busemann function. We put the following:

Definition 2.2. A function h : N → R is said to satisfy the differential inequality

Hessh ≤ T

in the sense of distributions, where T is a symmetric 2-tensor, if the integral inequality

∫
N

h {div(V divV ) + divDV V } ≤
∫
N

T (V, V )

holds for every smooth compactly supported vector field V .

Clearly, in case h is of class C2, a double integration by parts shows that the distributional inequality is 
equivalent to

∫
N

Hessh(V, V ) ≤
∫
N

T (V, V ).

The validity of this latter for every compactly supported vector field V , in turn, is equivalent to the pointwise 
inequality. Indeed, suppose

Hessx h(v, v) > Tx(v, v),

for some x ∈ M and some v ∈ TxM \ {0}. Extend v to any smooth vector field V ′ on M . By continuity, 
there exists a neighborhood U of x such that,

Hessh(V ′, V ′) > T (V ′, V ′), on U .

To conclude, choose a smooth cut-off function ξ : M → R such that supp ξ ⊂ U and ξ = 1 at x, and observe 
that V = ξV ′ violates the distributional inequality.
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Lemma 2.3 (Hessian comparison). Assume that the sectional curvatures of N satisfy

−B ≤ SecN ≤ −A

for some constants B ≥ A > 0. Then

√
A(gN − dbσ ⊗ dbσ) ≤ Hessbσ ≤

√
B(gN − dbσ ⊗ dbσ),

in the sense of quadratic forms.

Proof. Let us show how to prove the upper bound of Hess bσ. Obviously, the lower bound can be obtained 
using exactly the same arguments. By the Hessian comparison theorem, having fixed a ball BR of N , we 
find T > 0 such that, for every t ≥ T ,

Hess bσ(t) ≤
√
B coth(rσ(t)

√
B)

{
(gN − dbσ(t) ⊗ dbσ(t))

}
, on BR.

In particular, this inequality holds in the sense of distribution, namely, for every vector field V compactly 
supported in BR, it holds

∫
N

bσ(t) {div(V divV ) + divDV V } ≤
∫
N

{
|V |2 −

〈
∇bσ(t), V

〉2
}
.

Evaluating this latter along a sequence {tk} → +∞, using Lemma 2.1, and applying the dominated conver-
gence theorem we deduce that the integral inequality

∫
N

bσ {div(V divV ) + divDV V } ≤
∫
N

{
|V |2 − 〈∇bσ, V 〉2

}

holds for every smooth vector field compactly supported in BR. To conclude we now recall that this is 
equivalent to the pointwise inequality

Hess bσ ≤
√
B(gN − dbσ ⊗ dbσ),

on BR. �
We remark that a version of the above lemma was also observed without proof in [4].

Corollary 2.4. Keeping the notation and the assumptions of Lemma 2.3, let u : N → R be the smooth 
function defined by

u(x) = e
√
A bσ(x).

Then

Au · gN ≤ Hessu ≤
√
AB u · gN .
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3. Proof of the main theorems

We are now ready to give the proof of our results.

Proof of Theorem 1.1. Let

w = u ◦ fN : Σ → R>0

where u : N → R is the smooth function defined in Corollary 2.4. By the composition law for the Laplacians 
we have

Δw = trΣ {Hessu(dfN ⊗ dfN )} + du(trΣDdfN ).

On the other hand, by Corollary 2.4,

Hessu ≥ Au · gN

so that

Δw ≥ w
{
A trΣgN (dfN ⊗ dfN ) −m

√
A |H|

}

= w
{
A trΣf∗

N (gN ) −m
√
A |H|

}
.

Since f∗gN×L = gΣ then

trΣf∗
N (gN ) = m− trΣf∗

L(gL)

≥ m− �,

and from the above we conclude that

Δw(x) ≥ mw(x)
{
A
m− �

m
−
√
A sup

Σ
|H(x)|

}
. (2)

Now we apply the weak maximum principle for the Laplacian, [11], to get

0 ≥ m sup
Σ

w

{
A
m− �

m
−

√
A sup

Σ
|H(x)|

}
,

as required. �
Remark. By applying the strong maximum principle to (2) we can also obtain directly the following touching 
principle.

Let f : Σ ↪→ N × L be a complete, immersed submanifold, where N is a Cartan–Hadamard manifold 
of pinched negative curvature and L is any complete Riemannian manifold. Let us assume that (a) the 
mean curvature H of the immersion satisfies |H| ≤

√
A(m − �)/m and that (b) f(Σ) is contained inside the 

horocylinder Bn,�
σ,R and f(Σ) ∩ ∂Bn,�

σ,R �= 0. Then f(Σ) = ∂Bn,�
σ,R.

Remark. In a different direction, if f = fN : Σ → Bn,0
σ,R = {bσ ≤ R} ⊂ N is a proper immersion into a 

horoball of N and
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sup
Σ

|H(x)| <
√
A

then w is a bounded exhaustion function that violates the weak maximum principle at infinity. By Theo-
rem 32 in [3] it follows that the essential spectrum of Σ is empty.

The estimates for the Hessian of the Busemann function allows us to obtain also the Jorge–Koutroufiotis 
type result stated in Theorem 1.3. This results give a further indication of the phenomenon according to 
which submanifolds of non-compact horoballs behave in many respects like a submanifolds of compact balls.

Proof of Theorem 1.3. The proof is similar to the arguments in [2]. For every k consider the function 
hk : Σ → R

hk = w − 1
k

[log(ρN ◦ f + 1) + 1],

where, as above w = e
√
A bσ ◦ f and ρN denotes the Riemannian distance in N from an origin o in the 

complement of Bn,0
σ,R. Since f(Σ) is contained in a horoball, the first summand is bounded above, and since 

the f is proper in N , the second summand tends to infinity at infinity. It follows that for every k, hk attains 
an absolute maximum at a point xk where

Hesshk = Hessw − 1
k

Hess[log(ρN ◦ f + 1) + 1] ≤ 0

in the sense of quadratic forms. Now, according to our previous computations, for all vectors Xk ∈ Txk
Σ,

Hessw(Xk, Xk) ≥
√
Aw(xk)(

√
A|Xk|2 − |II(Xk, Xk)|), (3)

where II is the second fundamental form of the immersion. On the other hand, by the Hessian comparison 
theorem,

Hess ρN ≤
√
B coth(

√
B ρN )(gN − dρN ⊗ dρN ),

and after some computation we obtain

Hess ([log(ρN ◦ f + 1) + 1])(Xk, Xk)

≤ 1
ρN (f(xk)) + 1

{√
B coth(

√
BρN (f(xk)))|Xk|2 + |II(Xk, Xk)|

}
.

Combining the two inequalities and rearranging we conclude that

|II(Xk, Xk)|
(√

Aw(xk) + 1
k[ρN (f(xk)) + 1]

)

≥
(
Aw(xk) −

√
B coth(

√
BρN (f(xk)))

k[ρN (f(xk)) + 1]

)
|Xk|2.

Now notice that w(xk) is positive and bounded away from 0. Indeed, if x̄ is a point such that ρN (f(x̄)) =
minΣ ρN (f(x)), then for every k we have

hk(xk) ≥ hk(x̄)

and therefore
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w(xk) ≥ w(x̄) + 1
k
{log[ρN (f(xk)) + 1] − log[ρN (f(x̄)) + 1]} ≥ w(x̄).

Since ρN (f(xk)) is also bounded away from zero, it follows that for every sufficiently large k, and every non 
zero Xk ∈ Txk

Σ,

|II(Xk, Xk)| ≥
Aw(xk) −

√
B coth(

√
B ρN (f(xk)))

k[ρN (f(xk)) + 1]
√
Aw(xk) + 1

k[ρN (f(xk)) + 1]

|Xk|2

= [
√
A + o(k−1)]|Xk|2.

In particular, II(Xk, Xk) > 0 for every sufficiently large k and every Xk ∈ Txk
Σ \ {0} and we may apply 

Otsuki’s lemma (see, e.g., [9], p. 28) to find unit tangent vectors Xk and Yk such that II(Xk, Xk) = II(Yk, Yk)
and II(Xk, Yk) = 0. The required conclusion now follows from Gauss equations as in the original proof:

SecΣ(Xk, Yk) = SecN (dfXk, dfYk) + gN (II(Xk, Xk), II(Yk, Yk)) − |II(Xk, Yk)|2

≥ −B + A + o(k−1). �
Again as in the classical proof, we note that the conclusion of the theorem follows directly from (3) if we 

assume that the weak maximum principle for the Hessian holds, for then there exists a sequence xk such 
that w(xk) → supΣ w and

Hessw(xk) ≤ 1/kgΣ,

which together with (3) allows to conclude as in the last part of the above proof. In particular, the conclusion 
holds if ScalΣ ≥ −G(ρΣ) where the function G is positive, non-decreasing and G−1/2 is integrable at 
infinity. Indeed, assuming that SecΣ is bounded above, for otherwise the conclusion holds trivially, then 
SecΣ is bounded below by a multiple of −G and the Omori–Yau maximum principle for the Hessian holds 
on Σ [12].
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