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We investigate the existence of ground states for the focusing subcritical NLS 
energy on metric graphs with localized nonlinearities. In particular, we find two 
thresholds on the measure of the region where the nonlinearity is localized that 
imply, respectively, existence or nonexistence of ground states. In order to obtain 
these results we adapt to the context of metric graphs some classical techniques 
from the Calculus of Variations.
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1. Introduction

In this paper we discuss the existence of a ground state for the NLS energy functional with a localized 
nonlinearity

E(u,G) := 1
2 ‖u′‖2

L2(G) −
1
p
‖u‖pLp(K) , (1)

where p ∈ (2, 6) is a real parameter and G and K are two connected metric graphs, such that K is a compact
subgraph of G. Namely, we investigate the minimization problem

minE(u,G), u ∈ H1(G), ‖u‖2
L2(G) = μ (2)

where μ > 0 is a given number.
Here we present a rather informal description of the problem and of the main results of the paper, whereas 

a precise setting and formal definitions are given in Sections 2 and 3.
It is well known that, when the graph G is compact, the minimization problem is trivial. The aim of 

this paper, therefore, is the study of existence and nonexistence of solutions to (2) when G is made up of a 
compact graph K where the nonlinearity is localized and a finite number of half-lines Ri incident at some 
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vertices of K. For the sake of completeness, we recall that the case of non-localized nonlinearities (where the 
lack of compactness is stronger) is investigated in [3].

The main results we are going to present are the following. In Theorem 3.1 we adapt to the context of 
metric graphs a classical level argument (see e.g. [9,22,7]) in order to overcome the lack of compactness. 
More in detail, first we show that under general assumptions

inf
u∈H1(G)

‖u‖2
L2(G)=μ

E(u,G) ≤ 0

and further that, if

inf
u∈H1(G)

‖u‖2
L2(G)=μ

E(u,G) < 0, then the infimum is attained.

Consequently, we exploit these two properties to prove that existence and nonexistence of ground states 
strongly depend on the exponent p of the nonlinearity and on the metric properties of the compact graph K. 
In particular, Theorem 3.3 states that, if p ∈ (2, 4), then there always exists a minimizer for E, whereas 
Theorem 3.4 states that, when p ∈ [4, 6), the existence of minimizers depends on the measure of K; precisely, 
there is a threshold for meas(K) over which the minimum is always attained and another one under which 
the minimum cannot be attained. In Corollary 3.6 we slightly improve the nonexistence threshold, by adding 
some further assumptions on the inner structure of G.

Finally we highlight that all the functions we consider are real-valued. Indeed, as pointed out in [3], this 
is not restrictive since E(|u|, G) ≤ E(u, G) and any ground state is in fact real-valued (and then, without 
loss of generality, nonnegative), up to multiplication by a constant phase eiϑ.

Among the physical motivations for the investigation of this kind of problem, nowadays the most topical 
ones come from the study of quantum graphs. This subject has gained popularity in recent years (as exten-
sively pointed out in [18,15]) not only because graphs emulate successfully complex mesoscopic and optical 
networks, but also because they manage to reproduce universal properties of quantum chaotic systems. In 
particular, in [16] (and the references therein) two main applications are exhibited to motivate the study of 
NLS energy functionals with localized nonlinearities. Indeed, they can be of interest both in the analysis of 
the effects of nonlinearity on transmission through a complex network of nonlinear one-dimensional leads 
(for instance, optical fibers, e.g. [5]) and in the analysis of the properties of Bose–Einstein condensates in 
non-regular traps (see also [3,12]). In other words, even though these are idealized models, they actually 
describe systems made up by several long leads (where the nonlinearity is, in principle, negligible) linked 
to a “dense” sub-network (where the nonlinearity is strong) and reproduce accurately the effects that the 
latter induces on the whole network.

It is also worth recalling that the investigation of the NLS equation with localized nonlinearities in 
standard domains has been the object of several papers. In the one-dimensional case we first mention [20], 
that introduces a pioneering model of nonlinearities concentrated at a finite number of points. Then, [4]
contains a rigorous definition of the problem with potentials modeled by Dirac delta functions with amplitude 
depending nonlinearly on the wave function. Furthermore, [11] shows that such nonlinearities can be seen as 
point-like limits of spatially concentrated nonlinearities, whereas [10] deals with the associated issue of the 
asymptotic stability. Finally, for a rigorous setting of the case of a point-interaction with strength depending 
nonlinearly on the wave function in dimension three, we refer the reader to [1], while in [17,21] one can find 
several models of concentrated nonlinearities in dimension three or higher.

In this framework, our work can be seen as a slight extension of the one-dimensional case (although we 
only focus on ground states of the NLS energy) in that a nonlinear potential is spread over a compact graph 
in place of a Dirac delta based at single point.
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Fig. 1. A compact metric graph K with 14 vertices and 24 bounded edges. In particular there are: 1 self-loop, 1 multiple edge, 
2 vertices of degree one and 2 vertices of degree two.

The paper is organized as follows. In Sections 2 and 3 we present, respectively, the precise setting of 
the problem and the statements of the main results. Section 4 contains a discussion of some preliminary 
and auxiliary facts and techniques that may have interest in themselves. Finally, in Section 5 we prove the 
results stated in Section 3.

2. Setting and notation

Although it is a central notion in this paper, we do not present a deep and detailed discussion on metric 
graphs. For a modern account on the subject we refer the reader to [3,14,19] and references therein.

We start with a brief recall on metric graphs and, in particular, on the class of metric graphs that we focus 
on in this paper. First of all, the graphs that we consider are multigraphs, namely, graphs with possibly 
multiple edges and self-loops. Moreover we only deal with connected metric graphs, that is, connected 
graphs with the “representation” introduced in [3], which associates each edge e of length le with an interval 
Ie := [0, le] parametrized by a variable xe (xe = 0 representing either the starting or the endpoint of e, 
depending on the orientation choice). In addition, if le = +∞, then e is called half-line and Ie := [0, +∞)
(now xe = 0 representing the starting point of the half-line).

Throughout this paper we denote by K = (VK, EK) a (non-trivial) compact connected metric graph, i.e. 
a connected metric graph without half-lines (or, equivalently, without vertices at infinity). We stress the 
fact that there are no constraints on the degree of the vertices. This means that there are possibly vertices 
of degree one or two (see, for instance, Fig. 1).

Furthermore, we consider N distinct half-lines R1, . . . , RN starting from vertices (possibly not distinct) 
in K and ending, respectively, into N (distinct) vertices at infinity v1, . . . , vN . Then we define the graph

G := (V,E),

V := VK ∪ {v1, . . .vN}, E := EK ∪ {R1, . . . ,RN} (3)

(a typical case is depicted in Fig. 2).
Clearly the measure of the compact graph K, defined by

meas(K) :=
∑
e∈EK

meas(Ie), (4)

is finite, while that of G is equal to ∞ (and so G is not compact). Consequently, a function u : G → R can 
be regarded as a family of functions (ue)e∈E, where ue : Ie → R is the restriction of u to the edge Ie, and 
Lp spaces can be defined over G in the natural way, with norm

‖u‖pLp(G) =
∑

‖ue‖pLp(Ie).

e∈E
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Fig. 2. A noncompact metric graph G obtained attaching 5 half-lines (and 5 vertices at infinity) to the graph K of Fig. 1. Note 
that R1 is attached to a vertex of degree one, R4 and R5 to a vertex of degree three and R2 and R3 to distinct vertices of degree 
two.

The Sobolev space H1(G) can be defined as the set of those functions u : G → R such that u = (ue)e∈E is 
continuous on G and ue ∈ H1(Ie) for every edge e ∈ E, with the natural norm

‖u‖2
H1(G) := ‖u′‖2

L2(G) + ‖u‖2
L2(G) .

Fix, now, the graphs K and G as above and let μ and p be such that

μ > 0 and 2 < p < 6. (5)

Then the functional in (1) is well defined over H1(G) and takes the form

E(u,G) = 1
2
∑
e∈E

∫
Ie

|u′
e(xe)|2dxe −

1
p

∑
e∈EK

∫
Ie

|ue(xe)|pdxe.

Moreover, defining

H1
μ(G) := {u ∈ H1(G) : ‖u‖2

L2(G) = μ}, (6)

the minimization problem (2) can be written in a compact form as

min
u∈H1

μ(G)
E(u,G). (7)

Remark 2.1. Note that if u ∈ H1
μ(G) and λ is positive, then the function

w(x) := λ
2

6−pu
(
λ

p−2
6−px

)
belongs to H1

λμ(G′), where G′ is a graph obtained from G by means of a homothety of factor λ
2−p
6−p . Moreover 

a change of variable shows that

E(w,G′) = λ
2+p
6−pE(u,G),

and hence the problem with mass constraint λμ over the graph G′ is equivalent to problem (7).

3. Main results

In this section we present the main results on existence and nonexistence of a solution for problem (7).
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We start with a general result.

Theorem 3.1. Let G be a graph as in (3) and let μ, p satisfy (5). Then

inf
u∈H1

μ(G)
E(u,G) ≤ 0. (8)

Moreover, if

inf
u∈H1

μ(G)
E(u,G) < 0, (9)

then the infimum is attained and, up to a change of sign, every minimizer is strictly positive.

It is easy to construct an example of graph G for which the infimum is achieved.

Example 3.2. Let p, μ satisfy (5) and define the function

ϕμ(x) := μαϕ1(μβx), α = 2
6−p , β = p−2

6−p ,

where

ϕ1(x) := Γpsech(γpx)α/β , with Γp, γp > 0.

It is well known that ϕμ (usually called a soliton of mass μ) is a minimizer for (7) when G = R and the 
nonlinearity is not localized and, in particular,

1
2

∫
R

|ϕ′
μ(x)|2dx− 1

p

∫
R

|ϕμ(x)|pdx = E < 0

(for more details, see [2,3]). Now let K be a segment of length L and assume, in addition, that N = 2 and 
that the two half-lines are incident at the endpoints of K. Hence the graph G can be seen as a straight line 
and the energy functional reads

E(u,G) := 1
2

∫
R

|u′(x)|2dx− 1
p

L/2∫
−L/2

|u(x)|pdx.

Hence, if L̃ is a positive constant such that∫
|x|>L̃/2

|ϕμ(x)|pdx < |E|,

then we see that

E(ϕμ,G) < 0 whenever L > L̃

and, from Theorem 3.1, E has a minimizer in H1
μ(G).

In fact, in more general cases, existence or nonexistence of minimizers for E strongly depends on the 
exponent of the nonlinearity and on the measure of the compact graph K. This is described in the following 
two theorems.
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Fig. 3. (a) A double bridge graph; (b) a partition where each Gi contains a half-line and a bounded edge; (c) a partition where G1
contains a half-line and all the bounded edges and G2 only a half-line.

Theorem 3.3. Let G be as in (3) and μ > 0. Then for every p ∈ (2, 4) the minimum in (7) is attained.

Theorem 3.4. Let G be as in (3) and μ > 0. If p ∈ [4, 6), then there exist two positive constants L1, L2 such 
that

meas(K) > L1 ⇒ the minimum in (7) is attained, (10)

meas(K) < L2 ⇒ the minimum in (7) is not attained. (11)

In some cases we can improve the threshold that guarantees nonexistence. To this aim, we give the 
following definition.

Definition 3.5. Let N ≥ 2 and G be a graph satisfying (3). In addition, let (Gi)νi=1, with 2 ≤ ν ≤ N , be a 
family of non-trivial subgraphs of G (each consisting of edges and vertices of G). We say that (Gi)νi=1 is a 
partition of G if:

1.
ν⋃

i=1
Gi = G;

2. meas(Gi ∩ Gl) = 0 whenever i �= l;
3. for every i ∈ {1, . . . , ν}, there exists j ∈ {1, . . . , N} such that Rj ⊂ Gi.

In other words, a partition of a graph is the union of “essentially” pairwise disjoint subgraphs, each 
containing at least a half-line. We also stress the fact that every graph admits, in principle, several distinct 
partitions. Two examples of partitions are given in Fig. 3 in the case of a double bridge graph.

Now we can extend (11) as follows.

Corollary 3.6. Let G, μ and p satisfy the assumptions of Theorem 3.4. In addition, let (Gi)νi=1 be a partition 
of G and Ki = Gi ∩ K, for i = 1, . . . , ν. If L2 is the same of Theorem 3.4 and

meas(Ki) < L2 ∀i = 1, . . . , ν,

then the minimum in (7) is not attained.
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Remark 3.7. In order to understand how Corollary 3.6 “improves” Theorem 3.4, consider again the double 
bridge graph. If one chooses the partition of Fig. 3(b), then

meas(K1) = meas(K2) = meas(K)
2 .

Hence, although meas(K) > L2, one can claim that ground states do not exist (provided meas(K1) =
meas(K2) < L2).

Remark 3.8. The bounds L1 and L2 deserve some further comment. As we will show in Section 5, we can 
compute them explicitly:

μL1 = N2

2 if p = 4

μ
p−2
6−pL1 = cpN

4
6−p if p ∈ (4, 6)

μ
p−2
6−pL2 = C

4−p
6−p
p C−p

∞ if p ∈ [4, 6), (12)

where cp is defined by (31), while Cp and C∞ come, respectively, from inequalities (13) and (14). In addition 
one can check that they are invariant under the transformations

μ → λμ G → λ
2−p
6−pG,

coherently with Remark 2.1. This entails that the results we stated in Theorems 3.3 and 3.4 can be equiva-
lently formulated in terms of the mass μ in place of meas(K). Precisely, for meas(K) > 0 fixed, if p ∈ (2, 4), 
then there always exists a solution to (7); whereas, if p ∈ [4, 6), then there exist μ1, μ2 > 0 such that

μ > μ1 ⇒ the minimum in (7) is attained,

μ < μ2 ⇒ the minimum in (7) is not attained.

4. Preliminary and auxiliary results

In this section we introduce some tools that we will use in the proofs of the main results in Section 5.
The first one is a version of the Gagliardo–Nirenberg inequalities over a graph G.

Proposition 4.1. Let G be as in (3). For every p ∈ [2, ∞] there exist two positive constants Cp (depending 
only on p) and C∞ such that

‖u‖pLp(G) ≤ Cp ‖u‖
p
2 +1
L2(G) ‖u

′‖
p
2−1
L2(G) ∀u ∈ H1(G), if p < ∞, (13)

‖u‖L∞(G) ≤ C∞ ‖u‖
1
2
L2(G) ‖u

′‖
1
2
L2(G) ∀u ∈ H1(G). (14)

Proof. Consider a nonnegative function u ∈ H1(G). We define its decreasing rearrangement as the function 
u∗ : R+ → R such that

u∗(x) := inf{t ≥ 0 : ρ(t) ≤ x},

where

ρ(t) :=
∑

meas({xe ∈ Ie : ue(xe) > t}), t ≥ 0,

e∈E
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is the distribution function of u (for more details, see [3,14]). Then, clearly,∫
G

|u(x)|rdx =
∫
R+

|u∗(x)|rdx and sup
G

u = sup
R+

u∗ (15)

for every r ≥ 1. Moreover u∗ ∈ H1(R+) and, by Proposition 3.1 in [3],∫
R+

|(u∗)′(x)|2dx ≤
∫
G

|u′(x)|2dx. (16)

Then, from the Gagliardo–Nirenberg inequality on R+ (cf. [6,13])

‖u‖pLp(G) = ‖u∗‖pLp(R+) ≤ Cp ‖u∗‖
p
2 +1
L2(R+) ‖(u

∗)′‖
p
2−1
L2(R+)

≤ Cp ‖u‖
p
2 +1
L2(G) ‖u

′‖
p
2−1
L2(G) .

In the very same way it is possible to prove (14). �
Remark 4.2. It is well known that the best constant of (14) when G = R is equal to 1. Indeed, assume that 
u ∈ H1(R) satisfies |u(0)| = maxR |u(x)| and let u be the even part of u. Then

u2(0) = u2(0) = 2
0∫

−∞

u(x)u′(x)dx ≤ ‖u‖L2(R) ‖u′‖L2(R) ,

so that

‖u‖L∞(R) ≤ ‖u‖
1
2
L2(R) ‖u

′‖
1
2
L2(R) .

Since equality holds for u = e−|x|, the claim follows. With a slight further effort, one can also check that 
when G = R

+ the best constant is 
√

2.
According to these remarks, we see that for a generic graph G the best constant in (14) satisfies C∞ ≤

√
2. 

In addition, if the graph contains at least two half-lines, then one can repeat the proof of Proposition 4.1
using the symmetric decreasing rearrangement on R in place of the decreasing one on R+ (see again [3,14]), 
thus obtaining that (in this case) C∞ ≤ 1.

Next we deal with the minimization problem (7) on a straight line with an extra Dirichlet condition.

Proposition 4.3. Let m > 0, a > 0. Then the function u(x) = ae−
a2|x|
m satisfies

‖u′‖2
L2(R) = min

v∈H1
m,a(R)

‖v′‖2
L2(R) (17)

where H1
m,a(R) := {v ∈ H1

m(R) : v(0) = a}.

Proof. Consider inequality (14). From Remark 4.2 we know that, when G = R, the best constant is C∞ = 1. 
Hence, for a non-identically zero function v in H1(R), we find that

‖v′‖2
L2(R) ≥

‖v‖4
L∞(R)

‖v‖2

L2(R)
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and, assuming also that v ∈ H1
m,a(R),

‖v′‖2
L2(R) ≥

a4

m
. (18)

Since u ∈ H1
m,a(R) and

‖u′‖2
L2(R) = a4

m
,

we see that the infimum is attained by u. �
The following is an analogous result over the half-line.

Corollary 4.4. Let m > 0, a > 0. Then the function u(x) := ae−
a2x
2m , satisfies

‖u′‖2
L2(R+) = min

v∈H1
m,a(R+)

‖v′‖2
L2(R+) . (19)

Finally, we recall a standard result about the optimality conditions satisfied by any solution of (7) (for 
a proof, see [3]).

Proposition 4.5. Let G be as in (3) and let μ, p satisfy (5). Suppose, in addition, that u is a solution of (7). 
Then

(i) there exists a real constant λ such that, for every edge e ∈ E

u′′
e + κeue|ue|p−2 = λue (Euler–Lagrange equation) (20)

where κe = 1 if e ∈ EK and κe = 0 if e ∈ E\EK;
(ii) for every vertex v ∈ VK

∑
e�v

due

dxe
(v) = 0 (Kirchhoff conditions) (21)

where “e � v” means that the edge e is incident at v;
(iii) up to a change of sign, u > 0 on G.

Remark 4.6. The symbol due

dxe
(v) is a shorthand notation for u′

e(0) or −u′
e(le), according to the fact that xe

is equal to 0 or le at v.

5. Proof of the main results

Throughout this section, it is convenient to identify each u ∈ H1(G) with a (N + 1)-ple of functions 
ψ, ϕ1, . . . , ϕN such that

ψ ∈ H1(K), ϕi ∈ H1(Ri) for i = 1, . . . , N, (22)

and

ψ(w) = ϕi(w) for i = 1, . . . , N, (23)
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where w denotes the starting vertex of Ri. Then (7) is equivalent to the minimization problem

min
(

1
2 ‖ψ′‖2

L2(K) −
1
p
‖ψ‖pLp(K) + 1

2

N∑
i=1

‖ϕ′
i‖

2
L2(Ri)

)
,

with (ψ, ϕ1, . . . , ϕN ) varying in the set of the (N + 1)-ples satisfying (22)–(23) and subject to the mass 
constraint

‖ψ‖2
L2(K) +

N∑
i=1

‖ϕi‖2
L2(Ri) = μ. (24)

Proof of Theorem 3.1. We prove the two statements separately.

Part (i): proof of (8). Consider a function ξ ∈ C∞
0 (R+) with ‖ξ‖2

L2(R+) = μ. Then, for every λ > 0 we define 
a function

uλ(x) =
{√

λξ(λx) if x ∈ R1
0 elsewhere.

As a consequence, uλ ∈ H1
μ(G) and E(uλ, G) = λ2

2 ‖ξ′‖2
L2(R+). Hence

inf
u∈H1

μ(G)
E(u,G) ≤ lim

λ→0
E(uλ,G) = 0

and (8) is proved.

Part (ii): (9) entails existence. Note that from (13)

E(u,G) ≥ 1
2 ‖u′‖2

L2(G) −
Cpμ

p+2
4

p
‖u′‖

p
2−1
L2(G) ∀u ∈ H1

μ(G). (25)

Then, since p/2 − 1 < 2 by (5), there results

‖u‖2
H1(G) ≤ C + CE(u,G) (26)

(here C depends on μ). Consider now a minimizing sequence uk for problem (7). By (26) it is bounded in 
H1(G) and therefore (up to subsequences)

uk ⇀ u in H1(G).

Recalling that uk = (ψk, ϕ1k, . . . , ϕNk) with ψk, ϕ1k, . . . , ϕNk satisfying (22)–(24), we see that there exist 
ψ ∈ H1(K) and ϕi ∈ H1(Ri), satisfying (23), such that

ψk ⇀ ψ in H1(K), ϕik ⇀ ϕi in H1(Ri) for i = 1, . . . , N.

Moreover, since K is compact, we also have

ψk → ψ in Lp(K).

Setting u = (ψ, ϕ1, . . . , ϕN ), by weak lower semicontinuity,

E(u,G) ≤ lim inf
k

E(uk,G) = inf
v∈H1(G)

E(v,G) < 0 (27)

μ
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and

‖u‖2
L2(G) ≤ μ.

If we prove, in addition, that the latter inequality is in fact an equality, then the function u is a minimizer. 
Note that, by (27), u �≡ 0. Suppose now that 0 < ‖u‖2

L2(G) < μ. Hence there exists σ > 1 such that 
‖σu‖2

L2(G) = μ. Consequently

E(σu,G) = σ2

2

∫
G

|u′(x)|2dx− σp

p

∫
K

|u(x)|pdx

< σ2E(u,G) < E(u,G) ≤ inf
v∈H1

μ(G)
E(v,G),

contradicting (27). Then ‖u‖2
L2(G) = μ and this proves (9). Finally, u > 0 immediately follows from Propo-

sition 4.5. �
Proof of Theorem 3.3. Let L = meas(K) and consider the function u = (ψ, ϕ1, . . . , ϕN ) defined by

ψ ≡ a, ϕi(x) = ae−
a2x
2m for i = 1, . . . , N, (28)

with

a ∈
(
0,
√

μ/L
)

and m = μ− a2L

N
. (29)

Then (22)–(24) are satisfied and the energy functional reads

E(u,G) = a4N2

8(μ− a2L) − apL

p
. (30)

Now, since p ∈ (2, 4), when a is sufficiently small we see that E(u, G) < 0 and hence existence of minimizers 
for (7) follows from Theorem 3.1. �
Proof of Theorem 3.4. We break the proof in two parts.

Part (i): proof of (10). Let L = meas(K) and let u be the function defined in (28)–(29), so that the energy 
functional reads as in (30). When p = 4 one can easily check that, if

L >
N2

2μ ,

then there exists a0 ∈
(
0,
√
μ/L

)
such that E(u, G) < 0. On the other hand, when p ∈ (4, 6) we claim that, 

if

L > cp
N

4
6−p

μ
p−2
6−p

with

cp =
[(

p(p− 4)
16

) 2
p−2

+ p

8

(
p(p− 4)

16

) 4−p
p−2

] p−2
6−p

, (31)
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then there exists again a0 ∈
(
0,
√

μ/L
)

such that E(u, G) < 0. Indeed, E(u, G) < 0 is equivalent to g(a) < μ

where

g(a) = a2L + N2p

8L a4−p.

Easy computations show that g has a unique critical point given by

a =
(
N2p(p− 4)

16L2

) 1
p−2

.

As g is strictly convex, this is a global minimizer for g in (0, 
√
μ/L) and, in addition,

g(a) = L− 6−p
p−2

[(
N2p(p− 4)

16

) 2
p−2

+ N2p

8

(
N2p(p− 4)

16

) 4−p
p−2

]
.

Now, if

a <
√

μ/L and g(a) < μ,

then the claim is proved setting a0 = a. The former inequality explicitly reads

μ
p−2
6−pL >

(
N2p(p− 4)

16

) 2
6−p

, (32)

whereas the latter reads

μ
p−2
6−pL >

[(
N2p(p− 4)

16

) 2
p−2

+ N2p

8

(
N2p(p− 4)

16

) 4−p
p−2

] p−2
6−p

= N
4

6−p cp. (33)

Now, observing that (33) entails (32), letting

L1 =
{

1
2μ

−1N2 if p = 4
cpμ

2−p
6−pN

4
6−p if p ∈ (4, 6)

(34)

we see that (10) follows from Theorem 3.1.

Part (ii): proof of (11). Suppose that there exists a function u ∈ H1
μ(G) such that

E(u,G) ≤ 0. (35)

We claim that

‖u′‖2
L2(G) ≤

1
C4
∞μ

‖u‖
4
(p

4
)n+1

L∞(G) (C4
∞μL)

∑n
i=0

(p
4
)i

∀n ≥ 0 (36)

(once again L = meas(K)). To check this by induction, we first note that from (35) we have

‖u′‖2
L2(G) ≤

2 ‖u‖pLp(K) ≤ L ‖u‖pL∞(G) , (37)

p
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since 2/p < 1, which corresponds to (36) when n = 0. Moreover, for fixed n > 0, assume that

‖u′‖2
L2(G) ≤

1
C4
∞μ

‖u‖
4
(p

4
)n

L∞(G) (C4
∞μL)

∑n−1
i=0

(p
4
)i

. (38)

Combining with (14), we see that

‖u‖pL∞(G) ≤ ‖u‖
4
(p

4
)n+1

L∞(G) (C4
∞μL)

∑n
i=1

(p
4
)i

(39)

and plugging into (37) we recover (36). Furthermore, combining (35) with (25) and (14), we find that

‖u‖L∞(G) ≤ C∞C
1

6−p
p μ

2
6−p

and thus, putting into inequality (36), we obtain

‖u′‖2
L2(G) ≤ C2

pμ
3(C4

∞μL)n+1, if p = 4,

‖u′‖2
L2(G) ≤ C

4
6−p
p μ

p+2
6−p

(
C

4p
p−4
∞ C

4
6−p
p μ

4(p−2)
(p−4)(6−p)L

4
p−4

)(
p
4
)n+1−1

, if p ∈ (4, 6),

for every n ≥ 0. Now, when the terms in brackets in the two inequalities are strictly smaller than 1, letting 
n → ∞ we obtain that ‖u′‖2

L2(G) = 0, which is a contradiction since ‖u‖2
L2(G) = μ > 0 (see [8]). Consequently, 

if we choose

L2 = C
4−p
6−p
p μ

2−p
6−p C−p

∞ ,

then we see that E(u, G) > 0 whenever L < L2 and hence (11) follows from Theorem 3.1. �
Proof of Corollary 3.6. Consider a function u in H1

μ(G). According to the partition (Gi)νi=1, the energy 
functional reads

E(u,G) =
ν∑

i=1
E(u|Gi

,Gi). (40)

Now if u|Gi
≡ 0 for some i, then E(u|Gi

, Gi) = 0. On the other hand, if u|Gi
�≡ 0, since

‖u|Gi
‖2
L2(Gi) ≤ μ,

then there exists σ ≥ 1 satisfying ∫
Gi

σ2|u(x)|2dx = μ,

so that

E(σu|Gi
,Gi) ≤ σ2E(u|Gi

,Gi).

Therefore, since meas(Ki) < L2, (11) entails that E(σu|Gi
, Gi) > 0, whence E(u|Gi

, Gi) > 0. Now, as 
u ∈ H1

μ(G), then u|Gi
�≡ 0 for at least one i. As a consequence, E(u, G) > 0, which concludes the proof.

Note that we omit the case of a function u ∈ H1
μ(G) with support contained in a subgraph of the partition 

having trivial compact part, since this immediately entails that E(u, G) > 0. �
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