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In a previous paper of the authors (Wang et al. (2014) [40]), the asymptotic estimates 
of boundary blow-up solutions were established to the infinity Laplace equation 
Δ∞u = b(x)f(u) in Ω ⊂ R

N , with the nonlinearity 0 ≤ f ∈ C[0, ∞) regularly 
varying at ∞, and the weighted function b ∈ C(Ω̄) positive in Ω and vanishing on 
the boundary. The present paper gives a further investigation on the asymptotic 
behavior of boundary blow-up solutions to the same equation by assuming f to be 
Γ-varying. Note that a Γ-varying function grows faster than any regularly varying 
function. We first quantitatively determine the boundary blow-up estimates with 
the first expansion, relying on the decay rate of b near the boundary and the growth 
rate of f at infinity, and further characterize these results via examples possessing 
various decay rates for b and growth rates for f . In particular, we pay attention 
to the second-order estimates of boundary blow-up solutions. It was observed in 
our previous work that the second expansion of solutions to the infinity Laplace 
equation is independent of the geometry of the domain, quite different from the 
classical Laplacian. The second expansion obtained in this paper furthermore shows 
a substantial difference on the asymptotic behavior of boundary blow-up solutions 
between the infinity Laplacian and the classical Laplacian.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study the boundary asymptotic behavior of solutions to the infinity Laplace equation
{Δ∞u = b(x)f(u), x ∈ Ω,

u = ∞, x ∈ ∂Ω,
(1.1)

where Ω is a bounded C1 domain in RN with N ≥ 2, the weighted function b and the nonlinearity f satisfy
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(H-b) b ∈ C(Ω̄), b > 0 in Ω;
(H-f) f ∈ W 1,∞

loc [0, ∞), f(0) = 0, f(s)/s is increasing in (0, ∞).

The infinity Laplacian, defined as

Δ∞u :=
N∑

i,j=1
uxi

uxj
uxixj

= 〈D2u(x)Du(x), Du(x)〉,

was proposed by Aronsson [4], and the infinity Laplace equation Δ∞u = 0 just is the Euler–Lagrange 
equation for smooth absolute minimizers. Notice that the infinity Laplace equation is nonlinear and highly 
degenerate, and does not have smooth solutions in general. The equivalence of absolute minimizers and 
viscosity solutions (in the sense of [16]) of the Dirichlet problem to the infinity harmonic equation, as well 
as the uniqueness of solutions were proved by Jensen [25]. Refer to e.g. [8,9,15,19,26,30–33,37,39] and the 
survey [5] for important results of the infinity Laplace equations.

By a solution to the problem (1.1), we mean a nonnegative function u ∈ C(Ω) that satisfies the equation 
in the viscosity sense (see Section 2 for the definition) and the boundary condition with u(x) → ∞ as the 
distance function d(x) := dist(x, ∂Ω) → 0. Such a solution is usually called a boundary blow-up solution or 
a large solution.

The boundary blow-up problems have been studied extensively in the context of the classical Laplace 
operator and other elliptic operators. Recently, the boundary blow-up problems have been extended to the 
elliptic problems involving the infinity Laplacian. Juutinen and Rossi [27] investigated the existence and 
uniqueness of solutions to the infinity Laplace problem

{
ΔN

∞u = uq, x ∈ Ω,

u = ∞, x ∈ ∂Ω
(1.2)

with the normalized ∞-Laplacian

ΔN
∞u := 1

|Du(x)|2 〈D
2u(x)Du(x), Du(x)〉,

and proved that (1.2) admits a solution if and only if q > 1. They also obtained the boundary asymptotic 
estimates, and thus the uniqueness of solutions. The existence or nonexistence of boundary blow-up solutions 
to the problem

{Δ∞u = h(x, u), x ∈ Ω,

u = ∞, x ∈ ∂Ω
(1.3)

with h : Ω × [0, ∞) → [0, ∞) continuous and nondecreasing in u for each x ∈ Ω, was considered in [35]. In 
particular, it was shown that (1.3) with h(x, u) = b(x)f(u) (i.e. the problem (1.1)) admits a nonnegative 
solution if and only if the Keller–Osserman condition

∞∫
1

ds
4
√

F (s)
< ∞, F (s) =

s∫
0

f(τ)dτ (1.4)

holds, where a boundary asymptotic estimate was obtained as well with b > 0 on Ω̄ and some additional 
assumptions on Ω and b. The problem (1.3) for the case without the monotonicity restriction of h has been 
also studied, see [36].
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In a recent work of ours [40], we established the asymptotic behavior of solutions to the problem (1.1)
with the weighted function b maybe vanishing on the boundary and the nonlinearity f regularly varying at 
infinity:

Definition 1.1. A positive measurable function f defined on [a, ∞), for some a > 0, is called regularly varying 
at infinity with index p, written as f ∈ RV p, if for some p ∈ R,

lim
s→∞

f(ξs)
f(s) = ξp, ∀ξ > 0.

In particular, f is slowly varying at infinity if p = 0. Similarly, f is rapidly varying at infinity if

lim
s→∞

f(ξs)
f(s) = ∞, ∀ξ > 1.

Additionally, a function h(t) is said to be regularly varying at zero with index p if s 	−→ h(1/s) ∈ RV−p, 
and rapidly varying at zero if s 	−→ h(1/s) is rapidly varying at infinity.

Denote by Kλ the class of positive nondecreasing functions k(t) ∈ C1(0, t0) (t0 > 0) satisfying

lim
t→0

d

dt

(
K(t)
k(t)

)
= λ ∈ [0,∞), K(t) =

t∫
0

k(τ)dτ.

It is easy to see that λ ∈ [0, 1] due to the nondecreasing of k, and limt→0 K(t)/k(t) = 0 for any k ∈ Kλ. 
When f ∈ RV p with index p > 3 and limd(x)→0 b(x)/k4(d(x)) = B0 for some B0 > 0 and k ∈ Kλ, the exact 
boundary blow-up estimates to (1.1) were obtained with the first expansion

lim
d(x)→0

u(x)
ξ0κ(K(d(x))) = 1,

where κ : (0, ς(0+)) → (0, ∞) is the inverse of

ς(s) =
∞∫
s

dτ
4
√

4F (τ)
, s > 0,

and

ξ0 =
[
4 + λ(p− 3)
B0(p + 1)

] 1
p−3

.

Furthermore, for the case of f(s) = sp(1 + c̃g(s)) with g normalized regularly varying at infinity (defined 
after Proposition 2.2), we gave the second expansion of solutions near the boundary as

u(x) = ξ1(K(d(x)))−
4

p−3
(
1 + c1d(x) + o(d(x))

)
,

where ξ1 > 0 and c1 are two constants. It is interesting that the second term in the asymptotic expansion of 
boundary blow-up solutions to the infinity Laplace equation is independent of the geometry of the domain, 
quite different from the boundary blow-up problems involving the classical Laplacian.
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The main purpose of this paper is to give a further investigation on the asymptotic behavior of boundary 
blow-up solutions, including the first and second expansions, to the problem (1.1) with f growing faster 
than any regularly varying function, such as

f(s) = e(ln s)p (p > 1), f(s) = es
p

(p > 0), or f(s) = ees
p

(p > 0) for s > 0 large.

All these examples are covered by the so called Γ-varying functions:

Definition 1.2. A nondecreasing function f defined on (a, ∞) is Γ-varying at ∞, written as f ∈ Γ, if 
lims→∞ f(s) = ∞ and there exists a function χ : (a, ∞) → (0, ∞) such that

lim
s→∞

f(s + μχ(s))
f(s) = eμ for any μ ∈ R. (1.5)

Here the auxiliary function χ is unique up to asymptotic equivalence. By Theorem 1.28 in [22] we know 
that under (H-f), f is Γ-varying at ∞ if and only if

f(s) ∼ f̂(s) = e
∫ s
B

dτ
G(τ) as s → ∞,

for some B > 0 and positive G ∈ C1[B, ∞) with lims→∞ G′(s) = 0. Obviously, if f in (H-f) is Γ-varying 
at ∞, then f is rapidly varying and grows faster than any regularly varying function. In addition, it will 
be shown that the Keller–Osserman condition (1.4) must be satisfied by any (H-f) function f ∈ Γ (see 
Lemma 2.2 for details), and this ensures the existence of nonnegative solutions to the problem (1.1) [35].

As early as 1916, Bieberbach [10] has studied the following boundary blow-up problem with the usual 
Laplacian:

{Δu = b(x)f(u), x ∈ Ω,

u = ∞, x ∈ ∂Ω,
(1.6)

where b(x) = 1, f(u) = eu and Ω ⊂ R
2 is a smooth bounded domain. It was proved that the prob-

lem (1.6) has a unique positive solution u ∈ C2(Ω) with u(x) − ln(1/d2(x)) bounded as d(x) → 0. Later, 
Rademacher [38] extended these results to smooth bounded domains in R3. For the general N -dimensional
case, the problem (1.6) was considered by Lazer and McKenna [28] with f(u) = eu, b(x) continuous and 
strictly positive on Ω̄.

In [29], it was shown for the boundary blow-up solution of Δu = eu in Ω ⊂ R
N that u(x) −ln(2/d2(x)) → 0

as d(x) → 0. Furthermore, Bandle [6] improved this estimate by proving the expansion

u(x) = ln(2/d2(x)) + (N − 1)H(x̄)d(x) + o(d(x)),

where H(x̄) denotes the mean curvature of ∂Ω at the point x̄ nearest to x. Subsequently, Anedda et al. [1]
established the second-order estimates for boundary blow-up solutions of Δu = eu|u|p−1 in Ω ⊂ R

N with 
p > 0. It was proved that

u(x) = ω(d(x)) + p−1(N − 1)H(x)d(x)[ω(d(x))]1−p + O(1)d(x)[ω(d(x))]1−2p (1.7)

near the boundary, where ω(t) is defined by

∞∫
ds√
2F (s)

= t with F (s) =
s∫

eτ |τ |
p−1

dτ,
ω(t) −∞
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and H(x) is the mean curvature of the surface {x ∈ Ω : d(x) = constant}. One can see from (1.7) that

p−1(N − 1)Hm ≤ lim inf
d(x)→0

u(x) − ω(d(x))
d(x)[ω(d(x))]1−p

≤ lim sup
d(x)→0

u(x) − ω(d(x))
d(x)[ω(d(x))]1−p

≤ p−1(N − 1)HM (1.8)

with Hm and HM standing for the minimum and the maximum of the mean curvature of the boundary 
∂Ω respectively, which implies u(x) −ω(d(x)) and d(x)[ω(d(x))]1−p maybe share the same decay order, and 
the quotient of them is related to the geometry of the domain. See also [2,3,7,17,21,41] for the effect of the 
domain geometry in the asymptotic behavior of boundary blow-up solutions.

In [14], Cîrstea studied the asymptotic behavior of boundary blow-up solutions to the problem

{Δu + au = b(x)f(u), x ∈ Ω,

u = ∞, x ∈ ∂Ω,
(1.9)

where f satisfies (H-f) and the weighted function b ∈ Cμ(Ω̄) is allowed to vanish on the boundary. When 
the nonlinearity f(s) grows faster at ∞ than any power function sp (p > 1) and the weighted function b(x)
is controlled on the boundary in some manner, the asymptotic estimates of boundary blow-up solutions 
to (1.9) were determined. The boundary blow-up problems with singular weighted functions [12,13,20] and 
other elliptic operators instead of the Laplace operator [18,24,34] have been studied as well.

Now, we state our main results. First, the exact asymptotic estimates with the first expansion can be 
formulated as follows:

Theorem 1. Suppose f in (H-f) is Γ-varying at ∞, and b satisfies (H-b) with

lim
d(x)→0

b(x)
k4(d(x)) = B0 (1.10)

for some B0 > 0 and k ∈ Kλ. Let u(x) be a solution of (1.1).

(i) If 0 < λ ≤ 1, then

lim
d(x)→0

u(x)
θ(Ψ(d(x))) = 1, (1.11)

with θ defined by

∞∫
θ(s)

dτ

3
√
f̂(τ)

= 1
3
√
s

(1.12)

and Ψ(t) = 1/(tk(t)K3(t)).
(ii) Assume λ = 0, and limt→0

tW ′(t)
W (t) = 1 with W (t) := K(t)

k(t) for small t > 0. If

lim
s→∞

G′(s) ln f̂(s) = β ∈ R,

then the same estimate as (1.11) holds.
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(iii) Assume λ = 0, and limt→0 W
′(t) lnK(t) = α ∈ R. If

(a) lim
s→∞

sG′(s)
G(s) = 1, or (b) lim

s→∞
G′(s) ln f̂(s) = β ∈ R with β �= α,

then

lim
d(x)→0

u(x)
ϑ(K−4(d(x))) = 1, (1.13)

with ϑ(s) given by

∞∫
ϑ(s)

dτ

3
√
f̂(τ)g(τ)

= 1
3
√
s

(1.14)

and

g(s) :=
{

s
G(s) for case (a),

ln f̂(s) for case (b).
(1.15)

Remark 1.1. By Lemmas 3.1 and 3.3 in [14], if limt→0 W
′(t) lnK(t) = α ∈ R, then α ≤ −1. Moreover, 

limt→0 W
′(t) lnK(t) = α < −1 if and only if limt→0

tW ′(t)
W (t) = α

1+α ∈ (1, ∞), and limt→0 W
′(t) lnK(t) = −1

implies limt→0
tW ′(t)
W (t) = ∞. It follows that if lims→∞ G′(s) ln f̂(s) = β ∈ R, then β ≥ −1. Likewise, we 

also have that lims→∞ G′(s) ln f̂(s) = β > −1 is equivalent to lims→∞
sG′(s)
G(s) = β

1+β ∈ (−∞, 1), and 

lims→∞ G′(s) ln f̂(s) = −1 leads to lims→∞
sG′(s)
G(s) = −∞. All these restrictions on the functions k and f̂

indicate the rates of the weighted function b decaying to zero near the boundary and the nonlinearity f
growing at ∞. So, the three items of Theorem 1 quantitatively determine the boundary asymptotic behavior 
of solutions in different cases for the decay of b and the growth of f . In Section 5, we will characterize these 
results via an explicit description with examples possessing various decay rates for b and growth rates for f .

Next, a special attention is paid to the second-order estimates of boundary blow-up solutions.

Theorem 2. Let b(x) ≡ 1 in Ω. Assume f ∈ C1[0, ∞) is increasing in (0, ∞) with f(0) = 0 and

(Γ-1) f(s) = e(ln s)p (p > 1), or (Γ-2) f(s) = es
p

(0 < p < 1)

in [s∗, ∞) for some s∗ > 0. Then for any solution of (1.1),

u(x) =
{
ψ(d(x)) + O(1)d(x)ψ(d(x))[lnψ(d(x))]1−2p in case (Γ-1),
ψ(d(x)) + O(1)d(x)[ψ(d(x))]1−2p in case (Γ-2)

(1.16)

as d(x) → 0, where ψ(t) : (0, ν(0+)) → (0, ∞) is the inverse of the decreasing function

ν(t) =
∞∫
t

ds
4
√

4F (s)
, t > 0 with F (s) =

s∫
0

f(τ)dτ,

and O(1) denotes a bounded quantity.
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Remark 1.2. Theorem 2 indicates a substantial difference on the asymptotic behavior of boundary blow-up 
solutions between the infinity Laplacian and the classical Laplacian. The second expansion of solutions 
for the classical Δu = eu|u|p−1 was known (see e.g. [1,6]), corresponding to case (Γ-2) here. We conclude 
from (1.16)2 that

lim
d(x)→0

u(x) − ψ(d(x))
d(x)[ψ(d(x))]1−p

= 0,

i.e., u(x) − ψ(d(x)) must be an infinitely small quantity of higher order than d(x)[ψ(d(x))]1−p (not only 
independent of the domain geometry), substantially different from (1.8) for the classical Δu = eu|u|p−1 .

Remark 1.3. Note that in Theorem 2, f(s) = e
∫ s
0

dτ
G(τ) on [B, ∞) for some B > 0 with

G(s) = f(s)
f ′(s) =

{
s(ln s)1−p/p for (Γ-1),
s1−p/p for (Γ-2),

s ∈ [B,∞). (1.17)

One can readily check that in both cases lims→∞ G′(s) = lims→∞ sG′′(s) = 0, and it is obvious that 
lims→∞ G(s) = ∞. In addition,

lim
s→∞

s

G(s) ln f(s) =
{ 0 for (Γ-1),
p for (Γ-2).

These simple facts will be used in the proof of Proposition 6.2 and Theorem 2.

The rest of the present paper is organized as follows. In Section 2, as preliminaries, we recall the definition 
of viscosity solutions with the comparison principle and the results of the Karamata regular variation theory, 
and check the required Keller–Osserman condition. Then we prove Theorem 1 (i)–(ii) and (iii) in the next 
two sections respectively. In Section 5, we give remarks and examples to illustrate the results of Theorem 1. 
Finally, Section 6 is devoted to the proof of Theorem 2 on the second expansion of solutions.

2. Preliminaries

In this section, we give some definitions and auxiliary results that will be used throughout the paper.
We first state the concept of viscosity solutions for problem (1.1).

Definition 2.1. A function u ∈ C(Ω) is a viscosity subsolution of the PDE Δ∞u = b(x)f(u) in Ω if for every 
ϕ ∈ C2(Ω), with the property that u − ϕ has a local maximum at some x0 ∈ Ω, then

Δ∞ϕ(x0) ≥ b(x0)f(u(x0)).

We say a function u ∈ C(Ω) is a viscosity supersolution of the PDE Δ∞u = b(x)f(u) in Ω if for every 
ϕ ∈ C2(Ω), with the property that u − ϕ has a local minimum at some x0 ∈ Ω, then

Δ∞ϕ(x0) ≤ b(x0)f(u(x0)).

A function u ∈ C(Ω) is a viscosity solution of the PDE Δ∞u = b(x)f(u) in Ω if it is both a subsolution 
and a supersolution. Finally, by a solution of (1.1), we mean a function u that is a solution of the PDE 
Δ∞u = b(x)f(u) such that u = ∞ on ∂Ω.

In the proof of the boundary asymptotic estimates, we need the following comparison principle (see [35]):
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Lemma 2.1 (Comparison principle). Let b satisfy (H-b), f satisfy (H-f). Suppose u, v ∈ C(Ω̄) such that

Δ∞u ≥ b(x)f(u) in Ω and Δ∞v ≤ b(x)f(v) in Ω

in the viscosity sense. If u ≤ v on ∂Ω and 0 ≤ v on ∂Ω, then u ≤ v in Ω.

As a preparation, let us now recall some basic results from the Karamata regular variation theory 
(see [11]).

Proposition 2.1 (Uniform convergence theorem). If f ∈ RV p, then (in the case p > 0, assuming f bounded 
on each interval (0, κ1]),

lim
s→∞

f(ξs)
f(s) = ξp uniformly in ξ

on each ⎧⎪⎨
⎪⎩

[κ1, κ2] (0 < κ1 ≤ κ2 < ∞) if p = 0,
(0, κ1] (0 < κ1 < ∞) if p > 0,
[κ2,∞) (0 < κ2 < ∞) if p < 0.

Proposition 2.2 (Representation theorem). A function L is slowly varying at infinity if and only if it may 
be written in the form

L(s) = c(s) exp

⎧⎨
⎩

s∫
â

y(τ)
τ

dτ

⎫⎬
⎭ , s ≥ â,

for some â ≥ a, where the functions c(·) and y(·) are measurable and continuous respectively, and c(s) →
c0 ∈ (0, ∞), y(s) → 0 as s → ∞.

Replacing c(s) by c0 in Proposition 2.2, we call

�(s) = c0 exp

⎧⎨
⎩

s∫
â

y(τ)
τ

dτ

⎫⎬
⎭ , s ≥ â

normalized slowly varying at infinity, and furthermore define

f(s) = sp�(s), s ≥ â

normalized regularly varying at infinity with index p, written as f ∈ NRV p.
It is easy to see that for a positive function f on [a, ∞), f ∈ NRV p if and only if sf ′(s)/f(s) is continuous 

and tends to p ∈ R as s → ∞. In addition, for any f ∈ RV p, it is clear that L(s) := f(s)/sp is slowly 
varying at ∞, and hence is asymptotically equivalent to a normalized slowly varying function �(s). Denote 
f̃(s) := sp�(s). Then f̃(s) ∈ NRV p and f̃(s)/f(s) → 1 as s → ∞.

Proposition 2.3.

(i) If f ∈ RV p, then as s → ∞,

f(s) →
{∞ if p > 0,

0 if p < 0.
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(ii) If f ∈ NRV p, then fγ ∈ NRV γp for every γ ∈ R.
(iii) If fi ∈ NRV pi

(i = 1, 2), then f1(s) · f2(s) ∈ NRV p1+p2 .
(iv) If fi ∈ NRV pi

(i = 1, 2), and f2(s) → ∞ as s → ∞, then f1(f2(s)) ∈ NRV p1p2 .
(v) If f ∈ NRV p is strictly increasing with p > 0, then f−1 ∈ NRV 1/p, where f−1 is the inverse of f .

Proposition 2.4 (Asymptotic behavior). Suppose L is slowly varying at infinity, and let â ≥ a be the constant 
such that L(s) is locally bounded in [â, ∞). Then as s → ∞,

(i)
∫ s

â
τpL(τ)dτ ∼ (p + 1)−1s1+pL(s) if p > −1;

(ii)
∫∞
s

τpL(τ)dτ ∼ (−p − 1)−1s1+pL(s) if p < −1.

At last, we give the following lemma to end this section.

Lemma 2.2. If f ∈ Γ satisfies (H-f), then the Keller–Osserman condition (1.4) holds.

Proof. Fix σ > 3. Since lims→∞ G′(s) = 0,

sf̂ ′(s)
f̂(s)

=
se
∫ s
B

dτ
G(τ) 1

G(s)

e
∫ s
B

dτ
G(τ)

= s

G(s) → ∞ as s → ∞,

and hence there exists a positive constant c0 such that sf̂ ′(s)/f̂(s) > σ for s ≥ c0. Integrate to get that 
f̂(s) ≥ f̂(c0)(s/c0)σ, s ≥ c0. Thus

lim
s→∞

f(s)
sσ

= lim
s→∞

f̂ ′(s)
σsσ−1 = lim

s→∞

(
sf̂ ′(s)
f̂(s)

· f̂(s)
σsσ

)
= ∞,

which implies the Keller–Osserman condition (1.4) is true. �
3. The proof of Theorem 1 (i)–(ii)

This section is devoted to the proof of Theorem 1 (i)–(ii). We begin with a crucial lemma.

Lemma 3.1. Assume 0 < λ ≤ 1, or λ = 0 and limt→0
tW ′(t)
W (t) = 1. Then there exists a decreasing C2-function 

A on (0, ε) with ε > 0 such that as t → 0, A(t) ∼ 1
tk(t)K3(t) and

(i) ln A(t) ∼ −4 lnK(t);
(ii) [ln A(t)]′ ∼ − 4

W (t) ;
(iii) [ln A(t)]′′ ∼ 4

tW (t) .

Proof. Note that for 0 < λ ≤ 1, it is automatically satisfied that

lim
t→0

tW ′(t)
W (t) = 1.

Set ω(s) = 1/W (1/s) for large s. Then ω ∈ NRV 1, and hence ω′ is slowly varying at infinity. Accordingly, 
there exists a C2-function ω̃ such that ω̃′ ∈ NRV 0, and ω̃′(s) ∼ ω′(s) as s → ∞. Moreover, ω̃(s) ∼ ω(s) as 
s → ∞ and ω̃ ∈ NRV 1. Thus,

−(ln ω̃(s))′′ ∼ ω̃′(s) ∼ 1
2 as s → ∞.
sω̃(s) s
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Define

A(t) = 1
tK4(t)ω̃(1

t )
.

One can readily verify that A(t) ∼ 1
tk(t)K3(t) with (i)–(iii) valid as t → 0. �

The next lemma can be deduced via similar arguments to the proof of Lemma 4.1 (a more complicated 
one), and refer to those in Section 4.

Lemma 3.2. Let θ(s) be the function in (1.12). Then

(i) θ(s) → ∞ and 27s4[θ′(s)]3 = f̂(θ(s)) ∼ f(θ(s)) as s → ∞;
(ii) f̂(θ(s)) ∈ NRV 1;
(iii) θ is slowly varying at ∞ and θ′ ∈ NRV−1.

Moreover, if

lim
s→∞

G′(s) ln f̂(s) = β ∈ R,

then

(iv) lim
s→∞

ln f̂(θ(s))
(
1 + sθ′′(s)

θ′(s)

)
= β.

In what follows, we will establish the exact boundary blow-up estimates in Theorem 1 (i)–(ii). The primary 
technique is the comparison principle. Denote

Ωδ := {x ∈ Ω : d(x) < δ}.

Since ∂Ω ∈ C1, it follows from [23] that d(x) ∈ C1(Ωδ0) for some δ0 > 0. Moreover, |Dd(x)| = 1 in Ωδ0 , and 
consequently Δ∞d = 0 in Ωδ0 in the viscosity sense.

The key proposition to prove Theorem 1 (i)–(ii) is as follows.

Proposition 3.1. Under the assumptions of Theorem 1 (i)–(ii), for any small ε > 0, there exists δ ∈ (0, δ0/2)
such that for each ρ ∈ (0, δ),

ūε = θ
(
(ξ1 + ε)A(d(x) − ρ)

)
, x ∈ Ω2δ \ Ω̄ρ =: Ω−

ρ

and

uε = θ
(
(ξ1 − ε)A(d(x) + ρ)

)
, x ∈ Ω2δ−ρ =: Ω+

ρ

are a supersolution and a subsolution of Eq. (1.1)1 in Ω−
ρ and in Ω+

ρ , respectively, where ξ1 = 64/(27B0)
and A is the function in Lemma 3.1.

Proof. Fix a small ε > 0. Let δ ∈ (0, δ0/2), ρ ∈ (0, δ). For simplicity, denote

d−(x) := d(x) − ρ, d+(x) := d(x) + ρ.

Next, we only prove that
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ūε = θ
(
(ξ1 + ε)A(d−(x))

)
is a supersolution of Eq. (1.1)1 in Ω−

ρ . The proof for uε is similar.
Define

η(t) = θ
(
(ξ1 + ε)A(t)

)
, t ∈ (0, 2δ − ρ).

Note that θ and A are increasing and decreasing respectively by Lemmas 3.1 and 3.2. Therefore, η is 
decreasing in (0, 2δ − ρ) for δ small enough. Let ζ be the inverse of η. It is easy to check that

ζ ′(t) = 1
η′(ζ(t)) =

[
(ξ1 + ε)θ′

(
(ξ1 + ε)A(ζ(t))

)
A′(ζ(t))

]−1
,

ζ ′′(t) = −(ξ1 + ε)−2[θ′((ξ1 + ε)A(ζ(t))
)
A′(ζ(t))

]−3

×
[
(ξ1 + ε)θ′′

(
(ξ1 + ε)A(ζ(t))

)(
A′(ζ(t))

)2 + θ′
(
(ξ1 + ε)A(ζ(t))

)
A′′(ζ(t))

]
. (3.1)

Let (x0, ϕ) ∈ Ω−
ρ × C2(Ω−

ρ ) be a pair such that ūε ≥ ϕ in a neighborhood N of x0 and ūε(x0) = ϕ(x0). 
Then φ = ζ(ϕ) ∈ C2(Ω−

ρ ), and

d−(x) ≤ φ(x) in N , d−(x0) = φ(x0).

Since Δ∞d = 0 in Ω−
ρ , we have Δ∞φ(x0) ≥ 0. A simple computation shows that

Δ∞φ = ζ ′′(ϕ)(ζ ′(ϕ))2|Dϕ|4 + (ζ ′(ϕ))3Δ∞ϕ,

which together with Δ∞φ(x0) ≥ 0 and ζ ′ < 0 yields that

Δ∞ϕ(x0) ≤ −ζ ′′(ϕ(x0))(ζ ′(ϕ(x0)))−1|Dϕ(x0)|4.

Also, since |Dd(x)| = 1 for x ∈ Ω−
ρ and d− − φ attains a local maximum at x0, it follows that

|Dd−(x0)| = |ζ ′(ϕ(x0))Dϕ(x0)| = 1.

Therefore

Δ∞ϕ(x0) ≤ −ζ ′′(ϕ(x0))(ζ ′(ϕ(x0)))−5.

By (3.1), we further have

Δ∞ϕ(x0) ≤ (ξ1 + ε)3
[
θ′
(
(ξ1 + ε)A(d−(x0))

)
A′(d−(x0))

]2
×
[
(ξ1 + ε)θ′′

(
(ξ1 + ε)A(d−(x0))

)(
A′(d−(x0))

)2 + θ′
(
(ξ1 + ε)A(d−(x0))

)
A′′(d−(x0))

]
=
(

A′(d−(x0))
A(d−(x0))

)4{(
(ξ1 + ε)A(d−(x0))

)4
θ′′
(
(ξ1 + ε)A(d−(x0))

)[
θ′
(
(ξ1 + ε)A(d−(x0))

)]2
+
(
(ξ1 + ε)A(d−(x0))

)3[
θ′
(
(ξ1 + ε)A(d−(x0))

)]3 A′′(d−(x0))A(d−(x0))
[A′(d−(x0))]2

}

=
(
[ln A(t0)]′

)4{
s4
0θ

′′(s0)[θ′(s0)]2 + s3
0[θ′(s0)]3

A′′(t0)A(t0)
′ 2

}

[A (t0)]
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with t0 := d−(x0) and s0 := (ξ1 + ε)A(t0). Note that x0 will approach to the boundary of Ω when δ is taken 
small enough. Thus, t0 → 0 and s0 → ∞ as δ → 0. We now proceed to get

1
k4(t0)f(θ(s0))

(
Δ∞ϕ(x0) − b(x0)f(ūε(x0))

)

≤
(
[ln A(t0)]′

)4
k4(t0)f(θ(s0))

{
s4
0θ

′′(s0)[θ′(s0)]2 + s3
0[θ′(s0)]3

A′′(t0)A(t0)
[A′(t0)]2

}
− b(x0)

k4(d(x0))

=: I(x0) −
b(x0)

k4(d(x0))
.

According to Lemma 3.2 (i), we have if 0 < λ ≤ 1, then

I(x0) =
(
[ln A(t0)]′

)4
k4(t0)f(θ(s0))

{
(f̂(θ(s0)))′

81 − 4f̂(θ(s0))
81s0

+ f̂(θ(s0))
27s0

A′′(t0)A(t0)
[A′(t0)]2

}

= f̂(θ(s0))
(ξ1 + ε)f(θ(s0))

(
[ln A(t0)]′

)4
A(t0)k4(t0)

{
s0(f̂(θ(s0)))′

81f̂(θ(s0))
− 4

81 + 1
27

A′′(t0)A(t0)
[A′(t0)]2

}
,

and for λ = 0,

I(x0) =
(
[ln A(t0)]′

)4
k4(t0)f(θ(s0))

{
s4
0θ

′′(s0)[θ′(s0)]2 + s3
0[θ′(s0)]3

}

+
(
[ln A(t0)]′

)4
k4(t0)f(θ(s0))

{
s3
0[θ′(s0)]3

A′′(t0)A(t0)
[A′(t0)]2

− s3
0[θ′(s0)]3

}

=
(
[ln A(t0)]′

)4
s3
0[θ′(s0)]3

k4(t0)f(θ(s0))

(
1 + s0θ

′′(s0)
θ′(s0)

)
+

[ln A(t0)]′′
(
[ln A(t0)]′

)2
s3
0[θ′(s0)]3

k4(t0)f(θ(s0))

= f̂(θ(s0)) ln A(t0)
27(ξ1 + ε)f(θ(s0)) ln f̂(θ(s0))

·
(
[ln A(t0)]′

)4
k4(t0)A(t0) ln A(t0)

· ln f̂(θ(s0))
(

1 + s0θ
′′(s0)

θ′(s0)

)

+ f̂(θ(s0))
27(ξ1 + ε)f(θ(s0))

·
[ln A(t0)]′′

(
[ln A(t0)]′

)2
k4(t0)A(t0)

.

It follows from Lemmas 3.1 and 3.2 that

I(x0) −
b(x0)

k4(d(x0))
→ 64

27(ξ1 + ε) −B0, δ → 0,

in both cases of 0 < λ ≤ 1 and λ = 0, where we point out separately that

lim
δ→0

ln A(t0)
ln f̂(θ(s0))

= lim
s0→∞

ln
( 1
ξ1+εs0

)
ln f̂(θ(s0))

= lim
s0→∞

f̂(θ(s0))
s0[f̂(θ(s0))]′

= 1.

By the choice of ξ1, we have I(x0) − b(x0)/k4(d(x0)) < 0 provided δ ∈ (0, δ0/2) small enough. Thus

Δ∞ϕ(x0) ≤ b(x0)f(ūε(x0)).

The proof is complete. �
We now give the proof of Theorem 1 (i)–(ii).
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Proof of Theorem 1 (i)–(ii). Given a small ε > 0, by Proposition 3.1, there exists δ ∈ (0, δ0/2) such that for 
each ρ ∈ (0, δ),

ūε(x) = θ
(
(ξ1 + ε)A(d(x) − ρ)

)
and uε(x) = θ

(
(ξ1 − ε)A(d(x) + ρ)

)
are a supersolution and a subsolution of Eq. (1.1)1 in Ω−

ρ and in Ω+
ρ , respectively. Take M = M(δ) large 

enough such that

u ≤ ūε + M on {x ∈ Ω : d(x) = 2δ}

and

uε ≤ u + M on {x ∈ Ω : d(x) = 2δ − ρ}.

Consequently, u ≤ ūε + M on ∂Ω−
ρ and uε ≤ u + M on ∂Ω+

ρ . Due to the monotonicity of f , we can also 
conclude that ūε + M and u + M are two supersolutions of Eq. (1.1)1 in Ω−

ρ and in Ω. By comparison 
(Lemma 2.1), we get

u ≤ ūε + M in Ω−
ρ , and uε ≤ u + M in Ω+

ρ .

Hence, for x ∈ Ω−
ρ ∩ Ω+

ρ , we have

θ
(
(ξ1 − ε)A(d(x) + ρ)

)
−M

θ(Ψ(d(x))) ≤ u(x)
θ(Ψ(d(x))) ≤

θ
(
(ξ1 + ε)A(d(x) − ρ)

)
+ M

θ(Ψ(d(x)))

with Ψ(t) = 1/(tk(t)K3(t)). Let ρ → 0 to obtain

θ
(
(ξ1 − ε)A(d(x))

)
θ(Ψ(d(x))) − M

θ(Ψ(d(x))) ≤ u(x)
θ(Ψ(d(x))) ≤

θ
(
(ξ1 + ε)A(d(x))

)
θ(Ψ(d(x))) + M

θ(Ψ(d(x))) ,

for any x ∈ Ω2δ. Recalling that θ(s) → ∞ as s → ∞ and θ is slowly varying at ∞, we further get by 
Lemma 3.1 and Proposition 2.1 (the uniform convergence theorem) that

1 ≤ lim inf
d(x)→0

u(x)
θ(Ψ(d(x))) ≤ lim sup

d(x)→0

u(x)
θ(Ψ(d(x))) ≤ 1.

The proof is complete. �
4. The proof of Theorem 1 (iii)

In this section, we give the proof of Theorem 1 (iii). The following lemma plays an important role in the 
proof.

Lemma 4.1. Suppose

(a) lim
s→∞

sG′(s)
G(s) = 1, or (b) lim

s→∞
G′(s) ln f̂(s) = β ∈ R. (4.1)

Let g(s) and ϑ(s) be the functions in (1.15) and in (1.14) respectively. Then

(i) ϑ(s) → ∞ and 27s4[ϑ′(s)]3 = f̂(ϑ(s))g(ϑ(s)) ∼ f(ϑ(s))g(ϑ(s)) as s → ∞;
(ii) f̂(ϑ(s)) ∈ NRV 1;



JID:YJMAA AID:19992 /FLA Doctopic: Partial Differential Equations [m3L; v1.169; Prn:1/12/2015; 9:12] P.14 (1-27)
14 W. Wang et al. / J. Math. Anal. Appl. ••• (••••) •••–•••
(iii) ϑ is slowly varying at ∞ and ϑ′ ∈ NRV−1;

(iv) lim
s→∞

s[g(ϑ(s))]′ =
{ 0 for case (a),

1 for case (b);

(v) lim
s→∞

g(ϑ(s))
(
1 + sϑ′′(s)

ϑ′(s)

)
=
{ 1 for case (a),
β for case (b).

Proof. Assertion (i) can be derived directly from the definition of ϑ(s). By (1.14), we have

( ∞∫
f̂(ϑ(s))

[τ · g(f̂−1(τ))]− 1
3 [f̂−1(τ)]′dτ

)−3

= s for s > 0 large,

where f̂−1 is the inverse of f̂ . Define

H(r) =
( ∞∫

r

[τ · g(f̂−1(τ))]− 1
3 [f̂−1(τ)]′dτ

)−3

.

Then H
(
f̂(ϑ(s))

)
= s ∈ NRV 1. A simple computation yields

lim
s→∞

f̂(s)f̂ ′′(s)
[f̂ ′(s)]2

= 1,

whence

lim
s→∞

s[f̂−1(s)]′′

[f̂−1(s)]′
= lim

s→∞
−sf̂ ′′(f̂−1(s))
[f̂ ′(f̂−1(s))]2

= −1,

which shows [f̂−1(s)]′ ∈ NRV−1, and thereby f̂−1(s) ∈ NRV 0. We claim that g(f̂−1(s)) ∈ NRV 0. In-
deed, for case (a), it is clear that g ∈ NRV 0 and the claim follows from Proposition 2.3 (iv); for case (b), 
g(f̂−1(s)) = ln s is certainly normalized slowly varying at infinity. By Proposition 2.3 (ii) and (iii), we have 
[g(f̂−1(s))]− 1

3 [f̂−1(s)]′ ∈ NRV−1. Denote

L(s) := s[g(f̂−1(s))]− 1
3 [f̂−1(s)]′.

Then L(s) is slowly varying at ∞. In view of Proposition 2.4 (ii), we get

lim
r→∞

rH′(r)
H(r) = lim

r→∞
3r− 1

3L(r)∫∞
r

τ−
4
3L(τ)dτ

= 1,

that is, H(r) ∈ NRV 1. Recalling that H
(
f̂(ϑ(s))

)
∈ NRV 1, we deduce from Proposition 2.3 (iv) and (v) 

that f̂(ϑ(s)) ∈ NRV 1.
Since f̂−1(s) ∈ NRV 0 and f̂(ϑ(s)) ∈ NRV 1, it follows by Proposition 2.3 (iv) that ϑ ∈ NRV 0. Noticing 

that

f̂ ′(ϑ(s)) = f̂(ϑ(s))
G(ϑ(s)) , (4.2)

we obtain
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lim
s→∞

sϑ′(s)
G(ϑ(s)) = lim

s→∞
s[f̂(ϑ(s))]′

f̂(ϑ(s))
= 1 (4.3)

due to f̂(ϑ(s)) ∈ NRV 1. Observe that

lim
s→∞

g′(s)G(s) =
{ 0 for case (a),

1 for case (b).
(4.4)

Combining this with (4.3), we arrive at assertion (iv). As a result, g(ϑ(s)) ∈ NRV 0. Assertion (i) implies 
that

ϑ′(s) = 1
3s

− 4
3 [f̂(ϑ(s))g(ϑ(s))] 1

3 , (4.5)

whence, again by Proposition 2.3 (ii) and (iii), we get ϑ′ ∈ NRV−1.
From (4.2) and (4.5), we have

g(ϑ(s))
(

1 + sϑ′′(s)
ϑ′(s)

)
= g(ϑ(s))

(
s[f̂(ϑ(s))g(ϑ(s))]′

3f̂(ϑ(s))g(ϑ(s))
− 1

3

)

= s[f̂(ϑ(s))]′

f̂(ϑ(s))

(
g(ϑ(s))

3 − f̂(ϑ(s))g(ϑ(s))
3s[f̂(ϑ(s))]′

)
+ 1

3s[g(ϑ(s))]′

= s[f̂(ϑ(s))]′

f̂(ϑ(s))

(
g(ϑ(s))

3 − s
1
3G(ϑ(s))[g(ϑ(s))] 2

3

[f̂(ϑ(s))] 1
3

)
+ 1

3s[g(ϑ(s))]′.

Since f̂(ϑ(s)) ∈ NRV 1,

lim
s→∞

g(ϑ(s))
(

1 + sϑ′′(s)
ϑ′(s)

)

= lim
s→∞

(
g(ϑ(s))

3 − s
1
3G(ϑ(s))[g(ϑ(s))] 2

3

[f̂(ϑ(s))] 1
3

)
+ 1

3 lim
s→∞

s[g(ϑ(s))]′.

Using l’Hôpital’s rule, we obtain

lim
s→∞

(
g(ϑ(s))

3 − s
1
3G(ϑ(s))[g(ϑ(s))] 2

3

[f̂(ϑ(s))] 1
3

)

= lim
s→∞

G(ϑ(s))[f̂(ϑ(s))]− 1
3 [g(ϑ(s))] 2

3 − 1
3s

− 1
3 g(ϑ(s))

−s−
1
3

= lim
s→∞

(
G′(ϑ(s))g(ϑ(s)) + 2

3g
′(ϑ(s))G(ϑ(s)) − s[g(ϑ(s))]′

)
.

Thus, assertion (v) is established due to (4.1), (4.4) and assertion (iv). �
We proceed to give the following proposition.

Proposition 4.1. Under the assumptions of Theorem 1 (iii), for any small ε > 0, there exists δ ∈ (0, δ0/2)
such that for each ρ ∈ (0, δ),

ūε = ϑ
(
(ξ2 + ε)Φ(d(x) − ρ)

)
, x ∈ Ω2δ \ Ω̄ρ =: Ω−

ρ
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and

uε = ϑ
(
(ξ2 − ε)Φ(d(x) + ρ)

)
, x ∈ Ω2δ−ρ =: Ω+

ρ

are a supersolution and a subsolution to Eq. (1.1)1 in Ω−
ρ and in Ω+

ρ , respectively, where the function 
Φ(t) = K−4(t) and the constant ξ2 is determined by

ξ2 =
{ 256

27B0
for case (a),

256(β−α)
27B0

for case (b).

Proof. Fix a small ε > 0. Let δ ∈ (0, δ0/2) and ρ ∈ (0, δ). As before, a detailed discussion will be given only 
for ūε.

Let (x0, ϕ) ∈ Ω−
ρ ×C2(Ω−

ρ ) satisfy ūε ≥ ϕ in a neighborhood N of x0 and ūε(x0) = ϕ(x0). Similar to the 
proof of Proposition 3.1, we obtain

Δ∞ϕ(x0) ≤ (ξ2 + ε)3
[
ϑ′((ξ2 + ε)Φ(d−(x0))

)
Φ′(d−(x0))

]2
×
[
(ξ2 + ε)ϑ′′((ξ2 + ε)Φ(d−(x0))

)(
Φ′(d−(x0))

)2 + ϑ′((ξ2 + ε)Φ(d−(x0))
)
Φ′′(d−(x0))

]
=
(
[ln Φ(t0)]′

)4{
s4
0ϑ

′′(s0)[ϑ′(s0)]2 + s3
0[ϑ′(s0)]3

Φ′′(t0)Φ(t0)
[Φ′(t0)]2

}

with t0 := d−(x0) = d(x0) − ρ and s0 := (ξ2 + ε)Φ(t0). Furthermore, we have

1
k4(t0)f(ϑ(s0))

(
Δ∞ϕ(x0) − b(x0)f(ūε(x0))

)

≤
(
[ln Φ(t0)]′

)4
k4(t0)f(ϑ(s0))

{
s4
0ϑ

′′(s0)[ϑ′(s0)]2 + s3
0[ϑ′(s0)]3

Φ′′(t0)Φ(t0)
[Φ′(t0)]2

}
− b(x0)

k4(d(x0))

=: J(x0) −
b(x0)

k4(d(x0))

with

J(x0) =
(
[ln Φ(t0)]′

)4
k4(t0)f(ϑ(s0))

{
s4
0ϑ

′′(s0)[ϑ′(s0)]2 + s3
0[ϑ′(s0)]3

}

+
(
[ln Φ(t0)]′

)4
k4(t0)f(ϑ(s0))

{
s3
0[ϑ′(s0)]3

Φ′′(t0)Φ(t0)
[Φ′(t0)]2

− s3
0[ϑ′(s0)]3

}

=
(
[ln Φ(t0)]′

)4
s3
0[ϑ′(s0)]3

k4(t0)f(ϑ(s0))

(
1 + s0ϑ

′′(s0)
ϑ′(s0)

)
+

[ln Φ(t0)]′′
(
[ln Φ(t0)]′

)2
s3
0[ϑ′(s0)]3

k4(t0)f(ϑ(s0))

= f̂(ϑ(s0))
27(ξ2 + ε)f(ϑ(s0))

·
(
[ln Φ(t0)]′

)4
k4(t0)Φ(t0)

· g(ϑ(s0))
(

1 + s0ϑ
′′(s0)

ϑ′(s0)

)

+ f̂(ϑ(s0))
27(ξ2 + ε)f(ϑ(s0))

·
g(ϑ(s0))[ln Φ(t0)]′′

(
[ln Φ(t0)]′

)2
k4(t0)Φ(t0)

= 256f̂(ϑ(s0))
27(ξ2 + ε)f(ϑ(s0))

· g(ϑ(s0))
(

1 + s0ϑ
′′(s0)

ϑ′(s0)

)

− 256f̂(ϑ(s0)) · g(ϑ(s0))W ′(t0) lnK(t0)
,
27(ξ2 + ε)f(ϑ(s0)) ln Φ(t0)
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where Lemma 4.1 (i) is used. Therefore, it follows from the assumptions and Lemma 4.1 that

J(x0) −
b(x0)

k4(d(x0))
→
{ 256

27(ξ2+ε) −B0 for case (a),
256(β−α)
27(ξ2+ε) −B0 for case (b),

as δ → 0,

where we specifically mention that

lim
δ→0

g(ϑ(s0))
ln Φ(t0)

= lim
s0→∞

g(ϑ(s0))
ln
( 1
ξ2+εs0

) = lim
s0→∞

s0[g(ϑ(s0))]′ =
{ 0 for case (a),

1 for case (b).

In view of the choice of ξ2, we obtain J(x0) − b(x0)
k4(d(x0)) < 0, and thereby Δ∞ϕ(x0) ≤ b(x0)f(ūε(x0))

provided δ small enough. The proof is complete. �
Proof of Theorem 1 (iii). By using the procedures performed in the proof of Theorem 1 (i)–(ii), we can 
arrive at the desired result. �
5. Remarks and examples of Theorem 1

In this section, we give an explicit description for the results of Theorem 1. First, we illustrate the manner 
of the boundary blow-up solutions going to infinity. That is the following proposition.

Proposition 5.1.

(i) Under the conditions of Theorem 1 (i)–(ii),

lim
t→0

t[θ(Ψ(t))]′

θ(Ψ(t)) = 0,

where θ(s) is the function given by (1.12) and Ψ(t) = 1/(tk(t)K3(t)).
(ii) Let ϑ(s) be the function defined in Theorem 1 (iii) and Φ(t) = K−4(t). Then

lim
t→0

t[ϑ(Φ(t))]′

ϑ(Φ(t)) =
{
−∞ for case (a),
1+β
1+α for case (b),

where 1/(1 + α) denotes −∞ if α = −1.

Proof. For 0 < λ ≤ 1, since θ(s) ∈ NRV 0 and limt→0 tW
′(t)/W (t) = 1, we have

lim
t→0

t[θ(Ψ(t))]′

θ(Ψ(t)) = lim
t→0

[
Ψ(t)θ′(Ψ(t))

θ(Ψ(t)) · tΨ
′(t)

Ψ(t)

]
= 0.

When λ = 0 and limt→0 tW
′(t)/W (t) = 1, note that

t[θ(Ψ(t))]′

θ(Ψ(t)) = Ψ(t)θ′(Ψ(t))
G(θ(Ψ(t))) · G(θ(Ψ(t))) ln Ψ(t)

θ(Ψ(t)) · t[ln Ψ(t)]′

ln Ψ(t) .

Since

f̂ ′(θ(s)) = f̂(θ(s))
,

G(θ(s))
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and f̂(θ(s)) ∈ NRV 1 by Lemma 3.2 (ii), we have

lim
s→∞

sθ′(s)
G(θ(s)) = lim

s→∞
s[f̂(θ(s))]′

f̂(θ(s))
= 1

and

lim
s→∞

G(θ(s)) ln s

θ(s) = lim
s→∞

G(θ(s)) ln f̂(θ(s))
θ(s) = lim

s→∞
G(s) ln f̂(s)

s
= 1 + β.

Moreover, a direct calculation yields

[ln Ψ(t)]′ ∼ − 4
W (t) and ln Ψ(t) ∼ −4 lnK(t) as t → 0,

which together with l’Hôpital’s rule results in

lim
t→0

t[ln Ψ(t)]′

ln Ψ(t) = lim
t→0

t/W (t)
lnK(t) = 0.

Consequently, assertion (i) follows.
We proceed to prove assertion (ii). For now, we have

t[ϑ(Φ(t))]′

ϑ(Φ(t)) = Φ(t)ϑ′(Φ(t))
G(ϑ(Φ(t))) · G(ϑ(Φ(t)))g(ϑ(Φ(t)))

ϑ(Φ(t)) · ln Φ(t)
g(ϑ(Φ(t))) · t[ln Φ(t)]′

ln Φ(t) .

Similar to the proof of assertion (i), we get

lim
s→∞

sϑ′(s)
G(ϑ(s)) = lim

s→∞
s[f̂(ϑ(s))]′

f̂(ϑ(s))
= 1.

Observe that

lim
s→∞

g(s)G(s)
s

=
{ 1 for case (a),

1 + β for case (b),

and

lim
s→∞

ln s

g(ϑ(s)) =
{∞ for case (a),

1 for case (b)

due to Lemma 4.1 (iv). By l’Hôpital’s rule and Remark 1.1, it follows that

lim
t→0

t[ln Φ(t)]′

ln Φ(t) = 1 − lim
t→0

tW ′(t)
W (t) = 1

1 + α
,

where 1/(1 + α) denotes −∞ if α = −1. Thus we arrive at the desired result. �
From the above proposition, we know that θ(Ψ(t)) in Theorem 1 (i)–(ii) is slowly varying at zero, whereas 

ϑ(K−4(t)) in Theorem 1 (iii) is regularly varying at zero (with index (1 +β)/(1 +α)) for case (b) with α < −1, 
but is rapidly varying at zero for case (b) with α = −1 and case (a). This reveals in what behavior the 
boundary blow-up solution u goes to ∞ near the boundary since as d(x) → 0, u(x) ∼ θ(Ψ(d(x))) for 
Theorem 1 (i)–(ii) and u(x) ∼ ϑ(K−4(d(x))) for Theorem 1 (iii).
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Next, we list a series of functions required by the items (i)–(iii) of Theorem 1 respectively as examples 
to give a picture sketching these results.

We start from the following facts. Firstly, it is true for Theorem 1 (i)–(ii) that

ln f̂(θ(Ψ(t))) ∼ ln Ψ(t) ∼ −4 lnK(t) ∼
{
− 4

λ ln t if 0 < λ ≤ 1,
−4 ln k(t) if λ = 0

(5.1)

as t → 0 by Lemma 3.2 (ii). Secondly, it holds for Theorem 1 (iii) that

ln f̂(ϑ(K−4(t))) ∼ −4 lnK(t) ∼ −4 ln k(t) as t → 0 (5.2)

by Lemma 4.1 (ii).
Let the (H-f) function f ∈ Γ satisfy one of the following

(1) f(s) ∼ f̂(s) = e(ln s)p1 , p1 > 1 (so lim
s→∞

sG′(s)
G(s) = 1);

(2) f(s) ∼ f̂(s) = esp2 , p2 > 0 (thus lim
s→∞

G′(s) ln f̂(s) = 1−p2
p2

> −1);

(3) f(s) ∼ f̂(s) = ees
p3

, p3 > 0 (here lim
s→∞

G′(s) ln f̂(s) = −1).

Based upon (5.1) and (5.2), we obtain immediately the following explicit representation for the boundary 
asymptotic behavior of solutions with various decays of b (described via k as in (1.10) of Theorem 1):

(I-1) Theorem 1 (i) If k(t) = e−(− ln t)q1 with 0 < q1 < 1, then limt→0

(
K(t)
k(t)

)′
= 1. We conclude

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln u(x) ∼
[
− 4 ln d(x)

] 1
p1 for case (1),

u(x) ∼
[
− 4 ln d(x)

] 1
p2 for case (2),

u(x) ∼
[
ln(−4 ln d(x))

] 1
p3 for case (3)

as d(x) → 0.
(I-2) Theorem 1 (i) If k(t) = tq2 with q2 > 0, then limt→0

(
K(t)
k(t)

)′
= 1

q2+1 ∈ (0, 1), and hence
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln u(x) ∼
[
− 4(q2 + 1) ln d(x)

] 1
p1 for case (1),

u(x) ∼
[
− 4(q2 + 1) ln d(x)

] 1
p2 for case (2),

u(x) ∼
[
ln(−4(q2 + 1) ln d(x))

] 1
p3 for case (3)

as d(x) → 0.
(II) Theorem 1 (ii) If k(t) = e−(− ln t)q3 with q3 > 1, then limt→0

(
K(t)
k(t)

)′
= 0 and

lim
t→0

tW ′(t)
W (t) = 1.

Therefore, ⎧⎪⎪⎨
⎪⎪⎩

not considered here for case (1),

u(x) ∼
[
4(− ln d(x))q3

] 1
p2 for case (2),

u(x) ∼
[
ln(4(− ln d(x))q3)

] 1
p3 for case (3)

as d(x) → 0.
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(III-1) Theorem 1 (iii) If k(t) = e−t−q4 with q4 > 0, then limt→0

(
K(t)
k(t)

)′
= 0 and

lim
t→0

W ′(t) lnK(t) = −1 + q4
q4

< −1.

We have
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln u(x) ∼
[
4(d(x))−q4

] 1
p1 for case (1),

u(x) ∼
[
4(d(x))−q4

] 1
p2 for case (2),

u(x) ∼
[
ln(4(d(x))−q4)

] 1
p3 for case (3)

as d(x) → 0.
(III-2) Theorem 1 (iii) If k(t) = e−et

−q5
with q5 > 0, then limt→0

(
K(t)
k(t)

)′
= 0 and

lim
t→0

W ′(t) lnK(t) = −1.

So,

⎧⎪⎪⎨
⎪⎪⎩

ln u(x) ∼
[
4e(d(x))−q5 ] 1

p1 for case (1),

u(x) ∼
[
4e(d(x))−q5 ] 1

p2 for case (2),
not established for case (3)

as d(x) → 0.

The above examples clearly show the contribution of the decay of the weighted function b (near the 
boundary) and the growth of the nonlinearity f (at infinity) to the boundary blow-up rate of the solutions: 
more rapidly b decays to zero, or more slowly f grows at ∞, more rapidly the solutions go to infinity near 
the boundary.

6. The proof of Theorem 2

The last section is devoted to the proof of Theorem 2 concerning the second expansion of solutions near 
the boundary. We give a crucial lemma at first.

Lemma 6.1. Suppose the C1-function f on [0, ∞) satisfies f(s) > 0 for s > 0, and

lim
s→∞

F (s)f ′(s)
f2(s) = 1 with F (s) =

s∫
0

f(τ)dτ. (6.1)

Let ψ(t) : (0, ν(0+)) → (0, ∞) be the inverse of

ν(t) =
∞∫
t

dτ
4
√

4F (τ)
, t > 0.

Then
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(i) lim
t→0

ψ(t) = ∞, and ψ′(t) = − 4
√

4F (ψ(t)) with ψ′′(t) = f(ψ(t))/
√

4F (ψ(t));

(ii) lim
t→0

tψ′(t)
ψ(t) = 0;

(iii) lim
t→0

t[ln f(ψ(t))]′ = −4 and lim
t→0

tψ′′(t)
ψ′(t) = −1.

Proof. Note that F (s) = e
∫ s
0

dτ
G1(τ) on [B, ∞) for some B > 0 with G1(s) = F (s)/f(s), s > B. By (6.1), 

G′
1(s) → 0 as s → ∞. Similar to the proof of Lemma 2.2, we get that for fixed σ > 4, there exists c0 > 0

such that F (s) ≥ F (c0)(s/c0)σ, s ≥ c0, and thereby

∞∫
t

dτ
4
√

4F (τ)
< ∞, t > 0.

Also, it follows from L’Hôpital’s rule and (6.1) that

lim
s→∞

F (s)
sf(s) = 0.

A simple computation yields assertion (i). Noticing that

t =
∞∫

ψ(t)

dτ
4
√

4F (τ)
, ∀t ∈ (0, ν(0+)) (6.2)

and using L’Hôpital’s rule, we have with assertion (i) that

lim
t→0

tψ′(t)
ψ(t) = lim

s→∞

− 4
√

4F (s)
∫∞
s

dτ
4√4F (τ)

s
= lim

s→∞
4

4 − sf(s)
F (s)

= 0.

By (6.2),

( ∞∫
F (ψ(1/s))

(4τ)− 1
4 [F−1(τ)]′dτ

)−1

= s for large s > 0,

where F−1 is the inverse of F . Following the procedures used in the proof of Lemma 4.1 (ii), we arrive at 
F (ψ(1/s)) ∈ NRV 4, whence

lim
t→0

t[lnF (ψ(t))]′ = − lim
s→∞

s[F (ψ(1/s))]′

F (ψ(1/s)) = −4,

and

lim
t→0

tψ′′(t)
ψ′(t) = lim

t→0

tf(ψ(t))/
√

4F (ψ(t))
− 4
√

4F (ψ(t))
= lim

t→0

t[lnF (ψ(t))]′

4 = −1.

Since [ln f(s)]′ ∼ [lnF (s)]′ as s → ∞ due to (6.1),

lim
t→0

t[ln f(ψ(t))]′ = lim
t→0

t[lnF (ψ(t))]′ = −4.

Now, assertions (ii) and (iii) have been established. �
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Remark 6.1. limt→0 t[ln f(ψ(t))]′ = −4 can be rewritten as

lim
t→0

G(ψ(t))
tψ′(t) = −4 (6.3)

with G(s) = f(s)/f ′(s) for s > 0 large. In addition, we point out that Lemma 6.1 is valid for the functions 
f in Theorem 2, since here (6.1) is satisfied.

In addition, we need two propositions:

Proposition 6.1. Let b(x) ≡ 1. Suppose f ∈ C[0, ∞) is increasing in (0, ∞) with f(0) = 0, and satisfies the 
Keller–Osserman condition (1.4). Then for any solution u of (1.1), there are constants δ ∈ (0, δ0/2) and 
M > 0 such that

ψ(d(x)) −M ≤ u(x) ≤ ψ(d(x)) + M, x ∈ Ω2δ

with ψ(t) defined in Lemma 6.1.

Proof. The claimed result follows with the same proof of Theorem 1 if we can find some δ ∈ (0, δ0/2) such 
that for each ρ ∈ (0, δ),

w(x) = ψ(d(x) − ρ), x ∈ Ω2δ \ Ω̄ρ =: Ω−
ρ

and

z(x) = ψ(d(x) + ρ), x ∈ Ω2δ−ρ =: Ω+
ρ

are a supersolution and a subsolution of Eq. (1.1)1 in Ω−
ρ and in Ω+

ρ , respectively.
Next, we take z for instance to show that it indeed can be a subsolution of (1.1)1. Let δ ∈ (0, δ0/2), 

ρ ∈ (0, δ). It is obvious that ψ is decreasing in (ρ, 2δ) provided δ small enough. Denote by ζ the inverse 
of ψ. Then

ζ ′(t) = [ψ′(ζ(t))]−1, ζ ′′(t) = −[ψ′(ζ(t))]−3ψ′′(ζ(t)). (6.4)

Let (x0, ϕ) ∈ Ω+
ρ × C2(Ω+

ρ ) be a pair such that z ≤ ϕ in a neighborhood N of x0 and z(x0) = ϕ(x0) (i.e. 
ζ(ϕ(x0)) = d(x0) + ρ =: d+(x0)). Similar to the proof of Proposition 3.1, we get by (6.4) that

Δ∞ϕ(x0) ≥ −ζ ′′(ϕ(x0))(ζ ′(ϕ(x0)))−5

= [ψ′(d+(x0))]2ψ′′(d+(x0))

= f(ψ(d+(x0)))

= f(z(x0)).

The proof is complete. �
Remark 6.2. Clearly, u(x) ∼ ψ(d(x)) as d(x) → 0 in Proposition 6.1. Generally, we can prove that if b in 
(H-b) satisfies (1.10) with 0 < λ ≤ 1, f ∈ C1[0, ∞) is increasing in (0, ∞) with f(0) = 0, and (6.1) holds, 
then for any solution u of (1.1), u(x) ∼ ψ(K(d(x))) as d(x) → 0.
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Proposition 6.2. Under the assumptions of Theorem 2, there exists δ ∈ (0, δ0) such that for each ρ ∈ (0, δ)
and each Λ > 0 with Λρ[ln f(ψ(ρ))]−1 ≤ δ, the functions

ū = ψ(d(x)) + Λd(x)[ln f(ψ(d(x)))]−1G(ψ(d(x)))

and

u = ψ(d(x)) − Λd(x)[ln f(ψ(d(x)))]−1G(ψ(d(x)))

are a supersolution and a subsolution of Eq. (1.1)1 in Ωρ, respectively. Here G(s) is the function given 
by (1.17).

Proof. Let ρ ∈ (0, δ) and Λ > 0 satisfy Λρ[ln f(ψ(ρ))]−1 ≤ δ with δ ∈ (0, δ0) to be determined. We only 
give the proof for subsolutions.

Define

η(t) = ψ(t) − Λt[ln f(ψ(t))]−1G(ψ(t)), t ∈ (0, ρ).

Then

η′(t) = ψ′(t) − Λ[ln f(ψ(t))]−1G(ψ(t))

+ Λt[ln f(ψ(t))]−2 · ψ′(t) − Λt[ln f(ψ(t))]−1G′(ψ(t)) · ψ′(t)

= ψ′(t)
{

1 − Λt[ln f(ψ(t))]−1
(G(ψ(t))

tψ′(t) − [ln f(ψ(t))]−1 + G′(ψ(t))
)}

≤ ψ′(t)
{

1 − δ
∣∣∣G(ψ(t))
tψ′(t) − [ln f(ψ(t))]−1 + G′(ψ(t))

∣∣∣}
< 0

with δ small enough, since limt→0 ψ(t) = ∞, lims→∞ G′(s) = 0 and limt→0 G(ψ(t))/(tψ′(t)) = −4 due 
to (6.3). Hence η is decreasing in (0, ρ). Denote by ζ the inverse of η. A direct but tedious computation 
shows that

ζ ′(t) = 1
η′(ζ(t))

=
{
ψ′(ζ(t)) − Λ[ln f(ψ(ζ(t)))]−1G(ψ(ζ(t))) + Λζ(t)[ln f(ψ(ζ(t)))]−2 · ψ′(ζ(t))

− Λζ(t)[ln f(ψ(ζ(t)))]−1G′(ψ(ζ(t))) · ψ′(ζ(t))
}−1

,

ζ ′′(t) = −
{
ψ′(ζ(t)) − Λ[ln f(ψ(ζ(t)))]−1G(ψ(ζ(t))) + Λζ(t)[ln f(ψ(ζ(t)))]−2 · ψ′(ζ(t))

− Λζ(t)[ln f(ψ(ζ(t)))]−1G′(ψ(ζ(t))) · ψ′(ζ(t))
}−3

×
{
ψ′′(ζ(t)) + 2Λ[ln f(ψ(ζ(t)))]−2 · ψ′(ζ(t))

− 2Λ[ln f(ψ(ζ(t)))]−1G′(ψ(ζ(t))) · ψ′(ζ(t))

− 2Λζ(t) [ln f(ψ(ζ(t)))]−3

G(ψ(ζ(t))) · [ψ′(ζ(t))]2 + Λζ(t)[ln f(ψ(ζ(t)))]−2 · ψ′′(ζ(t))

+ Λζ(t)[ln f(ψ(ζ(t)))]−2G
′(ψ(ζ(t)))

G(ψ(ζ(t))) · [ψ′(ζ(t))]2

− Λζ(t)[ln f(ψ(ζ(t)))]−1G′′(ψ(ζ(t))) · [ψ′(ζ(t))]2

− Λζ(t)[ln f(ψ(ζ(t)))]−1G′(ψ(ζ(t))) · ψ′′(ζ(t))
}
. (6.5)
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Let (x0, ϕ) ∈ Ωρ ×C2(Ωρ) be a pair such that u ≤ ϕ in a neighborhood N of x0 and u(x0) = ϕ(x0) (i.e. 
d(x0) = ζ(ϕ(x0))). Similar to the proof of Proposition 3.1, we get

Δ∞ϕ(x0) ≥ −ζ ′′(ϕ(x0))(ζ ′(ϕ(x0)))−5,

which together with (6.5) yields that

Δ∞ϕ(x0) ≥ ψ′′(t0)[ψ′(t0)]2
{

1 − Λt0[ln f(ψ(t0))]−1
(G(ψ(t0))
t0ψ′(t0)

− [ln f(s0)]−1 + G′(s0)
)}2

×
{

1 + Λt0[ln f(ψ(t0))]−1
(2[ln f(s0)]−1ψ′(t0)

t0ψ′′(t0)
− 2G′(s0)ψ′(t0)

t0ψ′′(t0)

− 2s0[ln f(s0)]−1

G(s0) ln f(s0)
ψ′(t0)

t0ψ′′(t0)
t0ψ

′(t0)
ψ(t0)

+ [ln f(s0)]−1

+ s0G
′(s0)

G(s0) ln f(s0)
ψ′(t0)

t0ψ′′(t0)
t0ψ

′(t0)
ψ(t0)

− s0G
′′(s0)

ψ′(t0)
t0ψ′′(t0)

t0ψ
′(t0)

ψ(t0)
−G′(s0)

)}
,

where t0 := d(x0) and s0 := ψ(d(x0)) = ψ(t0). Note that since we require ρ, Λ > 0 such that ρ and 
Λρ[ln f(ψ(ρ))]−1 are not more than δ, t0 and Λt0[ln f(ψ(t0))]−1 can be arbitrarily small whenever δ is 
taken small enough. In the following, we denote with o(1) an infinitely small quantity with t0 → 0 that is 
independent of Λ. Notice that s0 is a function of t0 satisfying s0 → ∞ as t0 → 0. It follows from Lemma 6.1
and Remark 1.3 that

Δ∞ϕ(x0) ≥ f(ψ(t0))
{
1 + Λt0[ln f(ψ(t0))]−1(4 + o(1))

}2{1 + Λt0[ln f(ψ(t0))]−1 · o(1)
}

= f(ψ(t0))
{
1 + Λt0[ln f(ψ(t0))]−1

× (8 + Λt0[ln f(ψ(t0))]−1(16 + o(1)) + (Λt0[ln f(ψ(t0))]−1)2 · o(1) + o(1))
}

≥ f(ψ(t0))
{
1 + Λt0[ln f(ψ(t0))]−1(8 − 16δ + o(1))

}
(6.6)

provided δ small enough.
Let us continue to estimate f(u(x0)). Noticing that lims→∞ G(s)/s = lims→∞ G′(s) = 0, we can take δ

small so that

−Λt0[ln f(ψ(t0))]−1G(s0)
s0

> −1
2 ,

and thereby invoking Taylor’s expansion and further taking δ small if necessary lead to

e[ln u(x0)]p = e
[ln ψ(t0)]p

⎡
⎣1+

ln
(
1−Λt0[ln f(ψ(t0))]−1 G(s0)

s0

)
ln s0

⎤
⎦p

≤ e[ln ψ(t0)]p
[
1−pΛt0[ln f(ψ(t0))]−1 G(s0)

s0 ln s0
+ C1

ln s0

(
−Λt0[ln f(ψ(t0))]−1 G(s0)

s0

)2]

= e[ln ψ(t0)]p+Λt0[ln f(ψ(t0))]−1(−1+Λt0[ln f(ψ(t0))]−1·o(1))

≤ e[ln ψ(t0)]p+Λt0[ln f(ψ(t0))]−1(−1+o(1))

≤ e[ln ψ(t0)]p
{
1 + Λt0[ln f(ψ(t0))]−1(−1 + Λt0[ln f(ψ(t0))]−1 · C2 + o(1))

}
for case (Γ-1), and
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e[u(x0)]p = e[ψ(t0)]p
[
1−Λt0[ln f(ψ(t0))]−1 G(s0)

s0

]p

≤ e[ψ(t0)]p
[
1−pΛt0[ln f(ψ(t0))]−1 G(s0)

s0
+C3

(
−Λt0[ln f(ψ(t0))]−1 G(s0)

s0

)2]

= e[ψ(t0)]p+Λt0[ln f(ψ(t0))]−1(−1+Λt0[ln f(ψ(t0))]−1·o(1))

≤ e[ψ(t0)]p+Λt0[ln f(ψ(t0))]−1(−1+o(1))

≤ e[ψ(t0)]p
{
1 + Λt0[ln f(ψ(t0))]−1(−1 + Λt0[ln f(ψ(t0))]−1 · C4 + o(1))

}
for case (Γ-2), where Ci (i = 1, 2, 3, 4) are positive constants independent of Λ. Therefore, in both cases, 
f(u(x0)) admits the same estimate of the form

f(u(x0)) ≤ f(ψ(t0))
{
1 + Λt0[ln f(ψ(t0))]−1(−1 + D1δ + o(1))

}
(6.7)

with δ small enough. Hence we obtain from (6.6) and (6.7) that

Δ∞ϕ(x0) − f(u(x0)) ≥ f(ψ(t0))
{
Λt0[ln f(ψ(t0))]−1(9 −D2δ + o(1))

}
> 0

provided δ small enough. The proof is complete. �
At last, we give the proof of Theorem 2.

Proof of Theorem 2. Let u be a solution of (1.1). By Proposition 6.1, there are constants δ∗ ∈ (0, δ0) and 
M > 0 such that

ψ(d(x)) −M ≤ u(x) ≤ ψ(d(x)) + M, x ∈ Ωδ∗ .

In view of Proposition 6.2, there exists δ ∈ (0, δ∗) such that for each ρ ∈ (0, δ) and each Λ > 0 with 
Λρ[ln f(ψ(ρ))]−1 ≤ δ, the functions

ū = ψ(d(x)) + Λd(x)[ln f(ψ(d(x)))]−1G(ψ(d(x)))

and

u = ψ(d(x)) − Λd(x)[ln f(ψ(d(x)))]−1G(ψ(d(x)))

are a supersolution and a subsolution of Eq. (1.1)1 in Ωρ, respectively. Here G(s) is the function given 
by (1.17). In what follows we will fix ρ and Λ to suit our purpose.

It is easy to see that f(s)/s3 is ultimately increasing, i.e., there exists a constant s0 > s∗ such that 
f(s)/s3 is increasing in (s0, ∞), which shows

1
σ3 f(s) ≤ f

( s
σ

)
and σ3f(s) ≥ f(σs)

for any s > 2s0 and any σ ∈ (1/2, 1). Noticing that u(x) → ∞ as d(x) → 0, we can take ρ1 ∈ (0, δ) small to 
guarantee that u(x) > 2s0 for d(x) < ρ1. Hence for any σ ∈ (1/2, 1),

1
σ3 f(u(x)) ≤ f

( 1
σ
u(x)

)
and σ3f(u(x)) ≥ f(σu(x))

in {x ∈ Ω : d(x) < ρ1}, whence

Δ∞
( 1

u
)
≤ f

( 1
u
)
, Δ∞(σu) ≥ f(σu) in {x ∈ Ω : d(x) < ρ1}
σ σ
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in the viscosity sense. Since G(s) → ∞ as s → ∞ indicated in Remark 1.3, we can let ρ1 be small such that 
δG(ψ(d(x))) > M on {x ∈ Ω : d(x) ≤ ρ1}. Let Λ1ρ1[ln f(ψ(ρ1))]−1 = δ. Then u and ū (with ρ1 and Λ1
taken above) are a subsolution and a supersolution of Eq. (1.1)1 in Ωρ1 , with

u(x) < u(x) < ū(x) on {x ∈ Ω : d(x) = ρ1}.

Certainly,

u(x) < 1
σ
u(x) and ū(x) > σu(x) on {x ∈ Ω : d(x) = ρ1}.

From Proposition 6.1 and the expressions of u and ū, we have

lim
d(x)→0

u(x)
u(x) = lim

d(x)→0

ū(x)
u(x) = 1.

Hence

u(x) ≤ 1
σ
u(x) and ū(x) ≥ σu(x) near ∂Ω.

By comparison, we get

u(x) ≤ 1
σ
u(x) and ū(x) ≥ σu(x) in Ωρ1 .

Since σ ∈ (1/2, 1) is arbitrary, we have

u(x) ≤ u(x) ≤ ū(x) in Ωρ1 ,

that is,
∣∣∣∣ u(x) − ψ(d(x))
d(x)[ln f(ψ(d(x)))]−1G(ψ(d(x)))

∣∣∣∣ ≤ Λ1 in Ωρ1 .

Inserting the expressions of f and G, we get the desired result. �
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