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In this paper, we consider the following Schrödinger–Poisson system with singularity

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−Δu + ηφu = μu−r, in Ω,

−Δφ = u2, in Ω,

u > 0, in Ω,

u = φ = 0, on ∂Ω,

where Ω ⊂ R
3 is a smooth bounded domain with boundary ∂Ω, η = ±1, r ∈ (0, 1)

is a constant, μ > 0 is a parameter. We obtain the existence and uniqueness of 
positive solution for η = 1 and any μ > 0 by using the variational method. The 
existence and multiplicity of solutions for the system are also considered for η = −1
and μ > 0 small enough by using the method of Nehari manifold.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following singular Schrödinger–Poisson system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δu + ηφu = μu−r, in Ω,

−Δφ = u2, in Ω,

u > 0, in Ω,

u = φ = 0, on ∂Ω,

(1.1)
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where Ω ⊂ R
3 is a smooth bounded domain with boundary ∂Ω, η = ±1, r ∈ (0, 1) is a constant, μ > 0 is a 

parameter.
This problem is derived from the recent research on the following Schrödinger–Poisson system

{
−Δu + u + qφf(u) = g(x, u), in R

3,

−Δφ = 2F (u), in R
3.

(1.2)

Recently, the existence, nonexistence, multiplicity results, ground state and sign-changing solutions of sys-
tem (1.2) have been studied widely by using the modern variational method and critical point theory under 
various assumptions of nonlocal term f and nonlinear term g, see [9,11,12,22,16,1,6,5,30,19,18,28,31,20], etc.

There are also many references which investigated Schrödinger–Poisson system in bounded domain, see 
[7,3,4]. In [3], the following system involving the critical growing nonlocal term was considered

⎧⎪⎪⎨
⎪⎪⎩
−Δu = λu + q|u|3uφ, in BR,

−Δφ = q|u|5, in BR,

u = φ = 0, on ∂BR,

where BR is a ball in R3 centered at the origin and with radius R. The existence and nonexistence results 
were obtained by discussing the scope of the parameter λ. By using the methods of a cut-off function and 
the variational arguments, in [4], the authors studied the following Schrödinger–Poisson system in bounded 
domain ⎧⎪⎪⎨

⎪⎪⎩
−Δu + εqφf(u) = η|u|p−1u, in Ω,

−Δφ = 2qF (u), in Ω,

u = φ = 0, on ∂Ω,

where Ω ⊂ R
3 is a bounded domain with smooth boundary ∂Ω, p ∈ (1, 5), q > 0, ε, η = ±1, f : R → R is 

a continuous function and F (t) =
∫ t

0 f(s)ds. They obtained the existence and multiplicity results assuming 
on f a subcritical growth condition and they also considered the existence and nonexistence results under 
the critical case.

The following singular semilinear elliptic problem
⎧⎪⎪⎨
⎪⎪⎩
−Δu = λup + μu−r, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

(1.3)

where Ω ⊂ R
N is a smooth bounded domain, N � 3, p > 0, r ∈ (0, 1), has been extensively studied, see 

[17,25,24,29,15,8,26,2,27], etc. When λ ≡ 0, the existence of solutions has been studied in [10,13,17]. When 
p ∈ (1, 2∗ − 1), the existence and multiplicity of solutions for (1.3) have been studied in [25,29,15,2,27] for 
all μ > 0 and λ > 0 small enough. The existence of multiple solutions of (1.3) for p = 2∗ − 1 and λ > 0
small enough has been considered in [2]. In [24], the existence result for p ∈ (0, 1) was considered.

Recently, in [21], the following singular Kirchhoff type problem which possesses the nonlocal term 
(b 
∫
Ω |∇u|)Δu has been considered

⎧⎪⎪⎨
⎪⎪⎩
−(a + b

∫
Ω |∇u|2)Δu = λu3 + μu−r, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

(1.4)
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where Ω ⊂ R
3 is a bounded smooth domain with boundary ∂Ω, a, b, λ, μ > 0 are four parameters and 

r ∈ (0, 1). By using the variational method and the Nehari manifold, the existence and multiplicity of 
solutions for problem (1.4) have been considered.

To our knowledge, the singular Schrödinger–Poisson system has not been studied up to now. Motivated 
by above references, especially by [25,21], in this paper, we consider the singular Schrödinger–Poisson 
system (1.1).

Before we state the main results about Schrödinger–Poisson system (1.1), we give several definitions.
Denote by H the Sobolev space H1

0 (Ω) with the inner product and norm

(u, v) =
∫
Ω

∇u · ∇v, ‖u‖ = (u, u)1/2,

and denote | · |s the usual norm of Ls(Ω) for s ∈ [1, ∞). By Sobolev embedding theorem, H can be 
compactly embedded into Ls(Ω) for s ∈ [1, 6), and the embedding H ↪→ L6(Ω) is continuous. Let S > 0 be 
the embedding constant, that is

|u|26 � S−1‖u‖2, u ∈ H. (1.5)

Since r ∈ (0, 1), 
(∫

Ω |u|1−r
) 1

1−r is not a norm, but by Hölder inequality and (1.5) the following holds
∫
Ω

|u|1−r � |u|1−r
4 |Ω|(3+r)/4 � |u|1−r

6 |Ω|(5+r)/6 � S−(1−r)/2‖u‖1−r|Ω|(5+r)/6, (1.6)

where |Ω| denotes the Lebesgue measure of the domain Ω.
By using the Lax–Milgram theorem, for each u ∈ H, the second equation of system (1.1) with Dirichlet 

boundary condition has a unique solution φu ∈ H, substituting φu to the first equation of (1.1), the system 
can be transformed into one variable problem

⎧⎪⎪⎨
⎪⎪⎩
−Δu + ηφuu = μu−r, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω.

(1.7)

For problem (1.7), we define the functional

Jμ(u) = 1
2

∫
Ω

‖u‖2 + η

4

∫
Ω

φuu
2 − μ

1 − r

∫
Ω

|u|1−r, u ∈ H. (1.8)

Since r ∈ (0, 1), for any u, v ∈ H, by (1.6),
∣∣∣∣∣∣
∫
Ω

|u|1−r − |v|1−r

∣∣∣∣∣∣ �
∫
Ω

|u− v|1−r � |u− v|1−r
4 |Ω|(3+r)/4 � S−(1−r)/2‖u− v‖1−r|Ω|(5+r)/6. (1.9)

Then, by Lemma 2.1 in the following section, Jμ is well defined and continuous on H.
In general, a function u ∈ H is called a solution of (1.7), that is (u, φu) is a solution of (1.1) and u > 0

satisfying
∫

∇u · ∇φ + η

∫
φuuφ− μ

∫
u−rφ = 0, φ ∈ H. (1.10)
Ω Ω Ω
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We denote Ψ(u) =
∫
Ω φuu

2, it follows from Lemma 2.1 in the following section that Ψ : H → R is C1

and Ψ(tu) = t4Ψ(u). Although Ψ is 4 homogeneous function, it is not equivalent to the nonlinear function 
f(u) = u4. Therefore our problem (1.1) is totally different from the semilinear problem (1.3) with p = 4. Our 
problem is also different from Kirchhoff problem (1.4). Although the two problems possess nonlocal term, 
the nonlocal terms φuu in (1.7) and b(

∫
Ω |∇u|)Δu in (1.4) are essentially different. In fact, the existence 

and multiplicity of solutions for (1.4) are related to the following eigenvalue problem
{
−b(

∫
Ω |∇u|2)Δu = νu3, in Ω

u = 0, on ∂Ω.

However, Schrödinger–Poisson system doesn’t have similar eigenvalue problem. To our knowledge, the sin-
gular Schrödinger–Poisson system has not been considered, and the study on the existence, uniqueness and 
multiplicity of solutions for singular Schrödinger–Poisson system (1.1) is meaningful in mathematics.

We consider system (1.1) in two cases: η = 1 and η = −1. When η = 1, we can prove that system (1.1)
possesses a unique solution which is the global minimum of the functional Jμ on H for any μ > 0 by using 
the variational method. For η = −1, two solutions of system (1.1) can be obtained by using the Nehari 
manifold for μ ∈ (0, μ∗), where

μ∗ = 2
3 + r

(
1 + r

3 + r

)(1+r)/2

S2+r|Ω|−(4+2r)/3,

S > 0 in (1.5). Specifically, we decompose Nehari manifold Nμ into three parts: N+
μ , N−

μ and N0
μ, meanwhile, 

we can prove that N±
μ 	= ∅, N0

μ = {0} and N−
μ is closed for μ ∈ (0, μ∗). Consequently, we consider the 

minimums of the functional Jμ on N+
μ ∪N0

μ and N−
μ respectively by using Ekeland’s variational principle.

Our main results can be described as follows.

Theorem 1.1. Assume r ∈ (0, 1), then system (1.1) has a unique solution for η = 1 and μ > 0.

Theorem 1.2. Assume r ∈ (0, 1), when η = −1, there exists

μ∗ = 2
3 + r

(
1 + r

3 + r

)(1+r)/2

S2+r|Ω|−(4+2r)/3

such that system (1.1) has at least two solutions for each μ ∈ (0, μ∗).

This paper is organized as follows. Some preliminaries and the proof of Theorem 1.1 are given in Section 2. 
In Section 3, we give the proof of Theorem 1.2.

In this paper, C, Ci denote various positive constants, which may vary from line to line.

2. Preliminaries and proof of Theorem 1.1

For given u ∈ H, the second equation of system (1.1) is a Poisson equation for φ which is uniquely solved. 
Then system (1.1) can be reduced to the first equation with φ represented by the solution of the Poisson 
equation. This is a basic strategy of solving Schrödinger–Poisson system. To be more precise about the 
solution of the Poisson equation, we recall the following lemma from [7,11,22], etc.

Lemma 2.1. For each u ∈ H, there exists a unique φu ∈ H solution of
{
−Δφ = u2, in Ω,

φ = 0, on ∂Ω.
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Moreover,

(i) ‖φu‖2 =
∫
Ω φuu

2;
(ii) φu � 0. Moreover, φu > 0 when u 	= 0;
(iii) for each t 	= 0, φtu = t2φu;
(iv)

∫
Ω

φuu
2 =

∫
Ω

|∇φu|2 � S−1|u|412/5 � S−1|u|44|Ω|2/3 � S−3‖u‖4|Ω|, u ∈ H,

where S > 0 is the embedding constant in (1.5);
(v) assume that un ⇀ u in H, then φun

→ φu in H and 
∫
Ω φun

unv →
∫
Ω φuuv for any v ∈ H;

(vi) we denote Ψ(u) =
∫
Ω φuu

2, then Ψ : H → H is C1 and for any v ∈ H,

(Ψ′(u), v) = 4
∫
Ω

φuuv.

(vii) φu ∈ W 2,3
loc (Ω) ∩ C0(Ω̄);

(viii) for u, v ∈ H, 
∫
Ω(φuu − φvv)(u − v) � 1

2‖φu − φv‖2.

Proof. The proofs of (i)–(vi) of Lemma 2.1 are standard, see [7,11,22], etc. (vii) gives the regularity of φu, 
which can be obtained by Theorem 9.30 in [14]. We only give the proof of (viii). By the definitions of φu, φv, 
we obtain that

{
−Δ(φu − φv) = u2 − v2, in Ω,

φu − φv = 0, on ∂Ω,

then, we have

‖φu − φv‖2 =
∫
Ω

|∇(φu − φv)|2 =
∫
Ω

(φu − φv)(u2 − v2). (2.1)

Thus ∫
Ω

(φuu− φvv)(u− v) =
∫
Ω

[φuu
2 + φvv

2 − (φu + φv)uv]

�
∫
Ω

φuu
2 + φvv

2 − (φu + φv)
u2 + v2

2

= 1
2

∫
Ω

(φu − φv)(u2 − v2).

It follows from (2.1) that
∫
Ω

(φuu− φvv)(u− v) � 1
2‖φu − φv‖2.

The proof is completed. �
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By Lemma 2.1, system (1.1) can be reduced to a semilinear nonlocal elliptic equation (1.7), the corre-
sponding functional Jμ is defined in (1.8). In the following of this section, we show that for any μ > 0, the 
functional Jμ attains the global minimizer in H, which is the unique solution of system (1.1) for η = 1.

Lemma 2.2. For any μ > 0 and η = 1, the functional Jμ defined in (1.8) attains the global minimizer in H, 
that is, there exists u∗ ∈ H such that Jμ(u∗) = mμ = infH Jμ < 0.

Proof. For u ∈ H, by Lemma 2.1 (ii) and (1.6),

Jμ(u) = 1
2

∫
Ω

|∇u|2 + 1
4

∫
Ω

φuu
2 − μ

1 − r

∫
Ω

|u|1−r

� 1
2‖u‖

2 − μ

1 − r
S− 1−r

2 |Ω| 5+r
6 ‖u‖1−r, (2.2)

since r ∈ (0, 1), Jμ is coercive and bounded from below on H for any μ > 0. Thus mμ = infH Jμ is well 
defined. For t > 0 and given u ∈ H \ {0},

Jμ(tu) = t2

2 ‖u‖2 + t4

4

∫
Ω

φuu
2 − μ

1 − r
t1−r

∫
Ω

|u|1−r,

we can see that for t > 0 small enough, Jμ(tu) < 0. It follows that mμ = infH Jμ < 0.
According to the definition of mμ, there exists a minimizing sequence {un} ⊂ H such that 

limn→∞ Jμ(un) = mμ < 0. Since Jμ(un) = Jμ(|un|), we may assume that un � 0. It follows from (2.2) that 
{un} is bounded in H. Going if necessary to a subsequence, we can assume that

un ⇀ u∗, in H,

un → u∗, in Lp(Ω), p ∈ [1, 6),

un(x) → u∗(x), a.e. in Ω.

Then by the weakly lower semi-continuity of the norm, Lemma 2.1 (v) and (1.9), we have

Jμ(u∗) = 1
2‖u∗‖2 + 1

4

∫
Ω

φu∗u
2
∗ −

μ

1 − r

∫
Ω

|u∗|1−r

� lim inf
n→∞

Jμ(un) = mμ.

On the other hand, Jμ(u∗) � mμ, therefore Jμ(u∗) = mμ < 0. The proof is completed. �
Proof of Theorem 1.1. We divide three steps to prove Theorem 1.1.

Firstly, we show u∗ > 0 in Ω. From Lemma 2.2, u∗ � 0 and u∗ 	= 0. Fix φ ∈ H, φ > 0 and t � 0, by 
Lemma 2.1 (vi), we have

0 � lim inf
t→0

Jμ(u∗ + tφ) − Jμ(u∗)
t

=
∫
Ω

[∇u∗∇φ + φu∗u∗φ] − μ

1 − r
lim sup

t→0

∫
Ω

(u∗ + tφ)1−r − u1−r
∗

t
,

that is



166 Q. Zhang / J. Math. Anal. Appl. 437 (2016) 160–180
μ

1 − r
lim sup

t→0

∫
Ω

(u∗ + tφ)1−r − u1−r
∗

t
�

∫
Ω

[∇u∗∇φ + φu∗u∗φ]. (2.3)

Notice that ∫
Ω

(u∗ + tφ)1−r − u1−r
∗

t
= (1 − r)

∫
Ω

(u∗ + tφζ)−rφ,

where ζ(x) ∈ (0, 1) and (u∗(x) + tφ(x)ζ(x))−rφ(x) → u∗(x)−rφ(x), a.e. x ∈ Ω, t → 0. Since (u∗(x) +
tφ(x)ζ(x))−rφ(x) � 0, by using Fatou’s Lemma, from (2.3), we have

μ

∫
Ω

u−r
∗ φ �

∫
Ω

[∇u∗∇φ + φu∗u∗φ].

By the idea of approximation, the above expression also holds for φ ∈ H, φ � 0, that is∫
Ω

[∇u∗∇φ + φu∗u∗φ] − μ

∫
Ω

u−r
∗ φ � 0, φ ∈ H,φ � 0. (2.4)

Therefore,

−Δu∗ + φu∗u∗ � 0 in the weak sense.

Since u∗ � 0 and u∗ 	= 0, by Lemma 2.1 (ii) and (vii), φu∗ > 0 and φu∗ ∈ C0(Ω̄), it follows from the 
maximum principle (Theorem 3.5 in [14]) that u∗ > 0 in Ω.

Secondly, we show that u∗ is a solution of system (1.1), that is, we prove u∗ satisfies (1.10) for η = 1.
For given δ > 0, define h : [−δ, δ] → R by h(t) = Jμ(u∗ + tu∗), then h attains its minimum at t = 0 by 

Lemma 2.2. It implies that

h′(0) = ‖u∗‖2 +
∫
Ω

φu∗u
2
∗ − μ

∫
Ω

|u∗|1−r = 0. (2.5)

We take φ ∈ H \ {0}, ε > 0 and define Ψ = (u∗ + εφ)+. Let

Ω1 = {x ∈ Ω : u∗(x) + εφ(x) > 0}, Ω2 = {x ∈ Ω : u∗(x) + εφ(x) � 0}.

Then Ψ|Ω1 = u∗ + εφ, Ψ|Ω2 = 0. Inserting Ψ into (2.4) and using (2.5), we can obtain that

0 �
∫
Ω

[∇u∗ · ∇Ψ + φu∗u∗Ψ − μu−r
∗ Ψ]

=
∫
Ω1

[∇u∗ · ∇(u∗ + εφ) + φu∗u∗(u∗ + εφ) − μu−r
∗ (u∗ + εφ)]

=
∫

Ω\Ω2

[∇u∗ · ∇(u∗ + εφ) + φu∗u∗(u∗ + εφ) − μu−r
∗ (u∗ + εφ)]

= ε

∫
Ω

[∇u∗ · ∇φ + φu∗u∗φ− μu−r
∗ φ] −

∫
Ω2

[∇u∗ · ∇(u∗ + εφ) + φu∗u∗(u∗ + εφ) − μu−r
∗ (u∗ + εφ)]

� ε

∫
[∇u∗ · ∇φ + φu∗u∗φ− μu−r

∗ φ− ε

∫
∇u∗ · ∇φ + φu∗u∗φ]. (2.6)
Ω Ω2



Q. Zhang / J. Math. Anal. Appl. 437 (2016) 160–180 167
Since u∗ > 0 and the measure of the domain Ω2 = {x ∈ Ω : u∗(x) + εφ(x) � 0} tends to zero as ε → 0, it 
follows that ∫

Ω2

[∇u∗ · ∇φ + φu∗u∗φ] → 0.

Then dividing by ε > 0 and letting ε → 0 in (2.6), we see that

∫
Ω

[∇u∗ · ∇φ + φu∗u∗φ− μu−r
∗ φ] � 0, φ ∈ H.

This inequality also holds for −φ, so we get
∫
Ω

[∇u∗ · ∇φ + φu∗u∗φ− μu−r
∗ φ] = 0, φ ∈ H.

Then u∗ ∈ H is a solution of system (1.1) for μ > 0 and η = 1.
Finally, we show that u∗ is the unique solution of system (1.1) for η = 1. Assume that v∗ ∈ H is also a 

solution of system (1.1), it follows from (1.10) that

∫
Ω

[∇u∗∇(u∗ − v∗) + φu∗u∗(u∗ − v∗)] − μ

∫
Ω

u−r
∗ (u∗ − v∗) = 0 (2.7)

and ∫
Ω

[∇v∗∇(u∗ − v∗) + φv∗v∗(u∗ − v∗)] − μ

∫
Ω

v−r
∗ (u∗ − v∗) = 0. (2.8)

Subtracting (2.7) and (2.8), we obtain that

‖u∗ − v∗‖2 +
∫
Ω

(φu∗u∗ − φv∗v∗)(u∗ − v∗) = μ

∫
Ω

(u−r
∗ − v−r

∗ )(u∗ − v∗). (2.9)

Since r ∈ (0, 1), u∗, v∗ > 0 in Ω, the following inequality holds

∫
Ω

(u−r
∗ − v−r

∗ )(u∗ − v∗) � 0.

Consequently, it follows from Lemma 2.1 (viii) and (2.9) that

‖u∗ − v∗‖2 � 0,

which implies that

‖u∗ − v∗‖2 = 0,

that is u∗ = v∗. Therefore, u∗ ∈ H is the unique solution of system (1.1). This completes the proof of 
Theorem 1.1. �
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3. Proof of Theorem 1.2

In this section, we consider the existence and multiplicity of solutions to system (1.1) with η = −1. We 
shall prove that system (1.1) possesses two solutions by using the method of Nehari manifold for μ > 0
small enough.

We firstly define the Nehari manifold by

Nμ =

⎧⎨
⎩u ∈ H : ‖u‖2 −

∫
Ω

φuu
2 − μ

∫
Ω

|u|1−r = 0

⎫⎬
⎭ .

Lemma 2.1 (vi) and (1.9) imply that Nμ is a closed set in H. It is obvious that solutions of system (1.1) lie 
in Nμ by (1.10). In order to state our results, we decompose Nμ with N+

μ , N−
μ and N0

μ defined as follows

N+
μ =

⎧⎨
⎩u ∈ Nμ : 2‖u‖2 − 4

∫
Ω

φuu
2 − μ(1 − r)

∫
Ω

|u|1−r > 0

⎫⎬
⎭ ,

N−
μ =

⎧⎨
⎩u ∈ Nμ : 2‖u‖2 − 4

∫
Ω

φuu
2 − μ(1 − r)

∫
Ω

|u|1−r < 0

⎫⎬
⎭ ,

N0
μ =

⎧⎨
⎩u ∈ Nμ : 2‖u‖2 − 4

∫
Ω

φuu
2 − μ(1 − r)

∫
Ω

|u|1−r = 0

⎫⎬
⎭ .

It is easy to see that for u ∈ Nμ,

2‖u‖2 − 4
∫
Ω

φuu
2 − μ(1 − r)

∫
Ω

|u|1−r = −2
∫
Ω

φuu
2 + μ(1 + r)

∫
Ω

|u|1−r

= −2‖u‖2 + μ(3 + r)
∫
Ω

|u|1−r

= (1 + r)‖u‖2 − (3 + r)
∫
Ω

φuu
2. (3.1)

We firstly show that N±
μ are nonempty and N0

μ = {0} for μ > 0 small enough.

Lemma 3.1. There exists μ∗ > 0 such that for μ ∈ (0, μ∗), N±
μ 	= ∅ and N0

μ = {0}, where

μ∗ = 2
3 + r

(
1 + r

3 + r

)(1+r)/2

S2+r|Ω|−(4+2r)/3.

Proof. (1) For any given u ∈ H \ {0}, t � 0, by calculating, we can get that

t
d
dt [Jμ(tu)] = t2‖u‖2 − t4

∫
Ω

φuu
2 − μt1−r

∫
Ω

|u|1−r

= t1−r

⎛
⎝t1+r‖u‖2 − t3+r

∫
Ω

φuu
2 − μ

∫
Ω

|u|1−r

⎞
⎠

= t1−r

⎛
⎝Φu(t) − μ

∫
|u|1−r

⎞
⎠ , (3.2)
Ω
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where

Φu(t) = t1+r‖u‖2 − t3+r

∫
Ω

φuu
2, t � 0.

By Lemma 2.1 (ii), 
∫
Ω φuu

2 > 0, we can see that Φu(0) = 0, limt→∞ Φu(t) = −∞ and

d
dtΦu(t) = tr

⎛
⎝(1 + r)‖u‖2 − (3 + r)t2

∫
Ω

φuu
2

⎞
⎠ .

Then Φu achieves its maximum at

tu =
(

(1 + r)‖u‖2

(3 + r)
∫
Ω φuu2

)1/2

and

max
t∈[0,∞)

Φu(t) = Φu(tu) = 2
3 + r

‖u‖2
(

(1 + r)‖u‖2

(3 + r)
∫
Ω φuu2

)(1+r)/2

.

Then by Lemma 2.1 (iv) and (1.6),

Φu(tu) − μ

∫
Ω

|u|1−r

= 2
3 + r

‖u‖2
(

(1 + r)‖u‖2

(3 + r)
∫
Ω φuu2

)(1+r)/2

− μ

∫
Ω

|u|1−r

�
[

2
3 + r

(
1 + r

3 + r

)(1+r)/2

S3(1+r)/2|Ω|−(1+r)/2 − μS−(1−r)/2|Ω|(5+r)/6

]
‖u‖1−r

=: E(μ)‖u‖1−r, (3.3)

where

E(μ) = 2
3 + r

(
1 + r

3 + r

)(1+r)/2

S3(1+r)/2|Ω|−(1+r)/2 − μS−(1−r)/2|Ω|(5+r)/6.

By direct calculation, E(μ) = 0 is equivalent to μ = μ∗, where

μ∗ = 2
3 + r

(
1 + r

3 + r

)(1+r)/2

S2+r|Ω|−(4+2r)/3.

Then by (3.3), for μ ∈ (0, μ∗),

Φu(tu) − μ

∫
Ω

|u|1−r � E(μ)‖u‖1−r > 0.

Thus there exactly exist two points 0 < t+u < tu < t−u such that



170 Q. Zhang / J. Math. Anal. Appl. 437 (2016) 160–180
Φu(t+u ) = Φu(t−u ) = μ

∫
Ω

|u|1−r

and

Φ′
u(t+u ) > 0 > Φ′

u(t−u ),

which imply that t+u u ∈ N+
μ , t−u u ∈ N−

μ by (3.2). Hence, both N+
μ and N−

μ are nonempty for μ ∈ (0, μ∗).
(2) By contradiction, assume that there exists u0 ∈ N0

μ ⊂ Nμ and u0 	= 0 for μ ∈ (0, μ∗). Similar to (3.3), 
by (3.1), we have

0 < E(μ)‖u0‖1−r

� 2
3 + r

‖u0‖2
(

(1 + r)‖u0‖2

(3 + r)
∫
Ω φu0u

2
0

)(1+r)/2

− μ

∫
Ω

|u0|1−r = 0.

This is impossible. Hence, N0
μ = {0} for μ ∈ (0, μ∗). �

The next lemma shows that μ∗ is also related to a gap structure in Nμ.

Lemma 3.2. Suppose that μ ∈ (0, μ∗), where μ∗ is defined in Lemma 3.1. Then we have

‖u‖ < Aμ < Aμ∗ < ‖v‖, |u|4 < Bμ < Bμ∗ < |v|4, u ∈ N+
μ , v ∈ N−

μ ,

where

Aμ =
(
μ

3 + r

2 S−(1−r)/2|Ω|(5+r)/6
)1/(1+r)

, Bμ =
(
μ

3 + r

2 S−1|Ω|(11+3r)/12
)1/(1+r)

, μ ∈ (0, μ∗].

Proof. For μ ∈ (0, μ∗), u ∈ N+
μ , by Hölder inequality, (1.5), (1.6) and (3.1), we have

|u|24S|Ω|−1/6 � ‖u‖2 < μ
3 + r

2

∫
Ω

|u|1−r � μ
3 + r

2 |u|1−r
4 |Ω|(3+r)/4 � μ

3 + r

2 S−(1−r)/2‖u‖1−r|Ω|(5+r)/6.

It is easy to see that ‖u‖ < Aμ and |u|4 < Bμ.
For v ∈ N−

μ , by Hölder inequality, (1.5), (3.1) and Lemma 2.1 (iv), we have

(1 + r)|v|24S|Ω|−1/6 � (1 + r)‖v‖2 < (3 + r)
∫
Ω

φvv
2 � (3 + r)S−1|v|44|Ω|2/3 � (3 + r)S−3‖v‖4|Ω|.

It follows from the definition of μ∗ in Lemma 3.1 and the expressions of Aμ, Bμ that ‖v‖ > Aμ∗ , |v|4 > Bμ∗

and Aμ < Aμ∗ , Bμ < Bμ∗ for μ ∈ (0, μ∗). The proof is completed. �
From the gap structure in Nμ and Lemma 3.1, we can easily obtain that N−

μ is closed for μ ∈ (0, μ∗). In 
fact, we have the following lemma.

Lemma 3.3. N−
μ is a closed set in H for μ ∈ (0, μ∗).

Proof. By Lemma 3.1, N−
μ 	= ∅ for μ ∈ (0, μ∗). Let {vn} be a sequence in N−

μ with vn → v in H, it follows 
that v ∈ Nμ. By Lemma 3.2,
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‖v‖ � Aμ∗ > Aμ > ‖u‖, ∀u ∈ N+
μ ,

that is, v /∈ N+
μ and v 	= 0. Hence by Lemma 3.1, v ∈ N−

μ . The proof is completed. �
Since N+

μ ∪ N0
μ and N−

μ are two closed subsets in H for μ ∈ (0, μ∗), we shall use Ekeland’s variational 
principle to discuss the minimums of the functional Jμ on N+

μ ∪N0
μ and N−

μ respectively. For this purpose, 
we need the following two lemmas.

Lemma 3.4. Assume μ ∈ (0, μ∗), Jμ is coercive, bounded from below on Nμ and infN+
μ ∪N0

μ
Jμ < 0.

Proof. For u ∈ Nμ and μ ∈ (0, μ∗), we have,

Jμ(u) = 1
2‖u‖

2 − 1
4

∫
Ω

φuu
2 − μ

1 − r

∫
Ω

|u|1−r

= 1
4‖u‖

2 − μ
3 + r

4(1 − r)

∫
Ω

|u|1−r

� 1
4‖u‖

2 − μ∗ 3 + r

4(1 − r)S
−(1−r)/2‖u‖1−r|Ω|(5+r)/6. (3.4)

It follows from r ∈ (0, 1) that Jμ is coercive and bounded from below on Nμ. Since N+
μ ∪N0

μ and N−
μ are two 

closed subsets of H from Lemma 3.3, infN+
μ ∪N0

μ
Jμ and infN−

μ
Jμ are well defined. For any given u0 ∈ N+

μ , 
by (3.1), we have

Jμ(u0) = 1
4‖u0‖2 − μ

3 + r

4(1 − r)

∫
Ω

|u0|1−r

<
1
4‖u0‖2 − 1

2(1 − r)‖u0‖2

= − 1 + r

4(1 − r)‖u0‖2,

which means that

inf
N+

μ

Jμ � − 1 + r

4(1 − r)‖u0‖2 < 0.

Then, by Lemma 3.1, infN+
μ ∪N0

μ
Jμ = infN+

μ
Jμ < 0 for given μ ∈ (0, μ∗). The proof is completed. �

Lemma 3.5. Assume that μ ∈ (0, μ∗), given u ∈ N+
μ (resp. N−

μ ), there exist ε > 0 and a continuous function 
f = f(w) > 0, w ∈ H, ‖w‖ < ε satisfying that

f(0) = 1, f(w)(u + w) ∈ N+
μ (resp. N−

μ ), w ∈ H, ‖w‖ < ε.

Proof. We only consider the case u ∈ N+
μ . Define F : H × R → R by

F (w, t) = t2‖u + w‖2 − t4
∫
Ω

φu+w(u + w)2 − μt1−r

∫
Ω

|u + w|1−r.

It is obvious that F is continuous on some neighborhood of (0, 1) ∈ H ×R and Ft is continuous at (0, 1). It 
follows from u ∈ N+

μ ⊂ Nμ that
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F (0, 1) = ‖u‖2 −
∫
Ω

φuu
2 − μ

∫
Ω

|u|1−r = 0

and

Ft(0, 1) = 2‖u‖2 − 4
∫
Ω

φuu
2 − μ(1 − r)

∫
Ω

|u|1−r > 0.

Then by the implicit function theorem, there exists ε̄ > 0 such that for w ∈ H, ‖w‖ < ε̄, the equation 
F (w, t) = 0 has a unique continuous function t = f(w) > 0 satisfying that f(0) = 1 and F (w, f(w)) = 0. 
That is

f(w)(u + w) ∈ Nμ.

Since Ft(0, 1) > 0, by the continuity of Ft at (0, 1), we can take ε ∈ (0, ̄ε) such that Ft(w, f(w)) > 0 for 
‖w‖ < ε, that is

f(w)(u + w) ∈ N+
μ , w ∈ H, ‖w‖ < ε.

The proof is completed. �
Proof of Theorem 1.2. From Lemma 3.4, infN+

μ ∪N0
μ
Jμ and infN−

μ
Jμ are well defined, we divide two steps 

to consider the minimums of functional Jμ on N+
μ ∪N0

μ and N−
μ respectively by using Ekeland’s variational 

principle [23].

Step 1. We prove that there exists u0 > 0 in Ω such that Jμ(u0) = infN+
μ ∪N0

μ
Jμ and u0 is a solution of 

system (1.1) for μ ∈ (0, μ∗).
By Ekeland’s variational principle, there exists a minimizing sequence {un} ⊂ N+

μ ∪N0
μ satisfying

(i) Jμ(un) � infN+
μ ∪N0

μ
Jμ + 1/n2,

(ii) Jμ(u) � Jμ(un) − 1
n‖u − un‖, u ∈ N+

μ ∪N0
μ.

From Jμ(|u|) = Jμ(u) and Lemma 3.4, we may assume that un ∈ N+
μ and un � 0 for any n ∈ N. Since 

r ∈ (0, 1), it follows from (3.4) that {un} is bounded in H, we assume that ‖un‖ � C0. Going if necessary 
to a subsequence, we can assume that

un ⇀ u0, in H,

un → u0, in Lp(Ω), p ∈ [1, 6),

un(x) → u(x), a.e. in Ω.

Since {un} ⊂ N+
μ ⊂ Nμ, by the weakly lower semi-continuity of the norm, Lemma 2.1 (v), (1.9) and (3.1), 

we have

‖u0‖2 −
∫
Ω

φu0u
2
0 − μ

∫
Ω

|u0|1−r � 0,

−2
∫

φu0u
2
0 + μ(1 + r)

∫
|u0|1−r � 0, (3.5)
Ω Ω
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and

Jμ(u0) � lim
n→∞

Jμ(un) = inf
N+

μ ∪N0
μ

Jμ < 0. (3.6)

By (3.6), u0 � 0 and u0 	= 0.
We firstly claim that for μ ∈ (0, μ∗),

−2
∫
Ω

φu0u
2
0 + μ(1 + r)

∫
Ω

|u0|1−r > 0. (3.7)

We argue indirectly and assume that

−2
∫
Ω

φu0u
2
0 + μ(1 + r)

∫
Ω

|u0|1−r = 0. (3.8)

Then (3.5) and (3.8) imply that ‖u0‖2 � μ3+r
2

∫
Ω |u0|1−r. For μ ∈ (0, μ∗) and u0 	= 0, by similar arguments 

as (3.3), we obtain that

0 < E(μ)‖u0‖1−r

� 2
3 + r

‖u0‖2
[

(1 + r)‖u0‖2

(3 + r)
∫
Ω φu0u

2
0

](1+r)/2

− μ

∫
Ω

|u0|1−r � 0,

which is clearly impossible. Hence (3.7) holds. Since

lim
n→∞

⎛
⎝−2

∫
Ω

φun
u2
n + μ(1 + r)

∫
Ω

|un|1−r

⎞
⎠ = −2

∫
Ω

φu0u
2
0 + μ(1 + r)

∫
Ω

|u0|1−r > 0,

then there exist C1 > 0 (independent of n) and N1 > 0 such that for any n � N1,

−2
∫
Ω

φun
u2
n + μ(1 + r)

∫
Ω

|un|1−r � C1.

By (3.1), we also get

−2‖un‖2 + μ(3 + r)
∫
Ω

|un|1−r � C1. (3.9)

We take N = max{N1, 
2(1−r)
1+r C0C

−1
1 } and fix φ ∈ H, φ > 0. For given n � N , we apply Lemma 3.5 with 

u = un and w = tφ, t > 0 small enough, we can find gn(t) = fn(tφ) such that gn(0) = 1, gn(t)(un+tφ) ∈ N+
μ . 

It follows from un, gn(t)(un + tφ) ∈ N+
μ ⊂ Nμ that

‖un‖2 −
∫
Ω

φun
u2
n − μ

∫
Ω

|un|1−r = 0

and
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g2
n(t)‖un + tφ‖2 − g4

n(t)
∫
Ω

φun+tφ(un + tφ)2 − μg1−r
n (t)

∫
Ω

|un + tφ|1−r = 0.

By above two equalities, we have

0 =
(
g2
n(t) − 1

)
‖un + tφ‖2 +

(
‖un + tφ‖2 − ‖un‖2)− (

g4
n(t) − 1

) ∫
Ω

φun+tφ(un + tφ)2

−
∫
Ω

[φun+tφ(un + tφ)2 − φun
u2
n] − μ

(
g1−r
n (t) − 1

) ∫
Ω

|un + tφ|1−r

− μ

∫
Ω

[|un + tφ|1−r − |un|1−r]

�
(
g2
n(t) − 1

)
‖un + tφ‖2 +

(
‖un + tφ‖2 − ‖un‖2)− (

g4
n(t) − 1

) ∫
Ω

φun+tφ(un + tφ)2

−
∫
Ω

[φun+tφ(un + tφ)2 − φun
u2
n] − μ

(
g1−r
n (t) − 1

) ∫
Ω

|un + tφ|1−r

= (gn(t) − 1)

⎡
⎣(gn(t) + 1) ‖un + tφ‖2 −

(
g2
n(t) + 1

)
(gn(t) + 1)

∫
Ω

φun+tφ(un + tφ)2

−
μ
(
g1−r
n (t) − 1

)
gn(t) − 1

∫
Ω

|un + tφ|1−r

⎤
⎦ +

(
‖un + tφ‖2 − ‖un‖2)− ∫

Ω

[φun+tφ(un + tφ)2 − φun
u2
n].

(3.10)

Denote D+gn(0) the right upper Dini derivative of gn at zero. By the definition of D+gn(0) =
lim supt→0+

gn(t)−1
t , there exists a sequence {tk} with tk > 0 and tk → 0 as k → ∞ such that

D+gn(0) = lim
k→∞

gn(tk) − 1
tk

. (3.11)

Then replacing t in (3.10) with tk, dividing tk > 0 and letting k → ∞, by Lemma 2.1 (vi) and (3.1), we 
deduce that

D+gn(0)

⎡
⎣−2‖un‖2 + μ(3 + r)

∫
Ω

|un|1−r

⎤
⎦ + 2

∫
Ω

∇un · ∇φ− 4
∫
Ω

φun
unφ � 0. (3.12)

By ‖un‖ � C0 and Lemma 2.1 (iv), there exist C2, C3 > 0 independent of n such that
∣∣∣∣∣∣2

∫
Ω

∇un · ∇φ− 4
∫
Ω

φun
unφ

∣∣∣∣∣∣ � C2 (3.13)

and ∣∣∣∣∣∣
1

1 + r
[(1 + r)

∫
Ω

∇un · ∇φ− (3 + r)
∫
Ω

φun
unφ]

∣∣∣∣∣∣ � C3. (3.14)

It follows from (3.12), (3.9) and (3.13) that
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D+gn(0) � −C4, ∀n � N, (3.15)

where C4 = C−1
1 C2 is independent of n.

In the following, we prove

D+gn(0) � 2(‖φ‖ + C3)C−1
1 , ∀n � N. (3.16)

Arguing by contradiction, if there exists n0 � N such that D+gn0(0) > 2(‖φ‖ + C3)C−1
1 . By (3.11), 

for k (which is dependent of n0) large enough, gn0(tk) > 1. By (ii) of Ekeland’s variational principle with 
u = gn0(tk)(un0 + tkφ), we clearly have that

(gn0(tk) − 1)‖un0‖ + tkgn0(tk)‖φ‖
n0

� ‖gn0(tk)(un + tkφ) − un0‖
n0

� Jμ(un0) − Jμ(gn0(tk)(un0 + tkφ))

= − 1 + r

2(1 − r)‖un0‖2 + 3 + r

4(1 − r)

∫
Ω

φun0
u2
n0

+ 1 + r

2(1 − r)g
2
n0

(tk)‖un0 + tkφ‖2

− 3 + r

4(1 − r)g
4
n0

(tk)
∫
Ω

φun0+tkφ(un0 + tkφ)2

= 1 + r

2(1 − r)
[
(g2

n0
(tk) − 1)‖un0 + tkφ‖2 + (‖un0 + tkφ‖2 − ‖un0‖2)

]

− 3 + r

4(1 − r)

⎡
⎣(g4

n0
(tk) − 1)

∫
Ω

φun0+tkφ(un0 + tkφ)2 +
∫
Ω

[φun0+tkφ(un0 + tkφ)2 − φun0
u2
n0

]

⎤
⎦ ,

then

tkgn0(tk)‖φ‖
n

� gn0(tk) − 1
1 − r

⎡
⎣1 + r

2 (gn0(tk) + 1)‖un0 + tkφ‖2 −
(3 + r)(g2

n0
(tk) + 1)(gn0(tk) + 1)

4

∫
Ω

φun0+tkφ(un0 + tkφ)2

− (1 − r)‖un0‖
n0

]
+ 1

1 − r

⎡
⎣1 + r

2
(
‖un0 + tkφ‖2 − ‖un0‖2)− 3 + r

4

∫
Ω

[φun0+tkφ(un0 + tkφ)2 − φun0
u2
n0

]

⎤
⎦

Dividing by tk > 0 and letting k → ∞, it follows from un0 ∈ N+
μ ⊂ Nμ and (3.1) that

‖φ‖ � ‖φ‖
n0

� D+gn0(0)
1 − r

⎡
⎣−2‖un0‖2 + μ(3 + r)

∫
Ω

|un0 |1−r − (1 − r)‖un0‖
n0

⎤
⎦

+ 1
1 − r

⎡
⎣(1 + r)

∫
Ω

∇un0 · ∇φ− (3 + r)
∫
Ω

φun0
un0φ

⎤
⎦ .

By the choice of n0 � N , (3.9) and (3.14), we deduce that
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‖φ‖ � C1

2
D+gn0(0) − C3 > ‖φ‖,

this is impossible. Hence (3.16) holds. Thus the two inequalities (3.15) and (3.16) imply that

|D+gn(0)| � C, ∀ n � N, (3.17)

where C > 0 is independent of n.
In the following, we still denote by {un} the subsequence of {un}n�N and show that u0 ∈ N+

μ and 
un → u0 in H.

From (ii) of Ekeland variational principle, we can deduce that

|gn(t) − 1|‖un‖2 + tgn(t)‖φ‖
n

� ‖gn(t)(un + tφ) − un‖
n

� Jμ(un) − Jμ(gn(t)(un + tφ))

= −g2
n(t)
2

(
‖un + tφ‖2 − ‖un‖2)− g2

n(t) − 1
2 ‖un‖2

+ g4
n(t)
4

∫
Ω

[
φun+tφ(un + tφ)2 − φun

u2
n

]
+ g4

n(t) − 1
4

∫
Ω

φun
u2
n

+ μ

1 − r
g1−r
n (t)

∫
Ω

[|un + tφ|1−r − |un|1−r] + μ

1 − r

(
g1−r
n (t) − 1

) ∫
Ω

|un|1−r,

it follows that

μ

1 − r
g1−r
n (t)

∫
Ω

[|un + tφ|1−r − |un|1−r]

� |gn(t) − 1|‖un‖2 + tgn(t)‖φ‖
n

+ g2
n(t)
2

(
‖un + tφ‖2 − ‖un‖2)

− g4
n(t)
4

∫
Ω

[φun+tφ(un + tφ)2 − φun
u2
n] + g2

n(t) − 1
2 ‖un‖2

− g4
n(t) − 1

4

∫
Ω

φun
u2
n − μ

1 − r

(
g1−r
n (t) − 1

) ∫
Ω

|un|1−r.

The above inequality also holds for t = tk (tk is dependent of n), then dividing by tk > 0 and passing to 
the limit as k → ∞, then combing un ∈ N+

μ ⊂ Nμ and (3.17), we obtain that

lim
k→∞

μ

1 − r

∫
Ω

(un + tkφ)1−r − u1−r
n

tk

� |D+gn(0)|‖un‖2 + ‖φ‖
n

+
∫
Ω

∇un · ∇φ−
∫
Ω

φun
unφ + D+gn(0)

⎛
⎝‖un‖2 −

∫
Ω

φun
u2
n − μ

∫
Ω

|un|1−r

⎞
⎠

� C + ‖φ‖
n

+
∫

∇un · ∇φ−
∫

φun
unφ.
Ω Ω
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Then

lim inf
t→0

μ

1 − r

∫
Ω

(un + tφ)1−r − u1−r
n

t
� lim

k→∞

μ

1 − r

∫
Ω

(un + tkφ)1−r − u1−r
n

tk

� C + ‖φ‖
n

+
∫
Ω

∇un · ∇φ−
∫
Ω

φun
unφ. (3.18)

Notice that ∫
Ω

(un + tφ)1−r − u1−r
n

t
= (1 − r)

∫
Ω

(un + tφξn)−rφ,

where ξn(x) ∈ (0, 1), (un(x) + tφ(x)ξn(x))−rφ(x) → u−r
n (x)φ(x), a.e. x ∈ Ω as t → 0. Since (un(x) +

tφ(x)ξn(x))−rφ(x) � 0, then by using Fatou’s Lemma in (3.18), we have

μ

∫
Ω

u−r
n φ � C + ‖φ‖

n
+

∫
Ω

∇un · ∇φ−
∫
Ω

φun
unφ.

Using Fatou’s Lemma again, we get that

μ

∫
Ω

u−r
0 φ � lim inf

n→∞
μ

∫
Ω

u−r
n φ �

∫
Ω

∇u0 · ∇φ−
∫
Ω

φu0u0φ, φ ∈ H, φ > 0.

By the idea of the approximation, the above expression also holds for φ ∈ H, φ � 0, that is∫
Ω

∇u0 · ∇φ−
∫
Ω

φu0u0φ− μ

∫
Ω

u−r
0 φ � 0, φ ∈ H, φ � 0. (3.19)

Therefore, (3.19) implies that ∫
Ω

∇u0 · ∇φ � 0, φ ∈ H, φ � 0,

that is

−Δu0 � 0, in the weak sense.

Since u0 � 0 and u0 	= 0, by the maximum principle (Theorem 3.5 in [14]), u0 > 0 in Ω. We take φ = u0 in 
(3.19) and get

‖u0‖2 −
∫
Ω

φu0u
2
0 − μ

∫
Ω

|u0|1−r � 0. (3.20)

On the other hand, by the weakly lower semi-continuity of the norm, (1.9) and Lemma 2.1 (v), we have

‖u0‖2 � lim inf
n→∞

‖un‖2 = lim inf
n→∞

⎛
⎝μ

∫
Ω

|un|1−r +
∫
Ω

φun
u2
n

⎞
⎠

= μ

∫
|u0|1−r +

∫
φu0u

2
0. (3.21)
Ω Ω
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Thus, (3.20) and (3.21) imply that

‖u0‖2 � lim inf
n→∞

‖un‖2 = μ

∫
Ω

|u0|1−r +
∫
Ω

φu0u
2
0 � ‖u0‖2, (3.22)

this combining with un ⇀ u implies that un → u0 in H. According to (3.22) and (3.7), u0 ∈ N+
μ .

Finally, we show that u0 is a solution of system (1.1).
We take φ ∈ H \ {0}, ε > 0 and define Ψ = (u0 + εφ)+. Let

Ω1 = {x ∈ Ω : u0(x) + εφ(x) > 0}, Ω2 = {x ∈ Ω : u0(x) + εφ(x) � 0}.

Then Ψ|Ω1 = u0 + εφ, Ψ|Ω2 = 0. Similar to the arguments in the proof of Theorem 1.1, inserting Ψ into 
(3.19) and using (3.22), we get

∫
Ω

∇u0 · ∇φ− φu0u0φ− μu−r
0 φ = 0, φ ∈ H.

Therefore, u0 ∈ N+
μ is a solution of (1.1) with Jμ(u0) = infN+

μ
J < 0 for any μ ∈ (0, μ∗).

Step 2. We prove that there exists a solution of system (1.1) in N−
μ .

From Lemma 3.3, N−
μ is closed for any μ ∈ (0, μ∗). Applying Ekeland’s variational principle to the 

minimization problem infN−
μ
Jμ, there exists a sequence {vn} ⊂ N−

μ satisfying

(i) Jμ(vn) � infN−
μ
Jμ + 1/n2,

(ii) Jμ(v) � Jμ(vn) − 1
n‖v − vn‖, v ∈ N−

μ .

Since Jμ(|v|) = Jμ(v), we may assume that vn � 0. Obviously, {vn} ⊂ N−
μ ⊂ Nμ is bounded, going if 

necessary to a subsequence, still denoted by {vn}, then there exists v0 � 0 such that

vn ⇀ v0, in H,

vn → v0, in Lp(Ω), p ∈ [1, 6),

vn(x) → v0(x), a.e. in Ω.

By Lemma 3.2, |v0|4 > Bμ∗ > 0, then v0 � 0 and v0 	= 0.
We can repeat the arguments used in (3.7)–(3.9) to derive

−2
∫
Ω

φv0v
2
0 + μ(1 + r)

∫
Ω

|v0|1−r < 0 (3.23)

and

−2
∫
Ω

φvnv
2
n + μ(1 + r)

∫
Ω

|vn|1−r = −2‖vn‖2 + μ(3 + r)
∫
Ω

|vn|1−r � −C

for n large enough and C > 0.
At this point, we may proceed exactly as in the arguments of Step 1 and conclude that v0 > 0, vn → v0 in 

H and v0 is a solution of system (1.1). Hence by Lemma 3.2 and (3.23), v0 ∈ N−
μ and v0 	= u0 is a solution 

of system (1.1) with Jμ(v0) = infN−
μ
Jμ. �
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