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We prove that given a unital C∗-algebra A and an additive and surjective map 
T : A → Mn such that the spectrum of T (x) is a subset of the spectrum of x for 
each x ∈ A, then T is either an algebra morphism, or an algebra anti-morphism. We 
arrive at the same conclusion for an arbitrary unital, complex Banach algebra A, 
by imposing an extra surjectivity condition on the map T .

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

Let A be a (complex) unital Banach algebra, and denote its unit by 1. By σ (a) we shall denote the 
spectrum of the element a ∈ A and ρ (a) will be its spectral radius. A well-known result in the theory 
of Banach algebras, the Gleason–Kahane–Żelazko theorem, states that if f : A → C is C-linear (that is, 
additive and homogeneous with respect to complex scalars) and f (a) ∈ σ (a) for every a ∈ A, then f is 
multiplicative. (See e.g. [5] and [6].) Kowalski and Slodkowski generalized their result in [7], by proving that 
if f : A → C with f (0) = 0 satisfies

f (x) − f (y) ∈ σ (x− y) (x, y ∈ A), (1)

then f is automatically C-linear, and therefore also multiplicative. (That f is R-linear and the fact that 
f (ia) = if (a) for all a ∈ A come automatically from the inclusions (1), which combine spectrum-preserving 
properties and additivity properties on the functional f .) In particular, if f : A → C is additive and 
f (x) ∈ σ (x) for every x ∈ A, then f is a character of A.

The natural extension of the Gleason–Kahane–Żelazko theorem for the case when the range C of f is 
replaced by Mn, the algebra of n × n matrices over C, was obtained by Aupetit in [1].
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Theorem 1. (See [1, Theorem 1].) If T : A → Mn is a surjective C-linear map such that

σ(T (x)) ⊆ σ(x) (x ∈ A), (2)

then either

T (xy) = T (x)T (y) (x, y ∈ A) or T (xy) = T (y)T (x) (x, y ∈ A). (3)

In fact, [1, Theorem 1] states that if T : A → Mn is linear, unital and onto, sending invertible elements 
from A into invertible elements of Mn, then T is of the form (3). If (2) holds, then x ∈ A invertible implies 
0 /∈ σ (x), thus by (2) we have 0 /∈ σ (T (x)), which means that the matrix T (x) is invertible. By Lemma 6
we also have that T sends the unit element of A into the unit element of Mn. (See also [4, Theorem 2.2].) 
Thus, under the hypothesis of Theorem 1 we have that T is unital and invertibility-preserving.

Under the hypothesis of Theorem 1, the map T is either an algebra morphism, or an algebra anti-
morphism. In this paper, we study the same type of problem as the one considered by Theorem 1, assuming 
only additivity instead of linearity over the complex field C. Our first result states that if A is supposed to 
be a C∗-algebra, then we arrive at the same conclusion by assuming only additivity on T .

Theorem 2. Let A be a unital C∗-algebra and suppose T : A → Mn is a surjective additive map such that 
(2) holds. Then T is of the form (3).

As a corollary, we obtain the following generalization of [1, Theorem 2] for the case of additive maps 
defined on C∗-algebras which compress the spectrum.

Theorem 3. Let A be a unital C∗-algebra, and let B be a complex, unital Banach algebra having a separating 
family of irreducible finite-dimensional representations. Suppose T : A → B is additive and onto such that 
(2) holds. Then T is a Jordan morphism, that is

T (x2) = T (x)2 (x ∈ A).

For the general case of an arbitrary Banach algebra A, we shall impose an extra surjectivity assumption 
on the map T in order to obtain the same type of result.

Theorem 4. Let A be a unital Banach algebra and suppose T : A → Mn is a surjective additive map such 
that (2) holds. Suppose also that there exist x1, . . . , xn2 ∈ A such that

{T (x1) + T (ix1)/i, . . . , T (xn2) + T (ixn2)/i} ⊆ Mn (4)

are linearly independent over C. Then T is of the form (3).

We do not know whether the assumption that the matrices in (4) span Mn over the complex field may 
be removed from the statement of Theorem 4. We believe that this hypothesis can be eliminated, being a 
consequence of the fact that T is surjective and that (2) holds, but we have not been able to prove it. An 
important part of the proof of Theorem 4 can be carried out without the surjectivity hypothesis given by 
(4) being assumed, using only the surjectivity of the map T . See also the final remark in Section 3.

2. Preliminaries

Throughout this section, A will denote an arbitrary unital Banach algebra. The first result shows that, 
as in the C-linear case [2, Theorem 5.5.2], under the hypothesis of Theorem 2 we have that the continuity 
of the map T is automatic.
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Theorem 5. Let T be an additive map from A onto Mn such that

ρ (T (a)) ≤ ρ (a) (a ∈ A). (5)

Then T is continuous, and therefore also R-linear.

Proof. Since T is supposed to be additive, it is sufficient to prove the continuity at 0 ∈ A. Suppose that 
ak → 0 in A and let us prove first that (T (ak))k ⊆ Mn is bounded. Using the surjectivity of T , it is 
sufficient to prove that given any x ∈ A then (tr(T (ak)T (x)))k ⊆ C is bounded, where tr (·) denotes the 
usual trace on Mn. By (5), for each k we have that

ρ((T (ak + x))2) = (ρ(T (ak + x)))2 ≤ (ρ(ak + x))2 ≤ ‖ak + x‖2

≤ (‖ak‖ + ‖x‖)2 ,

which implies

|tr(T (ak)2) + 2tr (T (ak)T (x)) + tr(T (x)2)| ≤ n(‖ak‖2 + 2 ‖ak‖ ‖x‖ + ‖x‖2).

Since ak → 0 and ρ(T (ak)) ≤ ρ(ak) ≤ ‖ak‖ for each k, this gives ρ(T (ak)) → 0 and therefore tr(T (ak)2) → 0. 
Thus

2 lim sup
k→∞

|tr (T (ak)T (x)) | ≤ n ‖x‖2 + |tr(T (x)2)|,

and therefore (tr (T (ak)T (x)))k is bounded, as desired.
Since Mn is finite dimensional, without loss of generality we may suppose that T (ak) → w ∈ Mn, 

and let us prove that w = 0. We shall use the fact that the spectral radius on a general Banach algebra 
is upper semicontinuous [2, Theorem 3.4.2] and the fact that on Mn the spectral radius is continuous 
[2, Corollary 3.4.5]. Given any a ∈ A and m ∈ N, by (5) we have ρ(T (mak + a)) ≤ ρ(mak + a). Using that 
T is additive, this gives ρ(mT (ak) + T (a)) ≤ ρ(mak + a). Therefore

lim sup
k→∞

ρ(mT (ak) + T (a)) ≤ lim sup
k→∞

ρ(mak + a).

Since the spectral radius is continuous on Mn, that T (ak) → w in Mn gives

lim sup
k→∞

ρ(mT (ak) + T (a)) = lim
k→∞

ρ(mT (ak) + T (a))

= ρ (mw + T (a)) .

Since the spectral radius is upper semicontinuous on A, that ak → 0 in A gives

lim sup
k→∞

ρ(mak + a) ≤ ρ (a) .

Hence given any a ∈ A we have that ρ(mw + T (a)) ≤ ρ (a) for all m ∈ N. Since T is supposed to be
surjective, we deduce that given any b ∈ Mn we can find Mb ≥ 0 such that

ρ(mw + b) ≤ Mb (m ∈ N). (6)
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Taking b = 0 in (6) we get ρ (w) = 0. If w ∈ Mn were not zero, we may write it as

w = y−1

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 ∗ . . . 0
...

...
. . .

...
...

0 0 . . . 0 ∗
0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
y

for some invertible y ∈ Mn. For

b = y−1

⎡
⎢⎢⎢⎢⎣

0 0 . . . 0
1 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤
⎥⎥⎥⎥⎦ y ∈ Mn

we have that λ2−m divides the characteristic polynomial of mw+b. Hence ρ(mw+b) ≥ √
m for all m ∈ N, 

contradicting (6). �
The following lemma and Theorem 5 show that an additive surjective map T : A → Mn satisfying (2) is 

automatically unital.

Lemma 6. Let T : A → Mn be additive and onto such that (2) holds. Then T (λ1) = λIn for every λ ∈ C, 
where In is the unit matrix of Mn.

Proof. By Theorem 5 we have that T is continuous, and therefore also R-linear. Since T is onto, by the 
open mapping theorem for surjective R-linear maps we find N > 0 such that y ∈ Mn implies the existence 
of x ∈ A such that T (x) = y and ‖x‖ ≤ N ‖y‖. Let λ ∈ C and denote u = T (λ1) ∈ Mn. Then given any 
y ∈ Mn, we have

σ(λIn − (u + y)) = λ− σ(u + y) = λ− σ(T (λ1 + x))

⊆ λ− σ(λ1 + x) = λ− (λ + σ(x))

= −σ(x),

where x ∈ A was such that T (x) = y and ‖x‖ ≤ N ‖y‖. Thus

ρ(λIn − (u + y)) ≤ ρ (x) ≤ ‖x‖ ≤ N ‖y‖ ,

that is

ρ((λIn − u) − y) ≤ N ‖y‖ (y ∈ Mn).

The Zemánek characterization of the radical [2, Theorem 5.3.1] implies that λIn − u belongs to the radical 
of Mn. That is, u = λIn, since Mn is semisimple. �

Suppose now that T : A → Mn is a surjective additive map such that (2) holds. By Theorem 5, we have 
that T is R-linear. Following an idea from [7], given any r ∈ R we have

σ(eirT (e−irx)) ⊆ eirσ((e−irx)) = σ(x)
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for every x ∈ A. From the R-linearity of T we also have

eirT (e−irx) = (cos r + i sin r) (cos r · T (x) − sin r · T (ix))

= T (x) (cos2 r + i sin r · cos r) − T (ix)(cos r · sin r + i sin2 r)

= (T (x) + T (ix)/i)/2 + e2ir(T (x) − T (ix)/i)/2.

Thus

σ (R (x) + ξS (x)) ⊆ σ(x) (x ∈ A; ξ ∈ C, |ξ| = 1), (7)

where we have denoted

R (x) = T (x) + T (ix)/i
2 (x ∈ A)

and

S (x) = T (x) − T (ix)/i
2 (x ∈ A).

Since T is R-linear, one can easily check that R and S are both R-linear transformations from A into Mn. 
More than that, R (ix) = iR (x) for every x ∈ A, and therefore R is C-linear. Also, S (ix) = −iS (x) for 
every x ∈ A, and therefore S is conjugate-linear. Thus

T (x) = R (x) + S (x) (x ∈ A),

where R is C-linear and S is C-linear. Observe also that by Lemma 6 we have R (1) = In and S (1) =
0 ∈ Mn.

The inclusions (7) imply the following spectral inequalities for the maps R and S.

Theorem 7. Suppose T : A → Mn is a surjective additive map such that (2) holds. Then R(ea) ∈ Mn is 
invertible for each a ∈ A, and

ρ(S(xea)(R(ea))−1) ≤ ρ (x) (a, x ∈ A). (8)

Proof. Consider x ∈ A with ρ (x) < 1 and an arbitrary a ∈ A. Let ξ ∈ C with |ξ| = 1. Then for each r ∈ R
we have that (ξ − x)era ∈ A is invertible, and (2) gives σ(T ((ξ − x)era)) ⊆ C\{0}. Then

σ(ξR(era) − T (xera) + ξS(era)) ⊆ C\{0},

and therefore

σ(R(era) − ξT (xera) + ξ2S(era)) ⊆ C\{0} (a ∈ A, ρ (x) < 1, |ξ| = 1, r ∈ R). (9)

This leads us to consider the family of analytic multivalued functions (Kr)r∈[0,1] given by

Kr (λ) = σ(R(era) − λT (xera) + λ2S(era)) (λ ∈ C).

Since by Theorem 5 we have that T, R and S are continuous and since the spectrum function is continuous 
on matrices, for each λ ∈ C we have that the function r 
→ Kr (λ) is continuous with respect to r. We apply 
now the multivalued form of Rouché’s Theorem given by [8, Theorem 2.2] to see that

(K0(D)\K1(D))
⋃

(K1(D)\K0(D)) ⊆
⋃

{Kr(ξ) : r ∈ [0, 1], |ξ| = 1}.
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(By D we have denoted the open unit disk in C.) Now (9) implies that 0 /∈ Kr(ξ) for r ∈ [0, 1] and |ξ| = 1, 
and therefore (K1(D)\K0(D)) ⊆ C\{0}. That R(1) = In and S(1) = 0 imply K0(λ) = σ(In − λT (x)). But 
σ(T (x)) ⊆ σ(x) ⊆ D, and therefore K0(λ) ⊆ C\{0} for all λ ∈ D. That K1(D)\K0(D) does not contain 
0 ∈ C implies then K1(D) ⊆ C\{0}, and therefore

σ(R(ea) − λT (xea) + λ2S(ea)) ⊆ C\{0} (a ∈ A, ρ (x) < 1, |λ| < 1). (10)

Taking λ = 0 in (10), we see that R(ea) is an invertible matrix. Denoting s = T (xea)(R(ea))−1 ∈ Mn and 
p = S(ea)(R(ea))−1 ∈ Mn, we infer from (10) that det(μ2In − μs + p) �= 0 for |μ| > 1. Let us observe now 
that μ 
→ det(μ2In − μs + p) is just the characteristic polynomial of

[
0 In
−p s

]
∈ M2n,

and therefore

ρ

([
0 In

−S(ea)R(ea)−1 T (xea)R(ea)−1

])
≤ 1 (a ∈ A, ρ (x) < 1).

For x 
→ ηx with |η| = 1 we get

ρ

([
0 In

−S(ea)R(ea)−1 0

]
+ η

[
0 0
0 R(xea)R(ea)−1

]
+ η

[
0 0
0 S(xea)R(ea)−1

])
≤ 1,

and therefore

ρ

(
η

[
0 In

−S(ea)R(ea)−1 0

]
+ η2

[
0 0
0 R(xea)R(ea)−1

]
+
[

0 0
0 S(xea)R(ea)−1

])
≤ 1

for all |η| = 1. Using Vesentini’s theorem [2, Theorem 3.4.7] and the maximum principle for subharmonic 
functions we infer that

ρ

([
0 0
0 S(xea)R(ea)−1

])
≤ 1.

Therefore ρ(S(xea)R(ea)−1) ≤ 1 for all a ∈ A and for all x ∈ A with ρ (x) < 1. Using the fact that S is 
conjugate-homogeneous, we obtain (8). �

Let us remark that, under the hypothesis of Theorem 7, we have detS (x) = 0 for every x ∈ A. Indeed, 
taking x = 1 in (8) we see that ρ(S(ea)(R(ea))−1) ≤ 1 for every a ∈ A. Therefore ρ(S(eλa)(R(eλa))−1) ≤ 1
for every a ∈ A and λ ∈ C. This implies that the analytic function λ 
→ detS(eλa) det(R(eλa))−1 is bounded 
on C. Classical Liouville’s theorem implies that it is therefore constant. Since S (1) = 0, then detS(eλa) = 0
for λ = 0, and therefore detS(eλa) det(R(eλa))−1 = 0 for every λ ∈ C. Thus detS(eλa) = 0 on C, and 
in particular detS(ea) = 0. Now if x ∈ A is arbitrary, the holomorphic functional calculus shows that 
ξ1 + x ∈ A is an exponential for |ξ| > ρ (x). Then det (S (x)) = det(S(ξ1 + x)) = 0, where ξ was chosen 
such that |ξ| > ρ (x).

Let us observe that until now in this section, the only surjectivity assumption that was used in the proofs 
is the one we have on the map T . By Theorem 5 we have that R is continuous, and by Lemma 6 we have 
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that R is unital. By Theorem 7, the map R sends exponentials from A into invertible matrices. Then the 
proof of [3, Theorem 3.5] shows that given any complex polynomial p, we have

tr(R(p (x) y)) = tr(p (R (x))R(y)) (x, y ∈ A).

In particular, tr(R(xy)) = tr(R (x)R(y)) for every x and y, and

tr(((R(x)2 −R(x2))R(y)) = 0 (x, y ∈ A). (11)

If we further suppose (4) to be true, then R is also surjective and (11) implies that R(x)2 = R(x2) for every 
x ∈ A. (See also [1].) Thus R is a Jordan morphism and therefore, since Mn is prime, of the form (3). We 
shall use this property in the proofs of both Theorem 2 and Theorem 4.

3. The case of C∗-algebras

Throughout this section, A will denote a unital C∗-algebra.

Proof of Theorem 2. By Theorem 7, we have that (8) holds. Let a ∈ A be a self-adjoint element. Then 
for every r ∈ R we have that eira ∈ A is a unitary element. In particular, ||eira|| = ρ(eira) = 1. For an 
arbitrary y ∈ A and λ = α + iβ ∈ C, where α, β ∈ R, by taking x = ye−2iβa ∈ A in (8) we see that

ρ(S(yeλa)(R(eλa))−1) = ρ(S(ye−2iβae(α+iβ)a)(R(e(α+iβ)a))−1) ≤ ρ(ye−2iβa)

≤ ||ye−2iβa|| ≤ ‖y‖ ||e−2iβa||
= ‖y‖ .

The continuity of S and R, together with the facts that S is conjugate-linear and R is C-linear imply that 
λ 
→ S(yeλa)(R(eλa))−1 is analytic from C into Mn. Then Liouville’s Spectral Theorem [2, Theorem 3.4.14]
implies that λ 
→ σ(S(yeλa)(R(eλa))−1) is constant on C. In particular, for every λ we have

σ(S(yeλa)(R(eλa))−1) = σ(S(y1)(R(1))−1) = σ(S(y)),

the last equality being true since by Lemma 6 we have that R(1) is the n × n identity matrix. Thus

σ((S(y) + λS (ya) + λ2S
(
ya2) /2 + · · · ) (In − λR (a) + · · · )) = σ(S(y)) (λ ∈ C). (12)

Taking y = 1 in (12), since by Lemma 6 we have that S(1) is the n × n zero matrix we obtain that

ρ((λS (a) + λ2S
(
a2) /2 + · · · ) (In − λR (a) + · · · )) = 0 (λ ∈ C).

Dividing the last equality by λ �= 0 and letting λ → 0 we see that ρ (S (a)) = 0. This holds for any arbitrary 
self-adjoint element a ∈ A; if x ∈ A is now arbitrary, with x = a +ib where a, b ∈ A are self-adjoint elements, 
then ρ (S (a + rb)) = 0 for every r ∈ R, the element a +rb ∈ A being self-adjoint. Thus ρ (S (a) + rS (b)) = 0
for every r ∈ R, and for the analytic function λ 
→ S (a) + λS (b) this implies that ρ (S (a) + λS (b)) = 0
for every λ ∈ C. Taking λ = −i we infer that ρ (S (x)) = 0, equality which holds for every x ∈ A. Now if 
y, z ∈ A are arbitrary elements, we have ρ (S (y) + λS(z)) = ρ(S(y+λz)) = 0 for every λ ∈ C. In particular 
tr((S (y) + λS(z))2) = 0 for every λ ∈ C, and therefore

tr(S(y)S(z)) = 0 (y, z ∈ A) . (13)
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Equation (12) implies that given any y ∈ A and any self-adjoint element a ∈ A we have

tr((S(y) + λS (ya) + λ2S
(
ya2) /2 + · · · ) (In − λR (a) + · · · )) = tr(S(y)) (λ ∈ C).

Computing the coefficient of λ, we see that tr(S(ya)) = tr(S(y)R(a)). That ρ(S(ya)) = 0 gives tr(S(ya)) = 0, 
and therefore tr(S(y)R(a)) = 0. By (13) we also have tr(S(y)S(a)) = 0. Now if x = a + ib is arbitrary, where 
a, b ∈ A are self-adjoint elements, then

tr(S(y)T (x)) = tr(S(y)R(x)) + tr(S(y)S(x))

= tr(S(y)R(a)) + itr(S(y)R(b)) + tr(S(y)S(a)) − itr(S(y)S(b))

= 0.

Thus tr(S(y)T (x)) = 0 for every x, y ∈ A. The surjectivity of T implies that S is identically zero. Thus 
T = R. In particular R is surjective, and then (11) implies that R is a Jordan morphism and therefore of
the form (3). Thus, the same is true for T = R too.

As a corollary, we obtain the characterization of additive, surjective, spectrum-compressing maps into 
Banach algebras having a separating family of irreducible finite-dimensional representations.

Proof of Theorem 3. Let π be a finite-dimensional irreducible representation of B. Using the Jacobson 
density theorem, we have that π : B → Mn is surjective, for some n ≥ 1. (See [1].) Define Tπ : A → Mn by 
putting Tπ = π ◦ T . Then Tπ is additive and onto, and

σ (Tπ (x)) = σ (π (T (x))) ⊆ σ (T (x)) ⊆ σ (x) (x ∈ A).

We use then Theorem 2 to see that Tπ is a Jordan morphism. Thus

π(T (x2) − T (x)2) = 0 (x ∈ A),

and using now the fact that B has a separating family of irreducible finite-dimensional representations we 
conclude that T (x2) = T (x)2 for all x ∈ A.

4. Proof of Theorem 4

We have seen that for R (x) = (T (x)+T (ix)/i)/2 and S (x) = (T (x)−T (ix)/i)/2, the map R : A → Mn

is C-linear, while S : A → Mn is conjugate-linear. Also, the hypothesis (4) implies that R is also onto, 
and therefore the final remark in Section 3 implies that R is either an algebra morphism, or an algebra 
anti-morphism. Let us suppose, for example, that R is a morphism.

Consider an arbitrary y ∈ A with ρ (y) < 1 and an arbitrary ξ ∈ C with |ξ| = 1. The holomorphic 
functional calculus shows that ξ1 −y ∈ A is an exponential, and then (8) implies that ρ(S(x(ξ1 −y))(R(ξ1 −
y))−1) ≤ ρ (x) for all x. That is, ρ((ξS(x) −S(xy))(In− ξR(y))−1) ≤ ρ (x). Since R is an algebra morphism, 
then ρ(R(y)) ≤ ρ(y) < 1, and we then have (In− ξR(y))−1 = In + ξR(y) + ξ

2
R(y)2 + · · · . The subharmonic 

function

μ 
→ ρ((μS(x) − S(xy))(In + μR(y) + μ2R(y)2 + · · · ))

is well-defined on a neighborhood of the closed unit disk and is bounded by ρ (x) for |μ| = 1. Using the 
maximum principle we see that, for ρ (y) < 1 and x ∈ A we have

ρ((μS(x) − S(xy))(In + μR(y) + μ2R(y)2 + · · · )) ≤ ρ (x) (|μ| ≤ 1). (14)
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For μ = 0 in (14) we get ρ(S(xy)) ≤ ρ (x) for ρ (y) < 1, and using once more the conjugate-homogeneity of 
S we infer that

ρ(S(xy)) ≤ ρ (x) ρ (y) (x, y ∈ A). (15)

Taking the trace of the analytic function in the left hand side of the inequality from (14) and computing 
the coefficients of μ and μ2, the Cauchy inequalities imply the existence of c1 > 0 and c2 > 0 such that

|tr(S(x)) − tr(S(xy)R(y))| ≤ c1ρ (x) (x ∈ A, ρ (y) < 1) (16)

and

∣∣tr(S(x)R(y)) − tr(S(xy)R(y)2)
∣∣ ≤ c2ρ (x) (x ∈ A, ρ (y) < 1). (17)

Taking y = 1 in (15) we get |tr(S(x))| ≤ nρ (x), and then from (16) we infer the existence of c3 > 0 such 
that |tr(S(xy)R(y))| ≤ c3ρ (x) for all x, y ∈ A, with ρ (y) < 1. Since S is conjugate-homogeneous and R is 
homogeneous, this gives

|tr(S(xy)R(y))| ≤ c3ρ (x) ρ (y)2 (x, y ∈ A). (18)

Using the homogeneity of S and R in (17), we have

|tr(S(x)R(y))ρ (y)2 − tr(S(xy)R(y)2)| ≤ c2ρ (x) ρ (y)3 (x, y ∈ A). (19)

(For arbitrary x, y ∈ A and ε > 0, applying (17) to x and y/(ρ(y) + ε) we see that

|tr(S(x)R(y))(ρ (y) + ε)2 − tr(S(xy)R(y)2)| ≤ c2ρ (x) (ρ (y) + ε)3,

and then we let ε → 0.) If R (y)2 = 0, then (19) gives |tr(S(x)R(y))| ≤ c2ρ (x) ρ (y) for all x ∈ A. If 
R (y)2 = R (y), then using (18) in (19) we obtain that for all x ∈ A we have

|tr(S(x)R(y))ρ (y)2 | ≤ c3ρ (x) ρ (y)2 + c2ρ (x) ρ (y)3 .

Thus, there exist c4, c5 ≥ 0 such that for y ∈ A if we have either R (y)2 = 0 or R (y)2 = R (y), then

|tr(S(x)R(y))| ≤ ρ (x) (c4 + c5ρ (y)) (x ∈ A). (20)

Let now x, u ∈ A be arbitrary and y ∈ A such that either R (y)2 = 0, or R (y)2 = R (y). Since R is a 
morphism, for each invertible element w ∈ A we have that R (y)2 = 0 implies 

(
R(w−1yw)

)2 = R(w−1y2w) =
R(w−1)R(y)2R(w) = 0, and analogously R (y)2 = R (y) implies 

(
R(w−1yw)

)2 = R(w−1yw). By (20), the 
entire function

λ 
→ tr(S(x)R(e−λuyeλu))

is then bounded on C, and therefore, by classical Liouville’s theorem, is constant. The coefficient of λ
for its Taylor series is therefore zero, and using one more the fact that R is a morphism we infer that 
tr(S(x)R(u)R(y)) − tr(S(x)R(y)R(u)) = 0. Thus

tr((S(x)R(u) −R(u)S(x))R(y)) = 0,
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for all y ∈ A such that either R (y)2 = 0, or R (y)2 = R (y). Since R is surjective, by taking y such that 
R (y) has 1 on the (j, k) entry and zeroes everywhere else, we obtain that S(x)R(u) − R(u)S(x) = 0 for 
all x, u ∈ A. We use once more the surjectivity of R to infer that S (A) ⊆ CIn. Since detS (x) is always 
zero (see the remark following the proof of Theorem 7), we obtain that S itself is identically zero. Therefore 
T = R, and the theorem is proved.
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