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In this article we consider a 2-D quantum particle confined in a disc whose radius 
can be deformed continuously in time. We study the problem of controllability of 
such a quantum particle via deformations of the initial disc, i.e., when we set the 
time-dependent radius of the disc to be the control variable. We prove that the 
resulting system is locally controllable around some radial trajectories which are 
linear combinations of the first three radial eigenfunctions of the Laplacian in the 
unit disc with Dirichlet boundary conditions. We prove this result, thanks to the 
linearisation principle, by studying the linearised system, which leads to a moment 
problem that can be solved using some results from Nonharmonic Fourier series. 
In particular, we have to deal with fine properties of Bessel functions.
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1. Introduction

1.1. Physical background

We consider a d-dimensional quantum particle, for d ≥ 1, of mass m, under no external forces. According 
to Quantum Mechanics, the state of such a particle can be described by a complex-valued wave-function 
(see [6, Secs. 2.2.1, 2.2.3])

ψ : R+ × R
d → C, with

∫
Rd

|ψ(t, x)|2 dx = 1, 1 ∀t ∈ R
+,

satisfying the Schrödinger equation

i∂tψ = − �

2mΔxψ, (t, x) ∈ R
+ × R

d,

where � stands for the normalised Planck constant. In some instances (e.g., potential wells [6, Sect. 4.3.4]), 
it is possible to confine the dynamics of a quantum particle within a region of the space, namely a regular 
open set Ω ⊂ R

d, which leads to a boundary-value problem for the associated wave-function, of the form
{

i∂tψ = − �

2mΔxψ, (t, x) ∈ R
+ × Ω,

ψ = 0, (t, x) ∈ R
+ × ∂Ω,

and the condition ∫
Ω

|ψ(t, x)|2 dx = 1, ∀t ∈ R
+.

This allows to consider time-dependent confinement regions, namely a family of smooth open sets {Ω(t)}t≥0, 
varying continuously with respect to time, within which the particle is confined. This question has attracted 
attention in Physics literature, as the works [15,29,23] or the survey [18] account for.

In terms of the wave function, a quantum particle confined in {Ω(t)}t≥0 must satisfy

∫
Ω(t)

|ψ(t, x(t))|2 dx = 1, ∀t ∈ R
+, (1.1)

and the Schrödinger equation

1 The measure |ψ(t, x)|2 dx is interpreted as a probability density, which explains the constraint.
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{
i∂tψ = − �

2mΔx(t)ψ, (t, x(t)) ∈ R
+ × Ω(t),

ψ = 0, (t, x(t)) ∈ R
+ × ∂Ω(t),

(1.2)

which implies that a time-dependent boundary condition must be taken into account. In [5,27] it is shown 
that, when d = 1, such a system can be handled by a suitable change of variables, which transforms the 
original problem into a system posed on a fixed domain, with a time-dependent potential. In particular, the 
works [24,3] show that, even in the case d = 1, keeping the particle confined in a time-varying box during 
the whole time-evolution can be extremely difficult, as some unexpected instability phenomena can appear.

From the perspective of Control of Partial Differential Equations, the seminal paper by P. Rouchon [32]
has raised the question of how to find a convenient family of deformations in order to control the dynamics 
of a confined quantum particle, for example to pass from the ground state to an excited state in a given 
time. This problem has been understood in one-dimensional situations, both for the linear free evolution 
(see [8]) and the nonlinear regime describing a Bose–Einstein condensate (see [12]). The goal of this work 
is to explore the same question in a two-dimensional setting.

1.2. Controllability of a 2-D quantum particle confined in a disc via domain deformations

Let, us consider for some T ∗ > 0, R ∈ C 0([0, T ∗]; R+
∗ ). We define the time-varying open discs

DR(τ) :=
{
(z, w) ∈ R

2; z2 + w2 < R(τ)2
}
, ∀τ ∈ [0, T ∗],

and we set the Schrödinger equation on this variable domain, according to (1.2), which in adimensionalised 
form (i.e., we set m = 1, � = 2) reads

{
i∂τφ = −Δz(τ),w(τ)φ, (τ, z, w) ∈ (0, T ∗) ×DR(τ),

φ = 0, (τ, z, w) ∈ (0, T ∗) × ∂DR(τ).
(1.3)

Remark 1.1. An appropriate notion of solution of this problem will be defined in Section 2, thanks to a 
convenient change of variables, described in Section 1.3, that transforms (1.3) into a system set on a fixed 
domain.

This is a control system whose state variable is the wave function φ(τ, z, w), which, according to (1.1), 
must satisfy

∫
DR(τ)

|φ(τ, z, w)|2 dz dw = 1, ∀τ ∈ [0, T ∗].

We choose the time-dependent radius of the disc DR(τ) to be the control variable, with the condition

R(0) = R(T ∗) = 1. (1.4)

We are interested in the following notion of controllability.

Definition 1.2 (Controllability via domain transformations). System (1.3) is controllable in the space X if 
for any φ0, φf ∈ X, there exists T ∗ > 0 and R ∈ C 0([0, T ∗]; R+

∗ ) satisfying (1.4) and such that the solution2

of (1.3) with initial datum φ|t=0 = φ0 satisfies φ|t=T∗ = φf .

2 A precise sense must be given to this notion, as the domain is time-dependent. In this article, this is possible through a suitable 
change of variables (see Section 1.3).
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Remark 1.3. Let us point out that the Definition above allows the controllability time T ∗ to depend on 
the data φ0, φf . In some cases, as in our main result (see Theorem 1.5) or in some previous works (see 
Section 1.6 for details), this time T ∗ can be chosen arbitrarily small and independently from the data.

The controllability of the Schrödinger equation via domain transformations has been treated, in the 
one-dimensional case, by K. Beauchard in [8]. The goal of this article is to explore the analogous question 
in the disc, as a first example of a two-dimensional case. Indeed, we shall prove a controllability result, 
according to Definition 1.2, for regular enough radial data.

More precisely, assuming that all data are radial, system (1.3) writes
{

i∂τφ = −Δρ(τ)φ, (τ, ρ) ∈ (0, T ∗) × (0, R(τ)),
φ(τ,R(τ)) = 0, τ ∈ (0, T ∗),

(1.5)

where Δρ(τ) := ∂2
ρ(τ) + 1

ρ(τ)∂ρ(τ) is the Laplacian operator in polar coordinates with radial data.

1.3. Change of variables

Following [5,8,12], let us introduce the new variables

ξ(t, r) := φ(τ, ρ), with r := ρ

R(τ) , t :=
τ∫

0

dσ
R(σ)2 , (1.6)

and the change of phase

ψ(t, r) := ξ(t, r) exp

⎛
⎝−iu(t)r2 + 4i

t∫
0

u(s) ds

⎞
⎠ ,

where

u(t) := 1
4 Ṙ(τ)R(τ),

T∫
0

u(s) ds = 0. (1.7)

This change of variables transforms system (1.5) into the following one, posed on a fixed domain,
{

i∂tψ = −Δrψ +
(
u̇(t) − 4u(t)2

)
r2ψ, (t, r) ∈ (0, T ) × (0, 1),

ψ(t, 1) = 0, t ∈ (0, T ),
(1.8)

for T :=
∫ T∗

0
dσ

R(σ)2 and

Δr := ∂2
r + 1

r
∂r. (1.9)

System (1.8) is a bilinear control system in which the state is the function ψ with ψ(t) ∈ S, for any t ∈ [0, T ], 
where S is the unit sphere of L2(D; C), and the control is the real-valued function u ∈ Ḣ1

0 (0, T ; R), with

Ḣ1
0 (0, T ;R) :=

⎧⎨
⎩u ∈ H1

0 (0, T ;R),
T∫
u(s) ds = 0

⎫⎬
⎭ .
0
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Thanks to the change of variables described above, we find that the controllability of system (1.8) implies 
the controllability of system (1.5), according to Definition 1.2, via the application u �→ R. Indeed, this can 
be proved thanks to the following result (see [12, Proposition 1] for a proof).

Proposition 1.4 ([12]). Let T > 0, u ∈ L∞(0, T ; R) extended by zero in (−∞, 0) ∪ (T, ∞) and such that ∫ T

0 u(s) ds = 0. The unique maximal solution of the Cauchy problem

{
g′(τ) = 4e−2

∫ g(τ)
0 u(s) ds,

g(0) = 0,

is defined for every τ ≥ 0, strictly increasing and satisfies

lim
τ→∞

g(τ) = +∞.

Thus, T ∗ = g−1(T ) is well-defined and if R is defined by

R(τ) := e
∫ g(τ)
0 u(s) ds,

then (1.4) and (1.7) are satisfied.

1.4. Functional setting

Let D be the unit disc of R2. We shall work on the space L2(D; C), with the scalar product

〈f, g〉L2(D) :=
∫
D

f(x, y)g(x, y) dx dy, ∀f, g ∈ L2(D;C). (1.10)

Let (A, D(A)) be the operator defined by
{

D(A) := H2 ∩H1
0 (D;C),

Aψ := −Δψ, ∀ψ ∈ D(A).
(1.11)

Let us recall that the eigenfunctions of this operator write, in polar coordinates, as follows ([14, Ch. 6, 
p. 130])

ϕν,k(r, θ) := Jν(jν,kr)eikθ√
π|Jν+1(jν,k)|

, ∀(r, θ) ∈ [0, 1] × [0, 2π), (1.12)

for every (ν, k) ∈ N × N
∗, with eigenvalues

λν,k := j2
ν,k, ∀(ν, k) ∈ N× N

∗, (1.13)

where Jν is the Bessel function of the first kind and order ν ≥ 0 and {jν,k}k∈N∗ is the sequence of its zeros 
(see Appendix A for details and notation).

Since the radial case will be particularly important in this article, we shall note, for simplicity,

ϕk := ϕ0,k, λk := λ0,k, ∀k ∈ N
∗. (1.14)

Thus, from (1.9), one has
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−Δrϕk = λkϕk, ∀k ∈ N
∗.

According to (1.11), we introduce the spaces

Hs
(0)(D;C) := D(A s

2 ), ∀s > 0,

endowed with the norm

‖f‖Hs
(0)

:=

⎛
⎝ ∑

(ν,k)∈N×N∗

|jsν,k〈f, ϕν,k〉L2(D)|2
⎞
⎠

1
2

, ∀f ∈ Hs
(0)(D;C), (1.15)

where 〈·, ·〉L2(D) is given by (1.10). In the case s = 1, we simply write H1
0 (D), as usual, as well as H−1(D)

for its dual space. In the radial case, we set

Hs
(0),rad(D;C) :=

{
f ∈ Hs

(0)(D;C); f is radial
}
, ∀s > 0,

and L2
rad(D) when s = 0. Furthermore, if f ∈ Hs

(0),rad(D; C), by changing variables, the norm (1.15) reduces 
to

‖f‖Hs
(0),rad

:=
( ∞∑

k=1

|jsk〈f, ϕk〉|2
) 1

2

,

up to a universal constant, with the scalar product

〈f, g〉 :=
1∫

0

f(r)g(r)r dr, ∀f, g ∈ L2(D) radial. (1.16)

We observe that Hs
(0),rad is a closed subspace of Hs

(0).

1.5. Main result

The main result of this article is a local exact controllability result of system (1.8) around a well-chosen 
trajectory. To describe these states, let us introduce the set

D :=
{
(θ2, θ3) ∈ R

2; θ2, θ3 > 0, θ2 + θ3 < 1
}
, (1.17)

and the family of states

ϕ� :=
√

1 − θ2 − θ3ϕ1 +
√

θ2ϕ2 +
√
θ3ϕ3, (θ2, θ3) ∈ D, (1.18)

according to (1.14). In this setting, we consider the associated free evolution

ψ�
τ := e−iλ1τ

√
1 − θ2 − θ3ϕ1 + e−iλ2τ

√
θ2ϕ2 + e−iλ3τ

√
θ3ϕ3, τ ≥ 0. (1.19)

Thus, ψ�
0 = ϕ� and let ψ�

t = e−itΔϕ�, for t ≥ 0.
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With this notation, the main result of this article is the following one.

Theorem 1.5. Let T > 0. There exists δ > 0 and a C 1-map

Γ : V0 × VT → Ḣ1
0 (0, T ;R),

where

V0 :=
{
ψ0 ∈ S ∩H3

(0),rad(D;C); ‖ψ0 − ϕ�‖H3
(0)

< δ
}
, (1.20)

VT :=
{
ψf ∈ S ∩H3

(0),rad(D;C); ‖ψf − ψ�
T ‖H3

(0)
< δ

}
, (1.21)

such that Γ(ϕ�, ψ�
T ) = 0 and for any (ψ0, ψf ) ∈ V0 × VT , the solution of (1.8) with ψ|t=0 = ψ0 and control 

u = Γ(ψ0, ψf ) satisfies

ψ|t=T = ψf .

Remark 1.6. The choice of the states (1.18) will be clear in Section 4, as the choice of more straightforward 
trajectories may lead to a linearised system which is not controllable (see Remark 4.3 for more details).

1.6. Previous work

The problem of the controllability of a confined quantum particle via domain deformations has been solved 
in the one-dimensional case by K. Beauchard in [8] for the free evolution and by K. Beauchard, H. Lange 
and H. Teismann in [12] for a Bose–Einstein condensate. In both cases, the problem of controllability via 
domain transformations can be handled thanks to a suitable change of variables, which reduces the problem 
into a bilinear control system under constraints. Let us point out that in 1-D the bilinear control of the 
Schrödinger equation has received much attention (we can mention the works [4,33,13,28,7,10,25] among 
others). In particular, the techniques developed by K. Beauchard and C. Laurent in [9] allow to prove local 
exact controllability results thanks to the Inverse Mapping Theorem and a certain smoothing effect. Let us 
observe that this approach simplifies the original proofs in [8], which use the Nash–Moser theorem.

Let us point out that in the one-dimensional case, the mentioned results hold in arbitrarily small time.
Contrarily to the 1D case, in the 2D setting, much less results on bilinear control are known (see [11,31]). 

Let us emphasise that, in particular, the results of [31] cannot be applied to our case because of the geometric 
constraint (1.4), which imposes a restriction in the control (see (1.7)) for the bilinear problem (1.8). We 
refer to Remark 4.3 for more details. Consequently, the controllability problem via domain deformations 
in a 2D setting is technically much more involved that in 1D, as the geometry of the deformations plays a 
major role. In the case of the disc, we can handle this by exploiting some fine properties of Bessel functions, 
through spectral decompositions (see Section 4 for details), which is the major novelty of our work. Indeed, 
this article represents the very first step in the exploration of the 2D problem, which should lead to other 
developments in the future (see Section 6 for comments and perspectives).

1.7. Strategy and outline

In this work, we shall follow the linearisation principle to prove a local exact controllability result, 
exploiting the connection with bilinear control problems under constraints, in the spirit of [8,9]. More 
precisely, the strategy of the proof of Theorem 1.5 has three main ingredients:

• we prove first that the linearised system around (ψ�
t , u ≡ 0) is controllable,
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• secondly, we prove that the end-point map (see Section 3 for the definition) is of class C 1 between some 
adequate spaces,

• finally, we deduce the local exact controllability from the Inverse Mapping Theorem.

1.7.1. Outline of the article
In Section 2 we recall the well-posedness of system (1.8) and state a smoothing effect. In Section 3 we use 

the smoothing effect to prove that the end-point map is of class C 1. In Section 4 we show that the linearised 
system around (ψ�

t , u ≡ 0) is controllable, thanks to the resolution of a suitable moment problem, that can 
be solved through the construction of an adequate Riesz basis in Section 4.2.3 and a key asymptotic result 
proven in Section 4.2.4. In Section 5 we conclude the proof of Theorem 1.5 thanks to the Inverse Mapping 
theorem. In Section 6 we gather some comments and perspectives. In Appendix A we gather some results 
on Bessel function. In Appendix B we gather some results on abstract and trigonometric moment problems 
that are useful in Section 4.

2. Well-posedness and smoothing effect

The goal of this section is to prove a well-posedness result in an appropriate functional setting for the 
system

{
i∂tψ = −Δrψ + u(t)r2ψ + f(t, r), (t, r) ∈ (0, T ) × (0, 1),
ψ(t, 1) = 0, t ∈ (0, T ),

(2.22)

where Δr is given by (1.9).
Let us recall that the Schrödinger operator iA, where A is given by (1.11), generates a group of 

isometries in Hs
(0)(D; C), for s ≥ 0, that we denote 

(
e−itΔ)

t≥0. Furthermore, thanks to (1.14), for any 
ψ0 ∈ Hs

(0),rad(D; C), one has

e−itΔψ0 :=
∞∑
k=1

e−iλkt〈ψ0, ϕk〉ϕk. (2.23)

Proposition 2.1. Let T > 0. For every ψ0 ∈ H3
(0),rad(D), f ∈ L2(0, T ; H3 ∩H1

0,rad(D)), u ∈ L2((0, T ); R), 
there exists a unique weak solution of system (2.22) with ψ|t=0 = ψ0, i.e., ψ ∈ C 0([0, T ]; H3

(0),rad(D)) such 
that

ψ(t) = e−iΔtψ0 − i

t∫
0

e−iΔ(t−s) [u(s)r2ψ + f(s, r)
]

ds, ∀t ∈ [0, T ]. (2.24)

Furthermore, for every M > 0 there exists a constant C1 = C1(T, M) > 0, such that if ‖u‖L2(0,T ) < M , 
then

‖ψ‖C 0([0,T ];H3
(0),rad) ≤ C1(T,M)

(
‖ψ0‖H3

(0),rad
+ ‖f‖L2(0,T ;H3∩H1

0,rad)

)
, (2.25)

and such that C1(t, M) is uniformly bounded on any bounded interval. Moreover, if f = 0, we have

‖ψ(t)‖L2(D) = ‖ψ0‖L2(D), ∀t ∈ [0, T ]. (2.26)

The proof of this result relies on the smoothing effect of next section.
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2.1. Smoothing effect

As it was shown by K. Beauchard and C. Laurent in the one-dimensional case in [9, Proposition 2], 
a certain smoothing effect can be expected for 

(
e−itΔ)

t≥0 in a suitable functional framework. This has been 
extended to a large class of smooth domains in any space dimension by J.P. Puel in [30]. To be precise, in 
the case of the unit disc D ⊂ R

2, let
{

i∂tψ = −Δψ + f(t, x, y), (t, x, y) ∈ (0, T ) ×D,

ψ = 0, (t, x, y) ∈ (0, T ) × ∂D.
(2.27)

Then, the following has been proved (see [30, Theorem 2.1]).

Proposition 2.2 ([30]). Let T > 0. For every ψ0 ∈ H3
(0)(D) and for every f = g + h, where

g ∈ L1(0, T ;H3
(0)(D)) (2.28)

and

h ∈ L2(0, T ;H2 ∩H1
0 (D)), Δ2h = 0, Δh|∂D ∈ L2(0, T ;L2(∂D)), (2.29)

the solution of (2.27) with ψ|t=0 = ψ0 satisfies ψ ∈ C 0([0, T ]; H3
(0)(D)) and there exists a constant C > 0, 

independent of ψ0, g or h, such that

‖ψ‖C 0([0,T ];H3
(0)) ≤ C

(
‖ψ0‖H3

(0)
+ ‖g‖L1(0,T ;H3

(0)) + ‖Δh|∂D‖L2(0,T ;L2(∂D))

)
. (2.30)

Proof of Proposition 2.1. Let T > 0, ψ0 ∈ H3
(0),rad(D) and f ∈ L2(0, T ; H3 ∩H1

0,rad(D)). We consider the 
map

∣∣∣∣∣ F : C 0([0, T ];H3
(0),rad(D)) → C 0([0, T ];H3

(0),rad(D))
ψ �→ ξ,

(2.31)

where ξ is the solution of
⎧⎪⎨
⎪⎩

i∂tξ(t, r) = −Δrξ(t, r) + u(t)r2ψ(t, r) + f(t, r), (t, r) ∈ (0, T ) × (0, 1),
ξ(t, 1) = 0, t ∈ (0, T ),
ξ(0, r) = ψ0(r), r ∈ (0, 1).

(2.32)

Our aim is to prove that this map has a fixed point. We divide the proof in several steps.

Step 1. We show that (2.31) is well-defined.
By direct computation, we observe that, as u ∈ L2(0, T ; R), for every ψ ∈ C 0([0, T ]; H3

(0),rad(D)), we have 

u(t)r2ψ ∈ L2(0, T ; H3 ∩H1
(0),rad(D)). As a result, f̃ := u(t)r2ψ + f belongs to L2(0, T ; H3 ∩H1

(0),rad(D)).
We can decompose f̃ as in Proposition 2.2. Indeed, let us consider, for a.e. t ∈ (0, T ) the following elliptic 

problem
{

Δ2g(t) = Δ2f̃(t), in D,

g(t) = Δg(t) = 0, on ∂D,
(2.33)

where Δ2 stands for the Bilaplacian operator. Since Δ2f̃(t) ∈ H−1(D) for a.e. t ∈ (0, T ), by elliptic 
regularity results (see [22, Th. 5.1, p. 166]), we deduce
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g ∈ L2(0, T ;H3
(0)(D)). (2.34)

Let us define next

h := f̃ − g. (2.35)

Since Δf̃ ∈ L2(0, T ; H1(D)), and using (2.34), we have

h ∈ L2(0, T ;H2 ∩H1
0 (D)), (2.36)

Δrh ∈ L2(0, T ;H1(D)). (2.37)

Hence, from (2.33),

Δ2h(t)|∂D = 0 and h(t)|∂D = 0, a.e. t ∈ (0, T ). (2.38)

Moreover, using trace results (see [22, Th. 8.3, p. 44]), (2.37) implies

Δh ∈ L2(0, T ;L2(∂D)). (2.39)

Thanks to (2.35), (2.34) and (2.36)–(2.39), we can apply Proposition 2.2 to system (2.32). This implies in 
particular that, as all data are radial and Δ2 is invariant by rotations, we deduce ξ ∈ C 0([0, T ]; H3

(0),rad(D)).

Step 2. We derive an appropriate energy estimate for system (2.32). We claim that

‖ξ‖C 0([0,T ];H3
(0),rad) ≤ C(T )

(
‖ψ0‖H3

(0),rad
+ ‖f̃‖L2(0,T ;H3∩H1

(0),rad)

)
, (2.40)

for some constant C(T ) > 0 which is bounded on bounded intervals (0, T ).
Indeed, according to (2.30), we have

‖ξ‖C 0([0,T ];H3
(0),rad)

≤ C
(
‖ψ0‖H3

(0),rad
+ ‖g‖L1(0,T ;H3

(0),rad) + ‖Δh|∂D‖L2(0,T )

)
.

We treat the two last terms separately. For the first one, we observe that, using (2.33), elliptic regularity 
(see [22, Th. 5.1, p. 166]) and the Cauchy–Schwarz inequality, it follows

‖g‖L1(0,T ;H3
0,rad) ≤ C1‖Δ2f̃‖L1(0,T,H−1)

≤ C2‖f̃‖L1(0,T ;H3∩H1
0,rad)

≤ C3
√
T‖f̃‖L2(0,T ;H3∩H1

0,rad).

For the other term, using (2.33), (2.38) and the continuity of the trace map (see [22, Th. 8.3, p. 44]),

‖Δh|∂D‖L2(0,T ) = ‖Δf̃|∂D‖L2(0,T )

≤ C4‖Δf̃‖L2(0,T ;H1
rad(D))

≤ C5‖f̃‖L2(0,T ;H3∩H1
(0),rad(D)).

Putting these estimates together, we obtain (2.40).

Step 3. We show that F is a contraction in C 0([0, T ]; H3 (D)).
(0),rad
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Let ψ1, ψ2 ∈ C 0([0, T ]; H3
(0),rad(D)). Then, by linearity of system (2.32), η := ψ1 − ψ2 satisfies

⎧⎪⎨
⎪⎩

i∂tη(t, r) = −Δrη(t, r) + u(t)r2(ψ1 − ψ2)(t, r), (t, r) ∈ (0, T ) × (0, 1),
η(t, 1) = 0, t ∈ (0, T ),
η(0, r) = 0, r ∈ (0, 1).

(2.41)

Using (2.40), we deduce

‖F [ψ1] − F [ψ2]‖C 0([0,T ];H3
(0),rad(D))

= ‖η‖C 0([0,T ];H3
(0),rad(D))

≤ C(T )‖u(t)r2(ψ1 − ψ2)‖L2(0,T ;H3∩H1
0,rad(D))

≤ C ′(T )‖u‖L2(0,T )‖r2(ψ1 − ψ2)‖L∞(0,T,H3∩H1
0,rad(D))

≤ C ′′(T )‖u‖L2(0,T )‖ψ1 − ψ2‖C 0([0,T ];H3
(0),rad(D)),

where C ′′(T ) > 0 is a constant which remains bounded on bounded intervals.
If C ′′(T )‖u‖L2 < 1, this estimate shows that F is a contraction in the Banach space C 0([0, T ]; H3

(0),rad(D)), 
as H3

(0),rad(D) is closed in H3
(0)(D). The Banach fixed-point theorem gives then the existence of a unique 

fixed point of F . Moreover, (2.40) gives (2.25) in this case.
In order to extend the result to arbitrary u ∈ L2(0, T ; R), we choose N ∈ N

∗ and a partition of [0, T ], 
namely 0 = T0 < T1 < · · · < TN = T and such that ‖u‖L2(Ti,Ti+1) is small enough ∀i ∈ {1, . . . , N}. We then 
apply the preceding arguments in each interval [Ti, Ti+1].

Finally, whenever f ≡ 0 and u ∈ C 0([0, T ]; R), identity (2.26) follows by classical arguments. This allows 
to extend (2.26) to the case u ∈ L2(0, T ; R) by density. �
3. CCC 1-regularity of the end-point map

In order to define the end-point map, we shall need the following definitions. Let, for s > 0,

X s := Hs
(0),rad(D;C) ∩ S. (3.42)

Setting T > 0, let us fix ξ ∈ S and let us consider the tangent space

TξS :=
{
f ∈ L2(D;C); Re〈f, ξ〉L2(D) = 0

}
. (3.43)

Then, we consider, thanks to Proposition 2.1, the end-point map

∣∣∣∣∣ΘT : Ḣ1
0 (0, T ;R) × X 3 → X 3 × X 3,

(u, ψ0) �→ (ψ0, ψ|t=T ),
(3.44)

where ψ is the solution of (1.8) with control u and initial condition ψ0.
Let

X0 := H3
(0),rad(D;C) ∩ Tϕ�S, XT := H3

(0),rad(D;C) ∩ Tψ�
T
S. (3.45)

Then, we have the following.
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Proposition 3.1. Let T > 0. The map ΘT defined by (3.44) is of class C 1. Moreover, for all (v, Ψ0) ∈
Ḣ1

0 (0, T ; R) ×X0, we have

dΘT (0, ϕ�).(v,Ψ0) =
(
Ψ0,Ψ|t=T

)
∈ X0 ×XT , (3.46)

where Ψ is the solution of the linearised system around (0, ϕ�), i.e.,

⎧⎪⎨
⎪⎩

i∂tΨ = −ΔrΨ + v̇(t)r2ψ�
t , (t, r) ∈ (0, T ) × (0, 1),

Ψ(t, 1) = 0, t ∈ (0, T ),
Ψ(0, r) = Ψ0, r ∈ (0, 1),

(3.47)

and (ψ�
t)t∈(0,T ) is given by (1.19).

The proof of this result can be carried out as in [9, Proposition 3, p. 531], with minor modifications, 
thanks to Proposition 2.1. We omit the details.

4. Controllability of the linearised system around (ϕ�, u ≡ 0)

The goal of this section is to prove the following result.

Proposition 4.1. Let T > 0. There exists a continuous linear map

L : X0 ×XT → Ḣ1
0 (0, T ;R)

(Ψ0,Ψf ) �→ v,

such that for any Ψ0 ∈ X0 and Ψf ∈ XT , the solution of system (3.47) with initial condition Ψ0 and control 
v = L(Ψ0, Ψf ) satisfies Ψ|t=T = Ψf .

The proof of this result relies on the resolution of a suitable moment problem. We shall first explain 
in Section 4.1 the heuristics leading to such a moment problem. Secondly, we derive in Section 4.2 the 
mathematical tools needed to handle it, which mainly consist in the construction of a suitable Riesz basis of 
Nonharmonic Fourier series. We finally prove Proposition 4.1 in Section 4.3 thanks to the tools developed 
in the previous sections.

Remark 4.2. In order to prove that the linearised system (3.47) is controllable, one could possibly use other 
strategies. For instance, according to the classical HUM method, the controllability of (3.47) is equivalent to 
prove an observability inequality for the adjoint system, in the sense imposed by the functional framework 
of the end-point map (3.44), i.e., (3.45). Such observability inequality could perhaps be obtained by using 
Carleman estimates, as in [20,21] or by microlocal methods, as in [2] and the references therein. On the 
other hand, even if the functional framework above allows the derivation of suitable observability estimates, 
it is not clear how to construct a control v satisfying the geometrical constraint 

∫ T

0 v(s) ds = 0 with the 
mentioned techniques. This motivates the approach that we follow here, based on the method of moments 
instead on other strategies.
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4.1. Heuristics leading to a moment problem

Since (3.47) is a linear system, we may suppose, w.l.o.g., that Ψ0 ≡ 0.3 Thus, the solution of system 
(3.47) admits the following expansion, for any t ∈ [0, T ],

Ψ(t) = −i
√

1 − θ2 − θ3

∞∑
k=1

t∫
0

v̇(s)ei(λk−λ1)s ds akϕke
−iλkt (4.48)

− i
√

θ2

∞∑
k=1

t∫
0

v̇(s)ei(λk−λ2)s ds bkϕke
−iλkt

− i
√

θ3

∞∑
k=1

t∫
0

v̇(s)ei(λk−λ3)s ds ckϕke
−iλkt,

where (λk)k∈N∗ and (ϕk)k∈N∗ are given by (1.14) and

ak := 〈r2ϕ1, ϕk〉, bk := 〈r2ϕ2, ϕk〉, ck := 〈r2ϕ3, ϕk〉, ∀k ∈ N
∗. (4.49)

Given a state Ψf ∈ XT , for XT given by (3.45), we look for a control v ∈ Ḣ1
0 (0, T ; R) such that

Ψ|t=T = Ψf . (4.50)

We shall traduce this condition into a trigonometric moment problem as follows.
Firstly, since the control v belongs to Ḣ1

0 (0, T ; R), we must impose

T∫
0

v̇(s) ds = 0,
T∫

0

sv̇(s) ds = 0. (4.51)

Next, in order to satisfy equation (4.50) we shall decompose Ψf in Fourier expansion, which yields

Ψf =
∞∑
k=0

〈Ψf , ϕk〉ϕk, (4.52)

and then rephrase (4.50) in terms of each Fourier mode. We can do this by separating low and high 
frequencies.

High frequencies. Let k ≥ 4. We observe that (4.50) implies, according to (4.48) and (4.52), that

ieiλkT 〈Ψf , ϕk〉 =
√

1 − θ2 − θ3ak

T∫
0

v̇(s)ei(λk−λ1)s ds

+
√
θ2bk

T∫
0

v̇(s)ei(λk−λ2)s ds +
√

θ3ck

T∫
0

v̇(s)ei(λk−λ3)s ds.

3 Indeed, suppose that ∀Ψ̃f ∈ XT , there exists v ∈ Ḣ1
0 (0, T ; R) such that the corresponding solution of (3.47) with Ψ̃0 = 0 satisfies 

Ψ̃|t=T = Ψ̃f . Thus, if we are given Ψ0 ∈ X0 and Ψf ∈ XT , it suffices to choose Ψ̃� = −e−iTΔΨ0 + Ψf , which provides a control 
w ∈ Ḣ1

0 (0, T ; R), such that the solution Ψ̃ of (3.47) with Ψ̃|t=0 = 0 and control w satisfies Ψ̃|t=T = Ψ̃�. Then, Ψ(t) = e−itΔΨ0+Ψ̃(t)
satisfies system (3.47) with control w, initial datum Ψ|t=0 = Ψ0 and verifies Ψt=T = Ψf .
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Since the frequencies (λk − λj)k≥4 for j = 1, 2, 3 are distinct (see Proposition 4.5 below), we can prescribe 
the following moment values, for any k ≥ 4,

T∫
0

v̇(s)ei(λk−λ1)s ds = i
√

1 − θ2 − θ3

ak
〈Ψf , ϕk〉eiλkT , (4.53)

T∫
0

v̇(s)ei(λk−λ2)s ds = i
√
θ2

bk
〈Ψf , ϕk〉eiλkT , (4.54)

T∫
0

v̇(s)ei(λk−λ3)s ds = i
√
θ2

bk
〈Ψf , ϕk〉eiλkT . (4.55)

Low frequencies. We observe that 0 ∈ {λk − λj , k, j = 1, 2, 3}. In that case, since the restriction on the 
control (4.51) must be taken into account, we need to separate the low frequencies in such a way we could 
recover the Fourier modes (〈Ψf , ϕk〉)k=1,2,3 from 

(
ei(λk−λj)t

)
k,j=1,2,3. This can be done by imposing the 

following conditions

T∫
0

v̇(s)ei(λ2−λ1)s ds = i〈Ψf , ϕ2〉eiλ2T −
√
θ3c2C

a2
√

1 − θ2 − θ3
, (4.56)

T∫
0

v̇(s)ei(λ3−λ1)s ds = i〈Ψf , ϕ3〉eiλ3T −
√
θ2b3C

a3
√

1 − θ2 − θ3
, (4.57)

T∫
0

v̇(s)ei(λ3−λ2)s ds = C, (4.58)

where C ∈ C satisfies

2ib3
√

θ2θ3 ReC =
√

1 − θ2 − θ3〈Ψf , ϕ1〉eiλ1T (4.59)

+
√
θ2e

−iλ2T 〈Ψf , ϕ2〉 +
√
θ3e

−iλ3T 〈Ψf , ϕ3〉.

Note that the choice of C ∈ C is possible, since Ψf ∈ Tψ�
τ
S.

Conclusion. Putting together (4.51), (4.53)–(4.55) and (4.56)–(4.58), we obtain the following moment 
problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0 v̇(s) ds = 0,∫ T

0 sv̇(s) ds = 0,∫ T

0 v̇(s)ei(λ2−λ1)s ds = 1
a2

√
1−θ2−θ3

(
i〈Ψf , ϕ2〉eiλ2T −

√
θ3c2C

)
,∫ T

0 v̇(s)ei(λ3−λ1)s ds = 1
a3

√
1−θ2−θ3

(
i〈Ψf , ϕ3〉eiλ3T −

√
θ2b3C

)
,∫ T

0 v̇(s)ei(λ3−λ2)s ds = C,∫ T

0 v̇(s)ei(λk−λ1)s ds = i
√

1−θ2−θ3
ak

〈Ψf , ϕk〉eiλkT , ∀k ≥ 4,∫ T

0 v̇(s)ei(λk−λ2)s ds = i
√
θ2

bk
〈Ψf , ϕk〉eiλkT , ∀k ≥ 4,∫ T

0 v̇(s)ei(λk−λ3)s ds = i
√
θ3

ck
〈Ψf , ϕk〉eiλkT , ∀k ≥ 4.

(4.60)

Indeed, if (4.60) is satisfied, then (4.50) holds.



JID:YJMAA AID:21363 /FLA Doctopic: Optimization and Control [m3L; v1.218; Prn:26/06/2017; 11:04] P.15 (1-28)
I. Moyano / J. Math. Anal. Appl. ••• (••••) •••–••• 15
Remark 4.3. At this point, we can justify further the choice of the family of states ϕ� given by (1.18). Indeed, 
choosing, for instance, (θ2, θ3) = (0, 0) /∈ D, we get ϕ� = ϕ1. However, in this case, the corresponding 
linearised system around (0, ϕ1) is not controllable with controls in Ḣ1

0 (0, T ; R), because of the constraint ∫ T

0 v̇(s) ds = 0.

4.2. Towards the resolution of the moment problem

The goal of this section is to develop the necessary mathematical tools leading to the proof of Propo-
sition 4.1. In order to do this, we shall rewrite the moment problem given by (4.60) in an abstract form 
that could be handled by the classical results on moment problems consisting in the use of Riesz basis (see 
Appendix B for details and notation).

4.2.1. Reinterpretation of the moment problem
We observe that (4.60) can be rewritten in the form

〈v̇, e−iωks〉L2(0,T ;C) =
T∫

0

v̇(s)eiωks ds = dk,

for the family of frequencies

{ωk; k ∈ N} = {0} ∪
{
j2
0,n − j2

0,p; p = 1, 2, 3, n ≥ p + 1
}
, (4.61)

rearranged in increasing order and

dk :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if k = 0,
1

a2
√

1−θ2−θ3

(
i〈Ψf , ϕ2〉eiλ2T −

√
θ3c2C

)
, if k = 1,

1
a3

√
1−θ2−θ3

(
i〈Ψf , ϕ3〉eiλ3T −

√
θ2b3C

)
, if k = 2,

C, if k = 3,
i
√
θ3

ck
〈Ψf , ϕk〉eiλkT , if k ∈ 4 + 3N,

i
√
θ2

bk
〈Ψf , ϕk〉eiλkT , if k ∈ 5 + 3N,

i
√

1−θ2−θ3
ak

〈Ψf , ϕk〉eiλkT , if k ∈ 6 + 3N,

(4.62)

for C given by (4.59), {ak, bk, ck}k∈N∗ given by (4.49) and {〈Ψf , ϕk〉}k∈N∗ given by (4.52). Thus, according 
to Appendix B, let us consider, for a given T > 0, the family

F :=
{
t �→ e−iωnt;n ∈ N

}
⊂ L2(0, T ;C) (4.63)

and let us consider the moment set associated to F , i.e.,

ML2(0,T ;C)(F) =
{{

〈w, e−iωnt〉L2(0,T ;C)
}
n∈N

, w ∈ L2(0, T ;C)
}
.

Then, we shall prove that

�2r(N,C) :=
{
{dk}k∈N

∈ �2(N,C); d0 ∈ R
}
⊂ ML2(0,T ;C)(F).

More precisely, we have the following result.
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Proposition 4.4. Let {ωk}k∈N
be the increasing sequence defined by (4.61). Then, for any T > 0, there exists 

a continuous linear map

M : R× �2r(N,C) → L2(0, T ;R),

such that for every d̃ ∈ R and d = {dn}n∈N
∈ �2r(N, C), the function w := M(d̃, d) satisfies

{ ∫ T

0 w(t)eiωkt dt = dn, ∀n ∈ N,∫ T

0 tw(t) dt = d̃.
(4.64)

For the proof of this result, we combine arguments coming from [9, Appendix B, Corollary 2] and [26, 
Appendix, Proposition 6.1]. Firstly, we show in Section 4.2.2 that the frequencies {ωk}k∈N∗ are non-resonant. 
Secondly, we construct in Section 4.2.3 a suitable Riesz basis and then we prove Proposition 4.4.

4.2.2. A non-resonance property

Proposition 4.5. Let λn := j2
0,n for any n ∈ N

∗. Then, for any n, m ∈ N
∗ and p, q ∈ {1, 2, 3}, we have

λn − λp �= λm − λq, ∀n �= m, p �= q. (4.65)

Proof. Let us assume that n, m ≥ 4, property (4.65) being obvious otherwise.
Working by contradiction, let us suppose that there exist m, n ≥ 4 and p, q ≤ 3 such that

λn − λp = λm − λq. (4.66)

Moreover, we may assume, without loss of generality, that

n > m > p > q. (4.67)

We shall distinguish two cases.

Case 1. Let us suppose that p = q + 1.
Then, thanks to (A.85), we have

λn − λm = (j0,n − j0,m) (j0,n + j0,m)

=
n−1∑
k=m

(j0,k+1 − j0,k) (j0,n + j0,m)

> (n−m) (j0,p − j0,q) (j0,n + j0,m) .

Thus, combining this with (4.66), we get

λp − λq > (n−m) (j0,p − j0,q) (j0,n + j0,m) .

This implies

j0,p + j0,q > j0,n + j0.m,

which is incompatible with (4.67), which shows (4.65) in this case.

Case 2. Let us suppose that p = q + 2.
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Firstly, let us assume that n = m + 1. Then, by claim (4.66) and using (A.85) twice, this yields

j0,m+1 + j0,m = (j0,p − j0,q)(j0,p + j0,q)
j0,m+1 − j0,m

<
(j0,p − j0,q)(j0,p + j0,q)

j0,p − j0,q+1

<

(
1 + j0,q+1 − j0,q

j0,p − j0,q+1

)
(j0,p + j0,q) < 2 (j0,p + j0,q) .

But this is impossible, since j0,5 + j0,4 > 2(j0,3 + j0,1), as can be seen from the values of these zeros.4
Secondly, let us suppose that n −m ≥ 2, i.e., �n−m

2 � ≥ 1, where �·� stands for the floor function. Thus,

j0,n − j0,m >

�n−m
2 �−1∑
i=0

(
j0,m+2(i+1) − j0,m+2i

)

≥ �n−m

2 � (j0,p − j0,q) ≥ (j0,p − j0,q) .

Thus, (4.66) yields

j0,n + j0,m < j0,p + j0,q,

which is in contradiction with (4.67). �
4.2.3. Construction of a Riesz basis

Proposition 4.6. Let us set, according to (4.61), ω−n := ωn, for any n ∈ N and ω0 = 0. Let us define, for a 
given T > 0, the families

FT :=
{
t �→ eiωnt;n ∈ Z

}
⊂ L2(0, T ;C),

and

F∗
T :=

{
t �→ eiωnt;n ∈ Z

∗} ⊂ L2(0, T ;C).

Then, we have that (see Definition B.1 for details)

(1) F∗
T is a Riesz basis of HT := AdhL2(0,T ;C) (spanFT ).

(2) FT is a minimal family in L2(0, T ; C).

4 Approximated values of these zeros, according to [34, Table VII, p. 748] are

j0,1 = 2.4048256, j0,3 = 8.6537279, j0,4 = 11.7915344, j0,5 = 14.9309177.

This yields

j0,5 + j0,4 = 26.7224521 > 2(j0,3 + j0,1) = 22.117107,

which proves the claim.
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Proof. Step 1. We prove point (1).
We observe that (A.82) and (A.85) imply that, for any k ∈ Z

∗,

ωk+1 − ωk+1 = j2
0,N(k+1) − j2

0,N(k)

=
(
j0,N(k+1) − j0,N(k)

) (
j0,N(k+1) + j0,N(k)

)
≥ (j0,2 − j0,1)(j0,2 + j0,1) = j2

0,2 − j2
0,1 > 0,

for some bijection N : N∗ → N
∗. Thus, (B.92) and (B.93) are satisfied and Theorem B.5 can be applied for 

any T ≥ 2π
j20,2−j20,1

. Thus, combining this with Theorem B.3, we deduce that F∗
T is a Riesz basis of HT for 

any T ≥ 2π
j20,2−j20,1

.
Moreover, we notice that, thanks to Beurling’s theorem (see Theorem B.6), we can extend the validity of 

this statement to every T > 0. Let us consider D+(ω), the upper density of the sequence {ωn}n∈Z
, according 

to (B.96). We shall prove that D+(ω) = 0.
Indeed, let us observe that (A.83) implies that

ωn → ∞, as n → ∞. (4.68)

Moreover, we observe that, for a sufficiently large n0 ∈ N, the frequencies {ωn}n≥n0
can be gathered in 

successive three-element packets of the form

j2
0,n0+n − j2

0,3 < j2
0,n0+n − j2

0,2 < j2
0,n0+n − j2

0,1.

Consequently, the gap between the elements of each packet must be

γ̃ = min
{
j2
0,3 − j2

0,2, j
2
0,2 − j2

0,1
}
> 0.

In addition, the gap between the elements of successive packets must be

j2
0,n0+n+1 − j2

0,n0+n + j2
0,1 − j2

0,3,

which tends to ∞ as n → ∞, thanks to (A.83) and (A.84). In addition, the non-resonance property (4.65)
ensures that ωk �= ωn, for any n �= k. We then deduce from this that the frequencies ωk do not concentrate, 
i.e.,

inf
k∈N

(ωk+1 − ωk) ≥ γ̃ > 0.

On the other hand, let r > 0 be large enough. According to (4.68) and the previous discussion, we must 
have

max
I⊂R interval |I|=r

# {ωk ∈ I} ≤ 3#
{
ωk ≤ r + j2

0,3
}

≤ 3#
{
j2
0,k ≤ r + j2

0,3
}

≤ 3#
{
k2 ≤ r + j2

0,3
}

≤ 3
√

r + j2
0,3,

as k2 ≤ j2
0,k for any k ∈ N

∗, according to (A.84) and (A.85). Thus,
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D+(ω) = lim
r→∞

maxI⊂R interval |I|=r # {ωk ∈ I}
r

= lim
r→∞

3
√
r + j2

0,3

r
= 0.

Theorem B.6 allows to conclude.

Step 2. We prove point (2).
Working by contradiction, let us assume that FT is not minimal in L2(0, T : C), for some T > 0. Then, 

the previous step implies (see Remark B.2) that

t �→ t ∈ AdhL2(0,T ;C) (spanF∗
T ) .

Then, by successive integrations, one checks that

t �→ tj ∈ AdhC 0([0,T ]) (spanFT ) , ∀j ∈ N, j ≥ 2.

On the other hand, the Stone–Weierstrass theorem guarantees that the family defined by {t �→ 1, t �→ tj ;
j ∈ N, j ≥ 2} is dense in C 0([0, T ]). Thus, we deduce that

spanFT is dense in L2(0, T ;C). (4.69)

Let us choose some ω ∈ R \ {ωn}n∈Z
. The previous step, combined with Theorem B.5, entails that {

t �→ eiωt
}
∪ FT is minimal in L2(0, T ; C). But then, we must have

t �→ eiωt /∈ AdhL2(0,T ;C) (spanFT ) ,

which is a contradiction with (4.69). �
Once we have obtained a suitable Riesz basis, we can prove Proposition 4.4.

Proof of Proposition 4.4. Let us set dk := d−k, for any k ∈ Z
∗ with k < 0. Let 

{
ξ̃, ξk, ; k ∈ Z

}
be the 

biorthogonal family to FT (see point (3) in Theorem B.3). Using Proposition 4.6 and Remark B.4, there 
exists a constant C > 0 and a unique u ∈ HT satisfying

T∫
0

u(t)eiωkt dt = dk, ∀k ∈ Z,

and such that

‖u‖L2(0,T ) ≤ C

(∑
k∈Z∗

|dk|2
) 1

2

.

Moreover, u is real-valued thanks to the uniqueness. Let us set

w := M(d̃, d) = u +

⎛
⎝d̃−

T∫
0

tu(t) dt

⎞
⎠ ξ̃.

Thus, w solves (4.64) and is also real-valued, since u and ξ̃ are so. Moreover, proceeding exactly as in 
[9, Corollary 2, Appendix B], one shows that the map M is continuous. �
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4.2.4. A key asymptotic result
The goal of this section is to prove the following formulae, which are key to prove that d = {dk}k∈N

, 
defined by (4.62) is well-defined and belongs to �2(N; C).

Lemma 4.7. For every ν ∈ N and k, l ∈ N
∗ such that k �= l,

1∫
0

r3Jν(jν,lr)Jν(jν,kr) dr = 4jν,kjν,lJν+1(jν,k)Jν+1(jν,l)(
j2
ν,k − j2

ν,l

)2 . (4.70)

Proof. Let us define, for every k ∈ N
∗,

W 2
ν,k(r) := r2Jν(jν,kr), ∀r ∈ (0, 1). (4.71)

From (A.81), we deduce that W 2
ν,k satisfies the following equation

d2

dr2W
2
ν,k(r) −

3
r

d
drW

2
ν,k(r) +

(
j2
ν,k + 4 − ν2

r2

)
W 2

ν,k(r) = 0, ∀r ∈ (0, 1). (4.72)

This implies

1∫
0

r3Jν(jν,kr)Jν(jν,lr) dr =
1∫

0

W 2
ν,k(r)Jν(jν,lr)r dr

= − 1
j2
ν,k

1∫
0

(
d2

dr2 − 3
r

d
dr + 4 − ν2

r2

)
W 2

ν,k(r)Jν(jν,lr)r dr

= − 1
j2
ν,k

1∫
0

(
d2

dr2 + 1
r

d
dr − ν2

r2

)
W 2

ν,k(r)Jν(jν,lr)r dr

+ 4
j2
ν,k

1∫
0

(
1
r

d
dr − 1

r2

)
W 2

ν,k(r)Jν(jν,lr)r dr. (4.73)

For the last integral, we have, by (4.71), (A.86) and (A.89),

1∫
0

(
1
r

d
dr − 1

r2

)
W 2

ν,k(r)Jν(jν,lr)r dr

= jν,k

1∫
0

r2J ′
ν(jν,kr)Jν(jν,lr) dr

= jν,k

1∫
0

r2
[
Jν−1(jν,kr) −

ν

jν,kr
Jν(jν,kr)

]
Jν(jν,lr) dr

= jν,k

1∫
r2Jν−1(jν,kr)Jν(jν,lr) dr. (4.74)
0
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For the other integral in (4.73), we have, integrating by parts and using (A.81),

1∫
0

(
d2

dr2 + 1
r

d
dr − ν2

r2

)
W 2

ν,k(r)Jν(jν,lr)r dr = −j2
ν,l

1∫
0

W 2
ν,k(r)Jν(jν,lr)r dr.

Combining this equality with (4.73) and (4.74) yields

(
1 −

j2
ν,l

j2
ν,k

) 1∫
0

r3Jν(jν,kr)Jν(jν,lr) dr = 4
jν,k

1∫
0

r2Jν−1(jν,kr)Jν(jν,lr) dr. (4.75)

To calculate the last integral, let us define

W 1
ν−1,k(r) := rJν−1(jν,kr), ∀r ∈ (0, 1). (4.76)

According to (A.81), we have, for every r ∈ (0, 1),

d2

dr2W
1
ν−1,k(r) −

1
r

d
drW

1
ν−1,k(r) +

(
j2
ν,k + 1 − (ν − 1)2

r2

)
W 1

ν−1,k(r) = 0.

Then,

1∫
0

r2Jν−1(jν,kr)Jν(jν,lr) dr =
1∫

0

W 1
ν−1,k(r)Jν(jν,lr)r dr

= − 1
j2
ν,k

1∫
0

(
d2

dr2 − 1
r

d
dr + 2ν − ν2

r2

)
W 1

ν−1,k(r)Jν(jν,lr)r dr

= − 1
j2
ν,k

1∫
0

(
d2

dr2 + 1
r

d
dr − ν2

r2

)
W 1

ν−1,k(r)Jν(jν,lr)r dr

+ 1
j2
ν,k

1∫
0

(
2
r

d
dr − 2ν

r2

)
W 1

ν−1,k(r)Jν(jν,lr)r dr.

Integrating by parts, and recalling that Jν(0) < ∞, for any ν ∈ Z, we find

− 1
j2
ν,k

1∫
0

(
d2

dr2 + 1
r

d
dr − ν2

r2

)
W 1

ν−1,k(r)Jν(jν,lr)r dr

= − 1
j2
ν,k

1∫
0

W 1
ν−1,k(r)

(
d2

dr2 + 1
r

d
dr − ν2

r2

)
Jν(jν,lr)r dr

−
[

r

j2
d
drW

1
ν−1,k(r)Jν(jν,lr)

]r=1

+
[
jν,lr

j2 W 1
ν−1,k(r)J ′

ν(jν,lr)
]r=1
ν,k r=0 ν,k r=0
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= − 1
j2
ν,k

1∫
0

W 1
ν−1,k(r)

(
d2

dr2 + 1
r

d
dr − ν2

r2

)
Jν(jν,lr)r dr + jν,l

j2
ν,k

W 1
ν−1,k(1)J ′

ν(jν,l)

=
(
jν,l
jν,k

)2 1∫
0

W 1
ν−1,k(r)Jν(jν,lr)r dr + jν,l

j2
ν,k

Jν−1(jν,k)J ′
ν(jν,l).

This gives

(
1 −

j2
ν,l

j2
ν,k

) 1∫
0

W 1
ν−1,k(r)Jν(jν,lr)r dr

= 1
j2
ν,k

1∫
0

(
2
r

d
dr − 2ν

r

)
W 1

ν−1,k(r)Jν(jν,lr)r dr (4.77)

+ jν,l
j2
ν,k

Jν−1(jν,k)J ′
ν(jν,l).

We treat the last integral separately. Integrating by parts and using (4.76) and (A.89), it comes

1∫
0

(
2
r

d
dr − 2ν

r2

)
W 1

ν−1,k(r)Jν(jν,lr)r dr

= −2jν,l
1∫

0

W 1
ν−1,k(r)J ′

ν(jν,lr) dr − 2ν
1∫

0

Jν−1(jν,kr)Jν(jν,lr) dr

= −2jν,l
1∫

0

rJν−1(jν,kr)
[
Jν−1(jν,lr) −

ν

jν,lr
Jν(jν,lr)

]
dr

− 2ν
1∫

0

Jν−1(jν,kr)Jν(jν,lr) dr

= −2jν,l
1∫

0

rJν−1(jν,kr)Jν−1(jν,lr) dr.

Hence, using (A.87), we deduce

1∫
0

(
2
r

d
dr − 2ν

r2

)
W 1

ν−1,k(r)Jν(jν,lr)r dr = 0.

Consequently, from (4.77), we get

(
1 −

j2
ν,l

j2
ν,k

) 1∫
0

W 1
ν−1,k(r)Jν(jν,lr)r dr = jν,l

j2
ν,k

Jν−1(jν,k)J ′
ν(jν,l).

Combining this with (4.75) we find
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(
1 −

j2
ν,l

j2
ν,k

) 1∫
0

r3Jν(jν,kr)Jν(jν,lr) dr = 4jν,lJν−1(jν,k)J ′
ν(jν,l)

jν,k

(
j2
ν,k − j2

ν,l

)

Hence, this yields (4.70), since (A.89) and (A.88) imply that J ′
ν(jν,k) = −Jν+1(jν,k) and Jν−1(jν,l) =

−Jν+1(jν,l). �
4.3. Resolution of the moment problem

Proof of Proposition 4.1. We observe that the trigonometric moment problem (4.60) can be solved by using 
Proposition 4.4. In order to justify this, we claim that there exist C1, C2, C3, D1, D2, D3, positive constants 
such that

C1 ≤ j3
0,k|ak| ≤ D1, C2 ≤ j3

0,k|bk| ≤ D2, C3 ≤ j3
0,k|ck| ≤ D3, ∀k ∈ N

∗. (4.78)

Indeed, let k > 1, the case k = 1 being straightforward. Identity (4.70) with ν = 0, l = 1, allows to write, 
through (4.49) and (1.12), that

|ak| = 1
|J1(j0,1)||J1(j0,k)|

∣∣∣∣∣∣
1∫

0

r3J0(j0,1r)J0(j0,k) dr

∣∣∣∣∣∣
= 4j0,1j0,k

(j0,k − j0,1)2 (j0,k + j0,1)2
,

and thus,

j3
0,k|ak| =

4j0,1j4
0,k

(j0,k − j0,1)2 (j0,k + j0,1)2

≥ 4j0,1
(j0,k − j0,1)2

(j0,k − j0,1)2
j2
0,k

(j0,k + j0,k)2
≥ j0,1.

The majoration follows by the same arguments. Then, (4.78) is proved for {ak}k∈N∗ . Let us observe that 
the other two cases can be done in the same way.

In addition, assumption Ψf ∈ H3
(0),rad(D, C), combined with (4.78), gives that d := {dk}k∈N

∈ �2r(N; C).
This allows to apply Proposition 4.4, which provides a function w := M(0, d) ∈ L2(0, T ; R) with

T∫
0

w(σ) dσ = 0,
T∫

0

σw(σ) dσ = 0. (4.79)

Consequently, setting

t �→ v(t) :=
t∫

0

w(σ) dσ (4.80)

we find a control v ∈ Ḣ1
0 (0, T ; R) solving (4.60). Moreover, the application (0, Ψf ) �→ v thus defined is 

continuous, thanks to Proposition 4.4. �
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5. Proof of Theorem 1.5

Following [9, Section 2.4], Theorem 1.5 is a consequence of the Inverse Mapping Theorem, combining 
Proposition 4.1 and Proposition 3.1. We omit the details.

6. Comments and perspectives

In this paper we have proved a controllability result via domain deformations for the Schrödinger equation 
in the unit disc of R2. This work, the first of this kind in a two-dimensional domain, shows that the geometry 
of the domain under study is essential. Indeed, our result is possible thanks to the particular geometry of 
the disc, which allows to exploit the radial symmetry. This yields a simplified situation to which the tools 
from one-dimensional bilinear control can be adapted. Even if some extensions in this direction are still 
possible, this feature of our result seems quite limiting.

On the other hand, a major difficulty of this result was to determine the functional framework in which 
controllability holds. This has been done thanks to a careful analysis of the spectral family given by the 
Bessel functions.

Any advance in a more general setting would be utterly interesting. The consideration of more general 
domains and data may lead, very likely, to the use of more general controls, probably space-dependent. 
Consequently, the tools from bilinear control, very useful in the one-dimensional case and in the present 
work, will be no longer convenient, in profit of other approaches.
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Appendix A. Bessel functions

Let ν ∈ R. We denote the Bessel function of order ν of the first kind by Jν (see [1, 9.1.10, p. 360]), which 
satisfies the ordinary differential equation

z2 d2

dz2 Jν(z) + z
d
dz Jν(z) + (z2 − ν2)Jν(z) = 0, z ∈ (0,+∞). (A.81)

A.1. Properties of the zeros

We denote by {jν,k}k∈N∗ the increasing sequence of zeros of Jν , which are real for any ν ≥ 0 and enjoy 
the following properties (see [1, 9.5.2, p. 360] and [19, Lemma 7.8, p. 135]):

ν < jν,k < jν,k+1, ∀k ∈ N
∗, (A.82)

jν,k → +∞, as k → +∞, (A.83)

jν,k+1 − jν,k → π, as k → ∞, (A.84)

(j0,k+1 − j0,k)k∈N∗ is a strictly increasing sequence. (A.85)
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A.2. Integral identities

We also have the integral formulae ([1, 11.4.5, p. 485])

1∫
0

rJν(jν,lr)Jν(jν,kr) dr = 1
2 |Jν+1(jν,k)|2δl,k, ∀l, k ∈ N

∗, (A.86)

and (see [1, 11.3.29, p. 484])

(α2 − β2)
1∫

0

rJν(αr)Jν(βr) dr = αJν+1(α)Jν(β) − βJν(α)Jν+1(β), (A.87)

for any α, β ∈ R, with α �= β. We have the differential relations (see [1, 9.1.27, p. 361])

J ′
ν(r) = −Jν+1(r) + ν

r
Jν(r), r ∈ (0,+∞), (A.88)

J ′
ν(r) = Jν−1(r) −

ν

r
Jν(r), r ∈ (0,+∞). (A.89)

Appendix B. Moment problems

In this section we gather some classical material concerning abstract moment problems in Hilbert space 
and trigonometric moment problems in L2(0, T ; C), that have been used in section 4.

B.1. Abstract moment problems

Let H be a separable Hilbert space, equipped with the scalar product 〈·, ·〉H , and let S = {fk}k∈Z
⊂ H

be a family of elements of H. Given a sequence of complex numbers {ck}k∈Z
, we want to determine whether 

the moment problem

〈f, fk〉H = ck, ∀k ∈ Z, (B.90)

can be solved for some element f ∈ H. In particular we study the moment set associated to S, which is 
defined (see [35, Ch. 4, Sect. 2, p. 128]) by

MH(S) :=
{
{〈g, fk〉H}k∈Z

; g ∈ H
}
⊂ C

Z.

Let us notice that, in practice, we are interested in solving the moment problem (B.90) for {cj}k∈Z
∈ �2(Z; C), 

i.e., we want �2(Z; C) ⊂ MH(S). This necessitates some conditions on the family S, that we briefly describe 
below.

Definition B.1. Let H be a separable Hilbert space and let S = {fk}k∈Z
⊂ H. Then,

(1) S is a minimal family in H if

∀j ∈ Z, fj /∈ AdhH (span {fk; k �= j}) ,
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(2) S is a Riesz basis of H if there exists an orthonormal basis of H, say {ek}k∈Z
, and a linear and bounded 

mapping T ∈ L (H) which is invertible and satisfies

Tek = fk, ∀k ∈ Z,

(3) S satisfies the Riesz–Fischer property in H if

�2(Z;C) ⊂ MH(S).

Remark B.2. Observe that it follows from the previous definition that any Riesz basis of a separable Hilbert 
space H is also a minimal family in H.

The following result provides two powerful criteria to check whether a given family S ⊂ H is a Riesz 
basis or satisfies the Riesz–Fischer property in H.

Theorem B.3. Let H be a separable Hilbert space and let S = {fk}k∈Z
⊂ H. Then,

(1) [35, Ch. 4, Sect. 2, Th. 3, p. 129] S satisfies the Riesz–Fischer property if there exists a constant m > 0
such that the inequality

m
∑
k∈Z

|ck|2 ≤
∥∥∥∥∥
∑
k∈Z

ckfk

∥∥∥∥∥
2

H

holds for any {ck}k∈Z
⊂ C

Z with finite support.
(2) [35, Ch. 1, Sect. 8, Th. 9, (3), p. 27] S is a Riesz basis if there exist M, m > 0 such that the inequality

m
∑
k∈Z

|ck|2 ≤
∥∥∥∥∥
∑
k∈Z

ckfk

∥∥∥∥∥
2

H

≤ M
∑
k∈Z

|ck|2 (B.91)

holds for any {ck}k∈Z
⊂ C

Z with finite support.
(3) [35, Ch. 1, Sect. 8, Th. 9, (5), p. 27] S is a Riesz basis if and only if one has AdhH (spanS) = H5 and 

there exists a family, say S⊥ = {gk}k∈Z∗ ⊂ H, satisfying that AdhH

(
spanS⊥) = H and such that6

〈gn, fk〉 = δn,k, ∀n, k ∈ Z.

Remark B.4. The previous result shows that if S is a Riesz basis of H, then it satisfies the Riesz–Fischer 
property in H. Thus, in particular, �2(Z, C) ⊂ MH(S). This allows to deduce that if S is a Riesz basis of H, 
then the moment problem (B.90) can be solved in H for a given {ck}k∈Z

∈ �2(Z; C).

B.2. Trigonometric moment problems

Let us focus next on the choice H = L2(0, T ; C), for some T > 0. Let us consider families given in the 
form

S =
{
t �→ eiωkt, k ∈ Z

}
⊂ L2(0, T ;C), with {ωk}k∈Z

⊂ R
Z.

5 In this case the family is called complete in H (see [35, Ch. 1, Sect. 5, p. 16]).
6 Such a family S⊥ is called biorthogonal to S (see [35, Ch. 1, Sect. 5, p. 24]).
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In order to determine if such a family S is a Riesz basis of H, it is crucial to analyse the separation 
properties of the frequencies {ωk}k∈Z

, as this allows to fulfil (B.91) through an Ingham-type inequality 
(see [17]). We shall recall next a classical result due to A. Haraux (see [16] and [19, Sect. 4.4, p. 69] for a 
proof).

Theorem B.5 (Haraux). Let N ∈ N and let {ωk}k∈Z
be an increasing sequence of RZ such that the following 

gap conditions

ωk+1 − ωk ≥ γ > 0, ∀k ∈ Z, with |k| ≥ N, (B.92)

ωk+1 − ωk ≥ ρ > 0, ∀k ∈ Z, (B.93)

are satisfied for some γ and ρ. Let

T ≥ 2π
γ
. (B.94)

Then, there exist M, m > 0 such that the inequality

m
∑
k∈Z

|ck|2 ≤
T∫

0

∣∣∣∣∣
∑
k∈Z

cke
iωt

∣∣∣∣∣
2

dt ≤ M
∑
k∈Z

|ck|2 (B.95)

holds for any sequence {ck}k∈Z
⊂ C

Z with finite support.

Condition (B.94) can be sharpened by using the following result, due to A. Beurling (see [19, Th. 9.2, 
p. 174]).

Theorem B.6 (Beurling). Let ω = {ωk}k∈Z
⊂ R

Z satisfying (B.93). Then, the real number

D+(ω) := lim
r→∞

maxI⊂R interval |I|=r # {ωk ∈ I}
r

, (B.96)

called the upper density of ω, is well-defined and inequality (B.95) holds for any T ≥ 2πD+(ω).
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